江苏省扬州市江都中学2020-2021学年高一上学期12月阶段测试数学试题

合集下载

江苏省扬州中学2019-2020学年高一上学期12月月考试题数学Word版含答案(K12教育文档)

江苏省扬州中学2019-2020学年高一上学期12月月考试题数学Word版含答案(K12教育文档)

江苏省扬州中学2019-2020学年高一上学期12月月考试题数学Word版含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江苏省扬州中学2019-2020学年高一上学期12月月考试题数学Word版含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江苏省扬州中学2019-2020学年高一上学期12月月考试题数学Word版含答案(word版可编辑修改)的全部内容。

江苏省扬州中学高一12月月考数学试卷第I 卷(选择题)一、单选题1.已知集合U ={-2,-1,0,1,2},A ={0,1,2},则∁U A =( ) A .{}2,1,0--B .{}2,1--C .{0,1,2}D .{}1,22.函数()2tan(3)2f x x π=+的最小正周期为( ) A .2πB .4πC .2D .43.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48B .24C .12D .64.AB AC BC BA +-+化简后等于( ). A .3ABB .ABC .BAD .CA5.已知函数(1)32f x x +=+,则()f x 的解析式是( ) A .()31f x x =- B .()31f x x =+C .()32f x x =+D .()34f x x =+6.化简225log 5lg4lg5-+的结果为( )A .0B .2C .4D .67.化简()()2cos 2sin ---ππ21 = ( ) A .± (cos2—sin2)B .sin2—cos2C .cos2-sin2D .sin2+cos28.设a =sin 1,b =cos 1,c =tan 1,则a ,b ,c 的大小关系是( ) A .a 〈b <cB .a <c <bC .b <a 〈cD .b 〈c <a9.将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间35[,]44ππ上单调递增B .在区间3[,]4ππ上单调递减10.定义域为实数集上的偶函数f (x )周期为2,且在[0,1]上f (x )=e x ,(参考数据:e 2≈7。

江苏省扬州市2020至2021学年度高一上学期期中数学试题

江苏省扬州市2020至2021学年度高一上学期期中数学试题

2020-2021学年度扬州市高一上学期数学期中试题姓名 班级 学号 日期 一、填空题:1、设全集U={-1,0,1,2,3,4},{1,0,1},{0,1,2,3}A B =-=,则U C ()A B ⋃=2、2(lg 5)lg 2lg 50+⨯=3、设{}|35P x x =<<,{}|12Q x m x m =-≤≤+,若P Q ⊆,则实数m 的取值范围是______ ___4、幂函数y =f (x )的图象经过点(-2,-18),则满足f (x )=27的x 的值是__________5、已知0.450.45log (2)log (1)x x +<-,则实数x 的取值范围是_____ _6、下列各组函数是同一函数的是①3()2f x x =-与()2g x x x =-;②()f x x =与2()g x x =;③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--。

7、若函数1()21xf x a =+-是奇函数,则实数a = 8、令113221log ,2,23a b c ===,则,,a b c 的大小关系为9、若函数()1()f x x f x =+=,则 10、若函数2()(21)1f x x a x a =--++是区间(1,2)上的单 调函数,则实数a 的取值范围是11、设奇函数()f x 的定义域为[]6,6-,当[]0,6x ∈时,()f x的图象如图,则不等式x ()0f x >的解集是12、若函数f (x )=x -4mx 2+4mx +3的定义域为R ,则实数m 的取值范围是_______13、已知函数f (x )=||12x x++,则满足不等式f (1- x 2) > f (2x )的x 的取值范围是 14、关于x 的方程022=--k x x ,下列判断: ①存在实数k ,使得方程有两个不同的实数根; ②存在实数k ,使得方程有三个不同的实数根;③存在实数k ,使得方程有四个不同的实数根.其中正确的有 二、解答题: 15、已知函数xx x f -++=3121)(的定义域为集合A ,}|{a x x B ≤=⑴若B A ⊆,求a 的取值范围; ⑵若全集为3},4|{=≤=a x x U ,求B A C U ⋂)(。

2021年江苏省扬州市江都二姜中学高一数学理月考试题含解析

2021年江苏省扬州市江都二姜中学高一数学理月考试题含解析

2021年江苏省扬州市江都二姜中学高一数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若函数在区间上的最大值是最小值的倍,则的值为( )A. B. C. D.参考答案:A解析:2. 义在上的奇函数,满足,且在上单调递减,则的解集为....参考答案:B3. 从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,则鱼池中共有鱼的条数大约为( ). A.1000 B.1200 C. 130D.1300参考答案:B略4. (4分)下列函数中,在其定义域内既是奇函数又是减函数的是()A.y=﹣x3,x∈R B.y=sinx,x∈R C.y=x,x∈R D.参考答案:A考点:函数的图象与图象变化;奇函数.分析:根据基本函数的性质逐一对各个答案进行分析.解答:A在其定义域内既是奇函数又是减函数;[来源:学科网]B在其定义域内是奇函数但不是减函数;C在其定义域内既是奇函数又是增函数;D在其定义域内是非奇非偶函数,是减函数;故选A.点评:处理这种题目的关键是熟练掌握各种基本函数的图象和性质,其处理的方法是逐一分析各个函数,排除掉错误的答案.5. 如图,在四边形中,设,,,则()A. B.C. D.参考答案:A略6. 图1是某地参加2010年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A1、A2、…A10(如A2表示身高(单位:cm)在[150,155内的人数]。

