数值计算课后答案1
《数值计算方法》习题答案

《数值计算方法》课后题答案详解吉 林 大 学第一章 习 题 答 案1. 已知(1)2,(1)1,(2)1f f f −===,求()f x 的Lagrange 插值多项式。
解:由题意知:()01201212001020211012012202121,1,2;2,1,1()()(1)(2)()()6()()(1)(2)()()2()()(1)(1)()()3(1)(2)(1)(2)()2162nj j j x x x y y y x x x x x x l x x x x x x x x x x l x x x x x x x x x x l x x x x x x x x L x y l x ==−=====−−−−==−−−−+−==−−−−−+−==−−−−+−==×+×−∴∑()2(1)(1)131386x x x x +−+×=−+2. 取节点01210,1,,2x x x ===对x y e −=建立Lagrange 型二次插值函数,并估计差。
解11201201210,1,;1,,2x x x y y e y e −−======1)由题意知:则根据二次Lagrange插值公式得:02011201201021012202110.510.520.51()()()()()()()()()()()()()2(1)(0.5)2(0.5)4(1)(224)(43)1x x x x x x x x x x x x L x y y y x x x x x x x x x x x x x x x x e x x e e e x e e x −−−−−−−−−−−−=++−−−−−−=−−+−−−=+−+−−+22)Lagrange 根据余项定理,其误差为(3)2210122()1|()||()||(1)(0.5)|3!61max |(1)(0.5)|,(0,1)6()(1)(0.5),()330.5030.2113()61()0.2113(0.21131)(0.21130.5)0.008026x f R x x e x x x x x x t x x x x t x x x x t x R x ξξωξ−+≤≤==−−≤−−∈′=−−=−+=−==≤××−×−=∴取 并令 可知当时,有极大值3. 已知函数y =在4, 6.25,9x x x ===处的函数值,试通过一个二次插值函数求的近似值,并估计其误差。
(湖南大学-曾金平《数值计算方法》课后题答案)

1习题一1.设x>0相对误差为2%,4x的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?2解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
应用数值分析(第四版)课后习题答案第1章

应用数值分析(第四版)课后习题答案第1章第一章习题解答1.在下列各对数中,某是精确值a的近似值(1)a=π,某=3.1(2)a=1/7,某=0.143(3)a=π/1000,某=0.0031(4)a=100/7,某=14.3试估计某的绝对误差和相对误差。
解:(1)e=∣3.1-π∣≈0.0416,δr=e/∣某∣≈0.0143(2)e=∣0.143-1/7∣≈0.0143δr=e/∣某∣≈0.1(3)e=∣0.0031-π/1000∣≈0.0279δr=e/∣某∣≈0.9(4)e=∣14.3-100/7∣≈0.0143δr=e/∣某∣≈0.0012.已知四个数:某1=26.3,某2=0.0250,某3=134.25,某4=0.001。
试估计各近似数的有效位数和误差限,并估计运算μ1=某1某2某3和μ1=某3某4/某1的相对误差限。
-2解:某1=26.3n=3δ某1=0.05δr某1=δ某1/∣某1∣=0.19011某10-2某2=0.0250n=3δ某2=0.00005δr某2=δ某2/∣某2∣=0.2某10-4某3=134.25n=5δ某3=0.005δr某3=δ某3/∣某3∣=0.372某10某4=0.001n=1δ某4=0.0005δr某4=δ某4/∣某4∣=0.5n由公式:er(μ)=e(μ)/∣μ∣≦1/∣μ∣Σi=1∣f/某i∣δ某ier(μ1)≦1/∣μ1∣[某2某3δ某1+某1某3δ某2+某1某2δ某3]=0.34468/88.269275=0.00390492er(μ2)≦1/∣μ2∣[-某3某4/某1δ某1+某4/某1δ某3+某3/某1δ某4]=0.497073.设精确数a>0,某是a的近似值,某的相对误差限是0.2,求㏑某的相对误差限。
n解:δr≦Σi=1∣f/某i∣δ某i=1/㏑某·1/某·δ某=δr某/㏑某=0.2/㏑某即δr≦0.2/㏑某4.长方体的长宽高分别为50cm,20cm和10cm,试求测量误差满足什么条件时其表面积的2误差不超过1cm。
数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
最新数值计算课后答案1

