计算机算法设计与分析实验1

合集下载

算法实验报告

算法实验报告

算法实验报告算法实验报告引言:算法是计算机科学的核心内容之一,它是解决问题的方法和步骤的描述。

算法的设计和分析是计算机科学与工程中的重要研究方向之一。

本实验旨在通过对算法的实际应用和实验验证,深入理解算法的性能和效果。

实验一:排序算法的比较在本实验中,我们将比较三种常见的排序算法:冒泡排序、插入排序和快速排序。

我们将通过对不同规模的随机数组进行排序,并记录每种算法所需的时间和比较次数,以评估它们的性能。

实验结果显示,快速排序是最快的排序算法,其时间复杂度为O(nlogn),比较次数也相对较少。

插入排序的时间复杂度为O(n^2),比较次数较多,但对于小规模的数组排序效果较好。

而冒泡排序的时间复杂度也为O(n^2),但比较次数更多,效率相对较低。

实验二:图的最短路径算法在图的最短路径问题中,我们将比较Dijkstra算法和Floyd-Warshall算法的效率和准确性。

我们将使用一个带权有向图,并计算从一个顶点到其他所有顶点的最短路径。

实验结果表明,Dijkstra算法适用于单源最短路径问题,其时间复杂度为O(V^2),其中V为顶点数。

而Floyd-Warshall算法适用于多源最短路径问题,其时间复杂度为O(V^3)。

两种算法在准确性上没有明显差异,但在处理大规模图时,Floyd-Warshall算法的效率较低。

实验三:动态规划算法动态规划是一种通过将问题分解成子问题并记录子问题的解来解决复杂问题的方法。

在本实验中,我们将比较两种动态规划算法:0-1背包问题和最长公共子序列问题。

实验结果显示,0-1背包问题的动态规划算法可以有效地找到最优解,其时间复杂度为O(nW),其中n为物品个数,W为背包容量。

最长公共子序列问题的动态规划算法可以找到两个序列的最长公共子序列,其时间复杂度为O(mn),其中m和n分别为两个序列的长度。

结论:通过本次实验,我们对不同算法的性能和效果有了更深入的了解。

排序算法中,快速排序是最快且效率最高的;在图的最短路径问题中,Dijkstra算法和Floyd-Warshall算法分别适用于不同的场景;动态规划算法可以解决复杂的问题,并找到最优解。

武汉理工大学算法分析实验报告

武汉理工大学算法分析实验报告

学生实验报告书实验课程名称算法设计与分析开课学院计算机科学与技术学院指导教师姓名李晓红学生姓名学生专业班级软件工程zy1302班2015-- 2016学年第一学期实验课程名称:算法设计与分析同组者实验日期2015年10月20日第一部分:实验分析与设计一.实验内容描述(问题域描述)1、利用分治法,写一个快速排序的递归算法,并利用任何一种语言,在计算机上实现,同时进行时间复杂性分析;2、要求用递归的方法实现。

二.实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或者算法描述)本次的解法使用的是“三向切分的快速排序”,它是快速排序的一种优化版本。

不仅利用了分治法和递归实现,而且对于存在大量重复元素的数组,它的效率比快速排序基本版高得多。

它从左到右遍历数组一次,维护一个指针lt使得a[lo..lt-1]中的元素都小于v,一个指针gt 使得a[gt+1..hi]中的元素都大于v,一个指针i使得a[lt..i-1]中的元素都等于v,a[i..gt]中的元素都还未确定,如下图所示:public class Quick3way{public static void sort(Comparable[] a, int lo, int hi){if (lo >= hi)return;int lt = lo, i = lo + 1, gt = hi;Comparable pivot = a[lo];第二部分:实验调试与结果分析一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等)1、调试方法描述:对程序入口进行断点,随着程序的运行,一步一步的调试,得到运行轨迹;2、实验数据:"R", "B", "W", "W", "R", "W", "B", "R", "R", "W", "B", "R";3、实验现象:4、实验过程中发现的问题:(1)边界问题:在设计快速排序的代码时要非常小心,因为其中包含非常关键的边界问题,例如:什么时候跳出while循环,递归什么时候结束,是对指针的左半部分还是右半部分排序等等;(2)程序的调试跳转:在调试过程中要时刻记住程序是对那一部分进行排序,当完成了这部分的排序后,会跳到哪里又去对另外的那一部分进行排序,这些都是要了然于心的,这样才能准确的定位程序。

算法课设实验报告(3篇)

算法课设实验报告(3篇)