图2是统计图1中身高在一定范围内学生人数的一个算法流程图。

现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是()A.i<6B. i<7C.i<8 D.<9参考答案:C略7. 若定义运算,则函数的值域是()A B C D参考答案:A略8. 已知函数,则不等式的解集是()A. [-3,+∞)B. [1,+∞)C. [-3,1]D. (-∞,-3]∪[1,+∞)参考答案:A【分析】分别考虑即时;即时,原不等式的解集,最后求出并集。

江苏省扬州市江都中学2020-2021学年高一上学期12月阶段测试数学试题

江苏省扬州市江都中学2020-2021学年高一上学期12月阶段测试数学试题

数,则实数 a 的取值范围为__________. 四、解答题(本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分
10
分)已知集合
A
=
x
|
x x
− +
3 4
0 ,
B
=
{x
|
2m
−1
x
m
+
3} .
(1)当 m = 1时,求 A B ;
(2)若 A B = A ,求 m 的取值范围.

C.函数 f (x) 的单调增区间为[−1, 0] [1, +) 众D.号若方程 f (x) = m 有 2 个不同的实数解,则 m 0

12.已知 a, b R+ 且 a + b = 1,那么下列不等式中,恒成立的有( )
A. ab 1 4
B. ab + 1 2 ab
C. 1 + 1 3 2 a 2b
少时,平均每趟快递车辆每分钟的净收益最大?并求出最大净收益.
22.(本小题满分 12 分)
已知函数 f (x) = mx2 − 4x − 2 ( m R ).
(1)若 f (x) 在区间1, 2上是单调减函数,求 m 的取值范围:
(2)若方程 f (x) = 0 在区间−2, −1 上有解,求 m 的取值范围:
(2)若 p 是 q 的充分不必要条件,求实数 a 取值范围 .
20.(本小题满分 12 分)已知不等式 log2 (x +1) log2 (7 − 2x) .
(1)求不等式的解集 A;
(2)若当
x
A 时,不等式
1 4

2020届江苏省泰州中学、宜兴中学、江都中学高三12月联考数学试题(解析版)

2020届江苏省泰州中学、宜兴中学、江都中学高三12月联考数学试题(解析版)

圆 的圆心到直线 的距离为
,此时直线 与圆 相离,
根据新定义可知,曲线

对函数
求导得
到直线 ,令
的距离为 ,
故曲线 在
处的切线方程为
,即

于是曲线
到直线
的距离为
,则有

解得



时,直线 与曲线 相交,不合乎题意;当
时,直线 与曲线 相离,
合乎题意.
综上所述,
.
【考点】1.新定义;2.直线与曲线的位置关系
3
【解析】根据 f x 表达式可判断为偶函数,再结合偶函数性质即可求解
【详解】
由 f (x) x2 cos 2x 可判断函数为偶函数,又 f (2a) f (1 a) ,故 2a 1 a 或
2a 1 a 0 ,解得 a 1 或 1
3 故答案为: 1或 1
3
【点睛】 本题考查由偶函数的性质求解参数,属于基础题
故答案为:4 【点睛】 本题考查集合的交集运算和子集个数的求法,属于基础题 2.双曲线 x2-2y2=1 的渐近线方程为______.
【答案】
【解析】由双曲线的方程知
,所以双曲线的渐近线方程为

【考点】双曲线的几何性质.
3.函数 f (x) x2 cos 2x ,若 f (2a) f (1 a) ,则实数 a 的值为____________. 【答案】 1或 1
12.已知实数 a , b 满足 b 0 ,| a | b 1,则 a 1 2019 的最小值为 2019 | a | b
__________.
【答案】 2021
第 5 页 共 22 页
【解析】可采用“1”的代换,将 a 1 中的“1”代换成| a | b ,同时 2019 可代换成