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯ 有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯ 所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯ 有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯ 所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈-L L 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯ 有效数字:因为π=3.14159265...=0.314159265 (10)22 3.1428571430.3142857143107==⨯,m=1。
《数值计算方法》课后题答案(湖南大学-曾金平)

习题一1.设x >0相对误差为2%,4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)31.97+2.456+0.1352; (2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352 ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+ =2(0.3443100.1352)fl ⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =0.3456210⨯易见31.97+2.456+0.1352=0.210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A )y=,(B )y =; (3)已知1x <<,(A )22sin x y x =,(B )1cos 2xy x-=;(4)(A)9y =(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
数值计算课后答案1

数值计算课后答案1习题⼀解答1.取3.14,3.15,227,355113作为π的近似值,求各⾃的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的⽅法是按定义直接计算。
求相对误差的⼀般⽅法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那⼀位的半个单位,再确定有效数的末位是哪⼀位,进⼀步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,⾸先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈?有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
⽽π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--?=?所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-?有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
⽽π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--?=?所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-?有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==?,m=1。
数值计算方法答案

1数值计算方法(李有法)习题一1.设x>0相对误差为2%,4x的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x xf x f xδδ∆=≈得(1)()f x=11()()*2%1%22x xδδδ≈===;(2)4()f x x=时444()()'()4()4*2%8%xx x x xxδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P关于1212.m nx a a a bb b=±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算(1)31.97+2.456+0.1352;(2)31.97+(2.456+0.1352)哪个较精确?解:(1)31.97+2.456+0.1352≈21((0.3197100.245610)0.1352)fl fl⨯+⨯+=2(0.3443100.1352)fl⨯+=0.3457210⨯(2)31.97+(2.456+0.1352)21(0.319710(0.245610))fl fl≈⨯+⨯= 21(0.3197100.259110)fl⨯+⨯=0.3456210⨯2易见31.97+2.456+0.1352=0.345612210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x,面积为2()f x x=,由(())(())'()()()()f x xf x f x xf x f xδδ∆=≈解得(())()()'()f x f xxxf xδδ≈=2(())(())22f x x f xx xδδ==0.5%5.下面计算y的公式哪个算得准确些?为什么?(1)已知1x<<,(A)11121xyx x-=-++,(B)22(12)(1)xyx x=++;(2)已知1x>>,(A)y=,(B)y=;(3)已知1x<<,(A)22sin xyx=,(B)1cos2xyx-=;(4)(A)9y=(B)y=解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
而22 3.14159265 3.1428571430.0012644937π-=-=-所以 221322 3.14159265 3.1428571430.0012644930.0057110.510101022π----=-=≤=⨯=⨯=⨯所以,227作为π的近似值有3个有效数字。
(4)绝对误差:355() 3.14159265 3.141592920.00000027050.000000271113e x π=-=-=-≈-相对误差:7()0.000000271()0.86310355113r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 3553.141592920.31415929210113==⨯,m=1。
而355 3.14159265 3.141592920.0000002705113π-=-=-所以6617355 3.14159265 3.141592920.00000027050.0000005113110.510101022π----=-=≤=⨯=⨯=⨯所以,355113作为π的近似值有7个有效数字。