2021年江苏省扬州市江都邵伯中学高一数学理月考试卷含解析

2021年江苏省扬州市江都邵伯中学高一数学理月考试卷含解析

2021年江苏省扬州市江都邵伯中学高一数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 在△ABC中,a、b、c分别为角A、B、C的对边,它的面积为,则角A等于()A. 30°B. 45°C. 60°D. 135°参考答案:D【分析】利用面积公式,借助余弦定理,即可容易求得结果.【详解】因为,且,故可得,即,又因为,故可得.故选:D.【点睛】本题考查三角形的面积公式以及余弦定理的应用,属综合基础题.2. 是第几象限角?()A、第一象限角B、第二象限角C、第三象限角D、第四象限角参考答案:D略3. 数列满足且,则数列的第100项为()A. B. C. D.参考答案:D4. 一个几何体的三视图如图所示,则该几何体的体积为()A.1 B.C.D.参考答案:C【考点】L!:由三视图求面积、体积.【分析】由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,计算出几何体的底面面积和高,代入棱锥体积公式,可得答案.【解答】解:由已知中的三视图可知:该几何体是以俯视图为底面的四棱锥,其底面面积S=×(1+2)×1=,高h=1,故棱锥的体积V==,故选:C5. 我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A. 1盏B. 3盏C. 5盏D. 9盏参考答案:B【详解】设塔顶的a1盏灯,由题意{a n}是公比为2的等比数列,∴S7==381,解得a1=3.故选:B.6. 已知θ是第三象限的角,并且sin 4θ – cos 4 θ =,那么sin 2 θ的值是()(A)(B)–(C)(D)–参考答案:A7. (5分)如果,那么的值是()A.B.C.D.参考答案:B考点:运用诱导公式化简求值.专题:计算题.分析:根据题意结合诱导公式先对条件进行化简,然后对所求化简,进而可以得到答案.解答:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.点评:解决此类问题的关键是熟练记忆诱导公式,以及进行正确的化简求值.8. 若|+|=2,⊥,则|﹣|=()A.1 B.C.2 D.4参考答案:C【考点】93:向量的模.【分析】由⊥,得,利用向量的数量积的性质计算得答案.【解答】解:由⊥,得.∵|+|2=,即,∴|﹣|2==4.∴|﹣|=2.故选:C.9. 已知集合U={1,3,5,7,9},A={1,5,7},则?U A=()A.{1,3} B.{3,7,9} C.{3,5,9} D.{3,9}参考答案:D【考点】补集及其运算.【分析】从U中去掉A中的元素就可.【解答】解:从全集U中,去掉1,5,7,剩下的元素构成C U A.故选D.10. 已知正方体ABCD﹣A1B1C1D1的棱长为2,线段EF在棱A1B1上移动,点P,Q分别在棱AD,CD上移动,若EF=1,PD=x,A1E=y,CQ=z,则三棱锥Q﹣PEF的体积()A解答: 解:由题意可以分析出,三棱锥Q ﹣PEF 的体积即是三棱锥P ﹣EFQ 的体积而△EFQ 的面积永远不变,为面A1B 1CD面积的,而当P 点变化时,它到面A 1B 1CD 的距离是变化的,因此会导致四面体体积的变化. 故答案为A .11. 已知函数.若时,恒成立.则实数的取值范围 .参考答案:或12. 已知圆.由直线上离圆心最近的点M 向圆C 引切线,切点为N ,则线段MN 的长为__________.参考答案:13. 在画程序框图时,框图一般按_________、________的方向画。

2020-2021学年江苏省扬州中学高一上学期第一次月考数学试题(解析版)

2020-2021学年江苏省扬州中学高一上学期第一次月考数学试题(解析版)

2020-2021学年江苏省扬州中学高一上学期第一次月考数学试题一、单选题1.集合{}11M x x =-<<,{}02N x x =≤<,则M N =( )A .{}12x x -<< B .{}01x x ≤<C .{}01x x <<D .{}10x x -<<【答案】B【解析】根据集合交集的定义进行运算即可. 【详解】在数轴上分别标出集合,M N 所表示的范围如图所示, 由图象可知, {}|01M N x x =≤<.故选:B.【点睛】本题考查集合的交集运算,属于简单题. 2.命题“20002,x x x π∃≥≥”的否定是 A .20002,x x x π∃<≥ B .20002,x x x π∃<< C .22,x x x π∀≥≤ D .22,x x x π∀≥<【答案】D【解析】根据特称命题的否定是全称命题,得出选项. 【详解】因为特称命题的否定是全称命题,所以命题“20002,x x x π∃≥≥”的否定是22,x x x π∀≥<,故选D . 【点睛】本题考查特称命题与全称命题的关系,属于基础题.的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,1【答案】C【解析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.4.若0,0a b >>,则“4a b +≤”是 “4ab ≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取,a b 的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查. 【详解】当0, 0a >b >时,2a b ab +≥,则当4a b +≤时,有24ab a b +≤,解得,充分性成立;当=1, =4a b 时,满足,但此时,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件. 【点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果. 5.设25a b m ==,且112a b+=,则m =( ) A .10 B .10C .20D .100【答案】A【解析】先根据25a b m ==,得到25log ,log a m b m ==,再由11log 2log 5m m a b+=+求解. 【详解】因为25a b m ==,所以25log ,log a m b m ==, 所以11log 2log 5log 102m m m a b+=+==, 210m ∴=,又0m >,∴10m =.故选:A 【点睛】本题主要考查指数式与对数式的互化以及对数的运算,属于基础题.6.设b >0,二次函数y =ax 2+bx+a 2﹣1的图象为下列之一,则a 的值为( )A .1B .﹣1C .152- D .152- 【答案】B【详解】把四个图象分别叫做A ,B ,C ,D .若为A ,由图象知a <0,对称轴为x =0,解得02ba ->矛盾,所以不成立. 若为B ,则由图象知a >0,对称轴为x =0,解得02ba-<矛盾,所以不成立. 若为C ,由图象知a <0,对称轴为x >0,且函数过原点, 得a 2﹣1=0,解得a =﹣1,此时对称轴02ba->有可能,所以此时a =﹣1成立. 若为D ,则由图象知a >0,对称轴为x >0,且函数过原点,得a 2﹣1=0,解得a =1, 此时对称轴02ba-<,矛盾,所以不成立. 故图象为第三个,此时a =﹣1. 故选B . 【点睛】本题主要考查二次函数的图象和性质,要求熟练掌握抛物线的开口方法,对称轴之间的关系,属于中档题.7.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样 D .无法确定【答案】B【解析】分别求出两种方案平均油价,结合基本不等式,即可得出结论. 【详解】任取其中两次加油,假设第一次的油价为m 元/升,第二次的油价为n 元/升.第一种方案的均价:3030602m n m n++=≥第二种方案的均价:4002200200mnm nm n=≤++ 所以无论油价如何变化,第二种都更划算. 故选:B 【点睛】本题考查不等式的实际运用,以及基本不等式比较大小,属于中档题.数小于B 中的最小数的集合对(A ,B )的个数为( ) A .49 B .48C .47D .46【答案】A【解析】利用分类计数法,当A 中的最大数分别为1、2、3、4时确定A 的集合数量,并得到对应B 的集合个数,它们在各情况下个数之积,最后加总即为总数量. 【详解】集合{}1,2,3,4,5P =知:1、若A 中的最大数为1时,B 中只要不含1即可:A 的集合为{1}, 而B 有 42115-=种集合,集合对(A ,B )的个数为15;2、若A 中的最大数为2时,B 中只要不含1、2即可:A 的集合为{2},{1,2},而B 有3217-=种,集合对(A ,B )的个数为2714⨯=;3、若A 中的最大数为3时,B 中只要不含1、2、3即可:A 的集合为{3},{1,3},{2,3},{1,2,3},而B 有2213-=种,集合对(A ,B )的个数为4312⨯=;4、若A 中的最大数为4时,B 中只要不含1、2、3、4即可:A 的集合为{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4},而B 有1211-=种,集合对(A ,B )的个数为818⨯=; ∴一共有151412849+++=个, 故选:A 【点睛】本题考查了分类计数原理,按集合最大数分类求出各类下集合对的数量,应用加法原理加总,属于难题.二、多选题9.设正实数,a b 满足1a b +=,则下列结论正确的是( )A .11a b+有最小值4 B 12CD .22a b +有最小值12【解析】根据基本不等式逐项判断后可得正确的选项. 【详解】对于A ,2111142+=≥=⎛⎫+ ⎪⎝⎭a b ab a b ,当且仅当12a b ==时等号成立,故A 正确.对于B,由基本不等式有1a b +=≥12,当且仅当12a b ==时等号成立,12,故B 错误. 对于C,因为2112a b =+≤++=≤,当且仅当12a b ==,故C 正确. 对于D ,因为2221121222a b ab a b +⎛⎫=-≥-⨯=⎪⎝⎭+,当且仅当12a b ==时等号成立,故22a b +有最小值12,故D 正确.故选:ACD. 【点睛】本题考查基本不等式在最值中的应用,注意“一正、二定、三相等”,本题属于基础题. 10.下列各小题中,最大值是12的是( ) A .22116y x x=+B.[]0,1y x =∈ C .241x y x =+D .()422y x x x =+>-+ 【答案】BC【解析】利用基本不等式的性质即可判断出结论. 【详解】解:对于A ,y 没有最大值;对于B ,y 2=x 2(1﹣x 2)≤22212x x ⎛⎫+- ⎪⎝⎭=14,y ≥0,∴y ≤12,当且仅当x=2时取等号.对于C ,x =0时,y =0.x ≠0时,y =2211x x+≤12,当且仅当x =±1时取等号. 对于D ,y =x +2+42x +﹣2=2,x >﹣2,当且仅当x =0时取等号. 故选:BC. 【点评】本题考查了基本不等式的性质,考查了推理能力 与计算能力,属于基础题. 11.已知关于x 的方程()230x m x m +-+=,则下列结论中正确的是( )A .方程有一个正根一个负根的充要条件是{}0m m m ∈< B .方程有两个正根的充要条件是{}01m m m ∈<≤ C .方程无实数根的必要条件是{}1m m m ∈> D .当3m =时,方程的两个实数根之和为0 【答案】ABC【解析】根据一元二次方程根与系数的关系,结合根的分布情况、对应二次函数的性质判断各选项的正误即可. 