指出:①实际上,本题所求得只能是绝对误差限和相对误差限,而不是绝对误差和相对误差。
2、用四舍五入原则写出下列各数的具有五位有效数字的近似数。
346.7854,7.000009,0.0001324580,0.600300 解:346.7854≈346.79, 7.000009≈7.0000,0.0001324580≈0.00013246, 0.600300≈0.60030。
指出: 注意0。
只要求写出不要求变形。
3、下列各数都是对准确数进行四舍五入后得到的近似数,试分别指出他们的绝对误差限和相对误差限和有效数字的位数。
12340.0315,0.3015,31.50,5000x x x x ====。
分析:首先,本题的准确数未知,因此绝对误差限根据四舍五入规则确定。
其次,应当先求绝对误差限,再求相对误差限,最后确定有效数字个数。
有效数字由定义可以直接得出。
解:由四舍五入的概念,上述各数的绝对误差限分别是1234()0.00005,()0.00005,()0.005,()0.5x x x x εεεε==== 由绝对误差和相对误差的关系,相对误差限分别是111222333444()0.00005()0.16%,0.0315()0.00005()0.02%,0.3015()0.005()0.002%,31.5()0.5()0.01%.5000x x x x x x x x x x x x εδεδεδεδ==≈==≈==≈==≈有效数字分别有3位、4位、4位、4位。
指出:本题显然是直接指出有效数位、直接写出绝对误差,用定义求出相对误差。
4.0.1%。
解:设取n 个有效数字可使相对误差小于0.1%,则 111100.1%2n a -⨯<,而34≤≤,显然13a =,此时,1111110100.1%223n n a --⨯=⨯<⨯, 即13110106n --⨯<, 也即461010n ⨯> 所以,n=4。
3.162≈。
5、在计算机数系F(10,4,-77,77)中,对31120.14281100.31415910x x =⨯=-⨯与,试求它们的机器浮点数()(1,2)i fl x i =及其相对误差。
解:3333111111112222()0.142810,(())()0.14281100.1428100.0000110,()0.314210,(())()0.31415910(0.314210)0.0004110fl x e fl x x fl x fl x e fl x x fl x =⨯=-=⨯-⨯=⨯=-⨯=-=-⨯--⨯=⨯其相对误差分别是3112310.00001100.000041100.007%,0.013%0.1428100.314210e e ⨯⨯=≈=≈-⨯-⨯。
6、在机器数系F(10,8,L,U)中,取三个数4220.2337125810,0.3367842910,0.3367781110x y z -=⨯=⨯=-⨯,试按(),()x y z x y z ++++两种算法计算x y z ++的值,并将结果与精确结果比较。
解:422222222(())(0.23371258100.3367842910)0.3367781110(0.00000023100.3367842910)0.33677811100.33678452100.33677811100.0000064110fl x y z -++=⨯+⨯-⨯=⨯+⨯-⨯=⨯-⨯=⨯42242222(())0.2337125810(0.33678429100.3367781110)0.23371258100.00000618100.00000023100.00000618100.0000064110fl x y z --++=⨯+⨯-⨯=⨯+⨯=⨯+⨯=⨯精确计算得:4222222220.23371258100.33678429100.3367781110(0.00000023371258100.3367842910)0.33677811100.33678452371258100.33677811100.000064137125810x y z -++=⨯+⨯-⨯=⨯+⨯-⨯=⨯-⨯=⨯第一种算法按从小到大计算,但出现了两个数量级相差较大的数相加,容易出现大数吃小数.而第二种算法则出现了两个相近的数相减,容易导致有效数位的减少。
计算结果证明,两者精度水平是相同的。
***在机器数系F(10,8,L,U)中,取三个数4220.2337125810,0.3367842910,0.3367781110x y z --=⨯=⨯=-⨯,试按(),()x y z x y z ++++两种算法计算x y z ++的值,并将结果与精确结果比较。
解:42222222222(())(0.23371258100.3367842910)0.3367781110(0.00233713100.3367842910)0.33677811100.33912142100.33677811100.00003391100.33677811100.336744210fl x y z -----++=⨯+⨯-⨯=⨯+⨯-⨯=⨯-⨯=⨯-⨯=-⨯42242242222(())0.2337125810(0.33678429100.3367781110)0.2337125810(0.00003368100.3367781110)0.23371258100.33674742100.00000023100.33674742100.3367471910fl x y z ----++=⨯+⨯-⨯=⨯+⨯-⨯=⨯-⨯=⨯-⨯=-⨯第一种算法是按从小到大的顺序计算的,防止了大数吃小数,计算更精确。
精确计算得:42220.23371258100.33678429100.33677811100.0000233712580.003367842933.6778110.00339121415833.67781133.6744197858420.3367441978584210x y z --++=⨯+⨯-⨯=+-=-=-=-⨯显然,也是第一种算法求出的结果和精确结果更接近。
7、某计算机的机器数系为F(10,2,L,U),用浮点运算分别从左到右计算及从右到左计算10.40.30.20.040.030.020.01+++++++ 试比较所得结果。
解:从左到右计算得10.40.30.20.040.030.020.010.1100.04100.03100.02100.00100.00100.00100.00100.19101.9+++++++=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=从右到左计算得111110.40.30.20.040.030.020.010.010.020.030.040.20.30.410.1100.2100.3100.4100.20.30.410.10.20.30.410.11010.1100.1100.2102----+++++++=+++++++=⨯+⨯+⨯+⨯++++=++++=⨯+=⨯+⨯=⨯=从右到左计算避免了大数吃小数,比从左到右计算精确。