【详解】A 选项中,方程有一个正根一个负根则()()2340{00m m f ∆=--><即0m <;同时0m <时方程有一个正根一个负根;0m <是方程有一个正根一个负根的充要条件.B 选项中,方程有两个正根则()()23403{02200m m b ma f ∆=--≥--=>>即01m <≤; 同时01m <≤时方程有两个正根;01m <≤是方程有两个正根的充要条件. C 选项中,方程无实数根则2(3)40m m ∆=--<即19m <<;而1m 时方程可能无实根也可能有实根;故1m 是方程无实数根的必要条件. D 选项中,3m =时230x +=知方程无实根; 故选:ABC本题考查了一元二次方程根与系数关系,结合二次函数的性质判断方程的根不同分布情况下的充要条件.12.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-200x +80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.以下判断正确的是( ) A .该单位每月处理量为400吨时,才能使每吨的平均处理成本最低 B .该单位每月最低可获利20000元 C .该单位每月不获利,也不亏损D .每月需要国家至少补贴40000元才能使该单位不亏损 【答案】AD【解析】根据题意,列出平均处理成本表达式,结合基本不等式,可得最低成本;列出利润的表达式,根据二次函数图像与性质,即可得答案. 【详解】由题意可知,二氧化碳每吨的平均处理成本为1800002002002002y x x x =+-≥=, 当且仅当1800002x x=,即400x =时等号成立, 故该单位每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元,故A 正确;设该单位每月获利为S 元, 则2211100100(80000200)3008000022S x y x x x x x =-=-+-=-+-21(300)350002x =---,因为[400,600]x ∈, 所以[80000,40000]S ∈--.故该单位每月不获利,需要国家每月至少补贴40000元才能不亏损,故D 正确,BC 错误, 故选:AD本题考查基本不等式、二次函数的实际应用,难点在于根据题意,列出表达式,并结合已有知识进行求解,考查阅读理解,分析求值的能力,属中档题.三、填空题 13.若{}{}1,21,2,3,4,5A ⊆,则满足这一关系的集合A 的个数为______.【答案】7【解析】列举出符合条件的集合A ,即可得出答案. 【详解】由题意知,符合{}{}1,21,2,3,4,5A ⊆的集合A 有:{}1,2,3、{}1,2,4、{}1,2,5、{}1,2,3,4、{}1,2,3,5、{}1,2,4,5、{}1,2,3,4,5,共7个.故答案为7. 【点睛】本题考查集合个数的计算,一般列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.14.已知1a b >>.若5log log 2a b b a +=,b a a b =,则a b +=__________. 【答案】6【解析】根据题意,设log b t a =,根据1a b >>得出t 的范围,代入5log log 2a b b a +=求出t 的值,得到a 与b 的关系式,与b a a b =联立方程组,即可求出a 、b 的值. 【详解】由题意得,设log b t a =,由1a b >>可得1t >,代入5log log 2a b b a +=,得 152t t += 解得2t =,即2log 2b a a b =⇒= 又b a a b =,可得2b a b b = 即22a b b == 解得2,4b a == 所以6a b +=. 故答案为6.本题主要考查对数的运算性质.15.已知01,01x y <<<<,且44430xy x y --+=,则12x y+的最小值是___________.【答案】4+【解析】由44430xy x y --+=,整理得1(1)(1)4x y --=,设1,1a x b y =-=-,41ab =,再化简124224441x y a a +=++--,再结合()()44413a a -+-=,结合基本不等式,即可求解. 【详解】因为44430xy x y --+=,可得44441xy x y --+=, 整理得1(1)(1)4x y --=, 设1,1a x b y =-=-,则41ab =,又由01,01x y <<<<,则10,10a x b y =->=-> 所以121212181242221111141141444114a x y a b a a a a a a a a+=+=+=+=++=++----------又由()()44413a a -+-=, 则()()41444444214214()2()()[][6]444134441344411a a a a a a a a a a +=⋅+=++----------+16[633++=≥, 当且仅当4()2()44444114a a a a =----,即24a =等号成立,所以1224x y +≥=12故答案为:43+. 【点睛】本题主要考查了利用基本不等式求最小值问题,其中解答中熟记基本不等式的条件“一正、二定、三相等”,合理化简和构造基本不等式的条件是解答的关键,着重考查推理与运算能力.四、双空题16.已知不等式210ax bx +->的解集为{|34}x x <<,则实数a = _________;函数2y x bx a -=-的所有零点之和等于_________. 【答案】112-712【解析】根据不等式解集,结合不等式与方程关系可求得参数,a b ;代入函数解析式,即可由韦达定理求得零点的和. 【详解】∵等式210ax bx +->的解集为{|34}x x <<, ∴3,4x x ==是方程210+-=ax bx 的两个实根,则13412a ⨯=-=,解得112a =-,而两根之和7b a =-,解得712b =, 故函数2y x bx a -=-的所有零点之和为712b =, 故答案为:112-,712. 【点睛】本题考查了一元二次不等式与一元二次方程的关系,由不等式解集确定参数值,属于基础题.五、解答题17.已知集合{}{}25,121A x x B x m x m =-≤≤=+≤≤-. (1)若A B A ⋃=,求实数m 的取值范围;(2)当x ∈R 时,若AB =∅,求实数m 的取值范围.【答案】(1)3m ≤;(2)(,2)(4,)-∞⋃+∞;【解析】(1)由条件知B A ⊆,讨论B =∅、B ≠∅求m 的范围,取并集即可; (2)由A B =∅分类讨论B =∅、B ≠∅,求m 的范围即可;【详解】(1)由A B A ⋃=知:B A ⊆, 当B =∅时,121m m +>-得2m <;当B ≠∅时,12215121m m m m +≥-⎧⎪-≤⎨⎪+≤-⎩解得23m ≤≤;综上,有:3m ≤; (2)x ∈R 时,AB =∅知:当B =∅时,121m m +>-得2m <;当B ≠∅时,15121m m m +>⎧⎨+≤-⎩或212121m m m -<-⎧⎨+≤-⎩,解得4m >;∴m 的取值范围为(,2)(4,)-∞⋃+∞; 【点睛】本题考查了集合,根据集合交、并结果判断集合间的关系求参数范围,属于基础题. 18.化简下列各式:(1)212.531305270.0648π-⎡⎤⎛⎫⎛⎫⎢⎥-- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)2lg 2lg311ln lg 0.36lg1624e +++. 【答案】(1)0;(2)1.【解析】(1)根据分数指数幂的计算法则进行计算即可; (2)利用对数的运算法则求解. 【详解】解:(1)()213133312212.531305330.410.410270.064228π⨯---⎡⎤⎛⎫=--=--=⎢⎥ ⎪⎝⎭⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥-- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)2lg 2lg3lg 4lg3lg12lg121111lg 0.6lg 2lg10lg1.2lg12ln lg 0.36lg1624e ++====+++++. 【点睛】本题考查指数幂的化简计算,考查对数式的化简运算,难度一般,解答时要灵活运用指数幂及对数的运算法则.19.已知:(1)(2)0,:p x x q +-≥关于x 的不等式2260x mx m +-+>恒成立 (1)当x ∈R 时q 成立,求实数m 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围. 【答案】(1) ()3,2m ∈- (2)10733m <<-【解析】(1)分析可知一元二次不等式大于零恒成立等价于0<恒成立 (2)p 是q 的充分不必要条件可得p 是q 的真子集,再进行分类讨论即可 【详解】(1)由题可知2244240,60,32m m m m m =+-<∴+-=∴-<<实数m 的取值范围是()3,2-(2):12p x -,设{|12}A x x =-≤≤,{}2|260B x x mx m =+-+>p 是q 的充分不必要条件,∴A 是B 的真子集① 由(1)知,32m -<<时,B=R ,符合题意;② 3m =-时,{}{}26903B x x x x x =-+>=≠,符合题意 ③2m =时,{}{}24402B x x x x x =++>=≠-,符合题意④32m m <->或时,设2(2)6x m f x mx +-+=,()f x 的对称轴为直线x m =-,由A 是B 的真子集得()()1212,10203+703+100m m m m f f m m -<-->><-⎧⎧⎧⎧∴⎨⎨⎨⎨-<>->>⎩⎩⎩⎩或或,71010712,323333m m m m ∴<<-<<-∴-<<-<<或或综上所述:10733m <<- 【点睛】复杂的二次函数问题,需要判断函数值域的情况下,需要进行分类讨论,根据对称轴、单调性及特殊点进行判断20.某火车站正在不断建设,目前车站准备在某仓库外,利用其一侧原有墙体,建造一间墙高为3米,底面积为12平方米,且背面靠墙的长方体形状的保管员室.由于此保管员室的后背靠墙,无须建造费用,因此甲工程队给出的报价为:屋子前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米150元,屋顶和地面以及其他报价共计7 200元.设屋子的左右两侧墙的长度均为x 米(2≤x ≤6). (1)当左右两面墙的长度为多少时,甲工程队报价最低?(2)现有乙工程队也参与此保管员室建造竞标,其给出的整体报价为900(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a 的取值范围.【答案】(1)4米;(2)(0,12).【解析】(1)设甲工程队的总造价为y 元,则y=900(x+16x)+7 200,利用基本不等式求解函数的最值即可; (2)由题意可得,900(x+16x)+7 200>900(1)a x x +对任意的x ∈[2,6]恒成立,即可a<2(4)1x x ++=(x+1)+91x ++6恒成立,再利用基本不等式求解函数的最值即可【详解】(1)设甲工程队的总造价为y 元, 则y=3(150×2x+400×12x )+7 200=900(x+16x)+7 200(2≤x ≤6),900(x+16x )+7 200≥900×27 200=14 400. 当且仅当x=16x,即x=4时等号成立. 即当左右两面墙的长度为4米时,甲工程队的报价最低为14 400元. (2)由题意可得,900(x+16)x+7 200>900(1)a x x +对任意的x ∈[2,6]恒成立,即2(4)(1)x a x x x++>, ∴a<2(4)1x x ++=(x+1)+91x ++6,又x+1+91x ++6=12,当且仅当x+1=91x +,即x=2时等号成立, ∴a 的取值范围为(0,12).【点睛】此题考查基本不等式的应用,考查分析问题和解决问题的能力,属于中档题. 21.已知函数()214y x m x =-++,区间[]0,3A =,分别求下列两种情况下m 的取值范围.(1)函数y 在区间A 上恰有一个零点; (2)若0x A ∃∈,使得1y <-成立.【答案】(1)103m >或3m =;(2)1m >. 【解析】(1)分类讨论,(i )0或3是零点时;(ii )0和3都不是零点,在(0,3)上有唯一零点,用零点存在定理求解; (2)不等式1y <-变形为51m x x +>+,求出5x x+的最小值即可得. 【详解】记2()(1)4f x x m x =-++, (1)显然(0)0f ≠,(i )若2(1)160m ∆=+-=,则3m =或5-,5m =-时,()0f x =的解为122[0,3]x x ==-∉, 3m =时,()0f x =的解为122[0,3]x x ==∈,(ii )若(3)93(1)40f m =-++=,则103m =,此时()f x 的另一零点是6[0,3]5∈,不合题意;(iii )(0)40f =>,(3)133(1)0f m =-+<,103m >, 综上,103m >或3m =; (2)即不等式2(1)41x m x -++<-在[0,3]上有解,0x =显然不是它的解,(0,3]x ∈,则51m x x +>+,即51m x x+>+在(0,3]上有解, 设5()g x x x =+,25()1g x x '=-225x x-=,所以当0x <<时,()0g x '<,()g x3x <≤时,()0g x '>,()g x 递增,所以x =()g x取得极小值也是最小值g =1m +>,1m >.【点睛】本题考查零点存在定理,考查不等式能成立问题,不等式恒成立与能成立问题都是要进行问题的转化,常常转化为求函数的最值,但要注意是求最小值还是求最大值. 22.已知3a ≥,函数F (x )=min{2|x−1|,x 2−2ax+4a−2},其中min{p ,q}={,.p p q q p q ,,≤> (Ⅰ)求使得等式F (x )=x 2−2ax+4a−2成立的x 的取值范围; (Ⅱ)(ⅰ)求F (x )的最小值m (a ); (ⅱ)求F (x )在区间[0,6]上的最大值M (a ). 【答案】(Ⅰ)[]2,2a .(Ⅱ)(ⅰ)()20,32{42,2a m a a a a ≤≤=-+->.(ⅱ)()348,34{2,4a a a a -≤<M =≥.【解析】试题分析:(Ⅰ)分别对1x ≤和1x >两种情况讨论()F x ,进而可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()21f x x =-,()2242g x x ax a =-+-的最小值,再根据()F x 的定义可得()F x 的最小值()m a ;(Ⅱ)分别对02x ≤≤和26x ≤≤两种情况讨论()F x 的最大值,进而可得()F x 在区间[]0,6上的最大值()M a . 试题解析:(Ⅰ)由于3a ≥,故当1x ≤时,()()()22242212120x ax a x x a x -+---=+-->,当1x >时,()()()22422122x ax a x x x a -+---=--.所以,使得等式()2242F x x ax a =-+-成立的x 的取值范围为[]2,2a .(Ⅱ)(ⅰ)设函数()21f x x =-,()2242g x x ax a =-+-,则()()min 10f x f ==,()()2min 42g x g a a a ==-+-,所以,由()F x 的定义知()()(){}min 1,m a f g a =,即()20,32{42,2a m a a a a ≤≤+=-+->+(ⅱ)当02x ≤≤时,()()()(){}()max 0,222F x f x f f F ≤≤==,当26x ≤≤时,()()()(){}{}()(){}max 2,6max 2,348max 2,6F x g x g g a F F ≤≤=-=. 所以,()348,34{2,4a a M a a -≤<=≥.【考点】函数的单调性与最值,分段函数,不等式.【思路点睛】(Ⅰ)根据x 的取值范围化简()F x ,即可得使得等式()2242F x x ax a =-+-成立的x 的取值范围;(Ⅱ)(Ⅰ)先求函数()f x 和()g x 的最小值,再根据()F x 的定义可得()m a ;(Ⅱ)根据x 的取值范围求出()F x 的最大值,进而可得()M a .。

2020~2021扬州市高一上学期数学期末试卷及答案(终稿)

2020~2021扬州市高一上学期数学期末试卷及答案(终稿)

.
(2) 由 2kπ − π ≤ 2x + π ≤ 2kπ + π , k ∈ Z ,得 kπ − 3π ≤ x ≤ kπ + π , k ∈ Z ,
2
4
2
8
8
所以
f
(x)
的单调递增区间为


3π 8
, kπ
+
π 8
,k

Z


x

0,
π 2
,所以
f
(x)
的单调递增区间为
0,
π 8

同理
f
……4 分
综上,
f
(x)
=
e|x−m| ,
2e

e|m+
2−
x|
,
0 ≤ x ≤ m + 1, m + 1 < x ≤ 2m + 2.
(2) 设 f (x) 在区间 [0, 2m + 2] 上值域为 A,
……5 分
g= (x)
e
1
x3
+ 1

(1 −
e)3
,(e
− 1)3
的值域为
B,则
B=
14. 【答案】36
【来源】改编于苏教版(2019 版)高中数学教材必修第一册第 165 页习题 7.1 第 8 题.
15.
【答案】
1 2
,
+∞
【来源】函数模型来源于苏教版(2019 版)高中数学教材必修第一册第 114 页习题 5.3
第 3 题(3);改编于苏教版(2019 版)高中数学教材必修第一册第 154 页复习题第 14 题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C. 1 、-1、3 2
D.-1、 1 、3 2
4.在平面直角坐标系中,若角
的终边经过点
P
sin
3
, cos
3
,则 sin
=


A. − 3
B. − 1
1
C.
2
2
2
( ) 5.函数 f (x) = log1 6 − x − x2 的单调递增区间是( )
3
A.

1 2
,
+
B.
−,

1 2
18.(本小题满分
12
分)(1)已知 sin(3
+)
=
2
sin
3 2
+
,求
sin − 4 cos 5sin + 2 cos
的值;
(2)已知 sin( − ) − cos( + a) = 2 ( ),求sin − cos 的值. 32
19.(本小题满分 12 分)设命题 p:实数 x 满足 a x 3a ,其中 a 0 ;命题 q:实数 x 满足 x 1或 x 2 . (1)若 a = 1,且 p,q 均为真命题,求实数 x 的取值范围;
15.若 −180 −90 ,且 cos (75 + ) = 1 ,则 cos (15 − ) = __________.
3
( ) 16.已知函数
f
(x)
=
ln
x2 +1 , x 1
,若关于 x 的不等式 f (x) f (ax +1) 的解集中有且仅有两个整
( ) ln x2 − 4x + 5 , x 1
B.352 cm2
C.1408 cm2
D.320 cm2
8.已知函数
f
(x)
=
(3a −1)x + 4a, loga x, x 1
x
1
满足:对任意实数
x1
,x2
,当
x1
x2
时,总有
f
( x1 )

f
( x2
)
0

那么实数 a 的取值范围是( )
A.
1 7
,
1 3
B.
0,
1 3
C.
1 7
,
(2)若 p 是 q 的充分不必要条件,求实数 a 取值范围 .
20.(本小题满分 12 分)已知不等式 log2 (x +1) log2 (7 − 2x) .
(1)求不等式的解集 A;
(2)若当
x
A 时,不等式
1 4
x−1

4
1 2
x
+
2
m
总成立,求
m
的取值范围.
21.(本小题满分 12 分)新冠肺炎是近百年来人类遭遇的影响范围最广的全球性大流行病.面对前所未知,突 如其来,来势汹汹的疫情天灾,中央出台了一系列助力复工复产好政策.城市快递行业运输能力迅速得到恢 复,市民的网络购物也越来越便利.根据大数据统计,某条快递线路运行时,发车时间间隔 t(单位:分钟)
D.“ x 1且 y 1”是“ x2 + y2 2 ”的必要不充分条件

11.已知 f (x) 是定义在 R 的偶函数,当 x 0 时, f (x) = x中2 −数2x ,则下列说法不正确的是( )

A.当 x 0 时, f (x) = −x2 + 2x
B. f (x潍) 的坊最小值为-1
D.若 a b ,则 a2 b2
10.下列命题正确的是( )
A.若函数 f (x) 在 (−, 0] 和[0, +) 上都单调递增,则 f (x) 在 R 上单调递增
B.“ x 1, x2 1 ”的否定是“ x 1, x2 1 ”
C.“ a = 0 ”是“ ab = 0 ”的充分不必要条件
江苏省江都中学 2020-2021 学年度第一学期 12 月阶段测试
高一年级数学试卷
一、单项选择题(本大题共 8 小题,每小题 5 分,共 40 分.每小题给出的四个选项中,只有一项符合题目要 求的)
1.计算
cos
4 3
=


1
A.
B. − 1
C. − 3
3
D.
2
2
2
2
2.设集合 M
=
x
|
xБайду номын сангаас
=
k 2
180 +
45, k
Z ,
N
=
x
|
x
=
k 4
180 +
45, k
Z ,那么(

A. M = N
B. M N
C. N M
D. M N =
3.图中 C1 、C2 、C3 为三个幂函数 y = x 在第一象限内的图象,则解析式中指数 的值依次可以是( )
A. 1 、3、-1 2
B.-1、3、 1 2
D. a + b 2
三、填空题(本题共 4 小题,每小题 5 分,共 20 分.把答案填在题中的横线上)
13.已知角 的终边过点 P(3, −4) ,求 sin 等于__________.
14.已知 f (x) = loga x( a 0 ,a 1),若对任何 x [3, +) ,都有| f (x) | 1 成立,则 a 的取值范围是___.
C.
−3,

1 2
6.函数 f (x) = lg(| x | −1) 的大致图象是( )
3
D.
2
D.

1 2
,
2
A
B
C
D
7.中国扇文化有着深厚的文化底蕴,文人雅士喜在扇面上写字作画.如图,是书画家唐寅(1470—1523)的一 幅书法扇面,其尺寸如图所示,则该扇而的面积为( )
A.704 cm2
满足: 4 t 15 , t N ,平均每趟快递车辆的载件个数 p(t) (单位:个)与发车时间间隔 t 近似地满足
p(t)
=
1800
−15(9

t)2,
4
t
9
,其中
t
N
.
1800,9 t 15
1 3
D.
1 7
,1
二、多项选择题(本大题共 4 小题,每小题 5 分,共 20 分.在每个小题给出的选项中,有多项符合题目要求.
全部选对的得 5 分,部分选对的得 3 分,有选错的得 0 分)
9.下列说法正确的有( )
A.若 a b ,则 ac2 bc2
B.若
a c2
b c2
,则 a
b
C.若 a b ,则 2a 2b
数,则实数 a 的取值范围为__________. 四、解答题(本题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分
10
分)已知集合
A
=
x
|
x x
− +
3 4
0 ,
B
=
{x
|
2m
−1
x
m
+
3} .
(1)当 m = 1时,求 A B ;
(2)若 A B = A ,求 m 的取值范围.

C.函数 f (x) 的单调增区间为[−1, 0] [1, +) 众D.号若方程 f (x) = m 有 2 个不同的实数解,则 m 0

12.已知 a, b R+ 且 a + b = 1,那么下列不等式中,恒成立的有( )
A. ab 1 4
B. ab + 1 2 ab
C. 1 + 1 3 2 a 2b
相关文档
最新文档