第1篇一、实验背景与目的随着计算机技术的飞速发展,算法在计算机科学中扮演着至关重要的角色。

为了加深对算法设计与分析的理解,提高实际应用能力,本实验课程设计旨在通过实际操作,让学生掌握算法设计与分析的基本方法,学会运用所学知识解决实际问题。

二、实验内容与步骤本次实验共分为三个部分,分别为排序算法、贪心算法和动态规划算法的设计与实现。

1. 排序算法(1)实验目的:熟悉常见的排序算法,理解其原理,比较其优缺点,并实现至少三种排序算法。

(2)实验内容:- 实现冒泡排序、快速排序和归并排序三种算法。

- 对每种算法进行时间复杂度和空间复杂度的分析。

- 编写测试程序,对算法进行性能测试,比较不同算法的优劣。

(3)实验步骤:- 分析冒泡排序、快速排序和归并排序的原理。

- 编写三种排序算法的代码。

- 分析代码的时间复杂度和空间复杂度。

- 编写测试程序,生成随机测试数据,测试三种算法的性能。

- 比较三种算法的运行时间和内存占用。

2. 贪心算法(1)实验目的:理解贪心算法的基本思想,掌握贪心算法的解题步骤,并实现一个贪心算法问题。

(2)实验内容:- 实现一个贪心算法问题,如活动选择问题。

- 分析贪心算法的正确性,并证明其最优性。

(3)实验步骤:- 分析活动选择问题的贪心策略。

- 编写贪心算法的代码。

- 分析贪心算法的正确性,并证明其最优性。

- 编写测试程序,验证贪心算法的正确性。

3. 动态规划算法(1)实验目的:理解动态规划算法的基本思想,掌握动态规划算法的解题步骤,并实现一个动态规划算法问题。

(2)实验内容:- 实现一个动态规划算法问题,如背包问题。

- 分析动态规划算法的正确性,并证明其最优性。

(3)实验步骤:- 分析背包问题的动态规划策略。

- 编写动态规划算法的代码。

- 分析动态规划算法的正确性,并证明其最优性。

- 编写测试程序,验证动态规划算法的正确性。

三、实验结果与分析1. 排序算法实验结果:- 冒泡排序:时间复杂度O(n^2),空间复杂度O(1)。

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告合并排序快速排序

算法分析与设计实验报告:合并排序与快速排序一、引言算法是计算机科学中非常重要的一部分,它涉及到解决问题的方法和步骤。

合并排序和快速排序是两种经典而常用的排序算法。

本文将对这两种排序算法进行分析和设计实验,通过对比它们的性能和效率,以期得出最优算法。

二、合并排序合并排序是一种分治算法,它将原始数组不断分解为更小的数组,直到最后细分为单个元素。

然后,再将这些单个元素两两合并,形成一个有序数组。

合并排序的核心操作是合并两个有序的数组。

1. 算法步骤(1)将原始数组分解为更小的子数组,直到每个子数组只有一个元素;(2)两两合并相邻的子数组,同时进行排序,生成新的有序数组;(3)重复步骤(2),直到生成最终的有序数组。

2. 算法性能合并排序的最优时间复杂度为O(nlogn),其中n为待排序数组的长度。

无论最好情况还是最坏情况,合并排序的复杂度都相同。

合并排序需要额外的存储空间来存储临时数组,所以空间复杂度为O(n)。

三、快速排序快速排序也是一种分治算法,它将原始数组根据一个主元(pivot)分成两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元。

然后,递归地对这两个子数组进行排序,最后得到有序数组。

快速排序的核心操作是划分。

1. 算法步骤(1)选择一个主元(pivot),可以是随机选择或者固定选择第一个元素;(2)将原始数组根据主元划分为两个子数组,一个子数组的元素都小于主元,另一个子数组的元素都大于主元;(3)递归地对这两个子数组进行快速排序;(4)重复步骤(2)和(3),直到每个子数组只有一个元素,即得到最终的有序数组。

2. 算法性能快速排序的平均时间复杂度为O(nlogn),其中n为待排序数组的长度。

最坏情况下,当每次选择的主元都是最小或最大元素时,时间复杂度为O(n^2)。

快速排序是原地排序,不需要额外的存储空间,所以空间复杂度为O(1)。

四、实验设计为了验证合并排序和快速排序的性能和效率,我们设计以下实验:1. 实验目的:比较合并排序和快速排序的时间复杂度和空间复杂度。

算法与分析实验报告

算法与分析实验报告

算法与分析实验报告一、引言算法是现代计算机科学中的核心概念,通过合理设计的算法可以解决复杂的问题,并提高计算机程序的执行效率。

本次实验旨在通过实际操作和数据统计,对比分析不同算法的执行效率,探究不同算法对于解决特定问题的适用性和优劣之处。

二、实验内容本次实验涉及两个经典的算法问题:排序和搜索。

具体实验内容如下:1. 排序算法- 冒泡排序- 插入排序- 快速排序2. 搜索算法- 顺序搜索- 二分搜索为了对比不同算法的执行效率,我们需要设计合适的测试用例并记录程序执行时间进行比较。

实验中,我们将使用随机生成的整数数组作为排序和搜索的测试数据,并统计执行时间。

三、实验步骤1. 算法实现与优化- 实现冒泡排序、插入排序和快速排序算法,并对算法进行优化,提高执行效率。

- 实现顺序搜索和二分搜索算法。

2. 数据生成- 设计随机整数数组生成函数,生成不同大小的测试数据。

3. 实验设计- 设计实验方案,包括测试数据的规模、重复次数等。

4. 实验执行与数据收集- 使用不同算法对随机整数数组进行排序和搜索操作,记录执行时间。

- 多次重复同样的操作,取平均值以减小误差。

5. 数据分析与结果展示- 将实验收集到的数据进行分析,并展示在数据表格或图表中。

四、实验结果根据实验数据的收集与分析,我们得到以下结果:1. 排序算法的比较- 冒泡排序:平均执行时间较长,不适用于大规模数据排序。

- 插入排序:执行效率一般,在中等规模数据排序中表现良好。

- 快速排序:执行效率最高,适用于大规模数据排序。

2. 搜索算法的比较- 顺序搜索:执行时间与数据规模成线性关系,适用于小规模数据搜索。

- 二分搜索:执行时间与数据规模呈对数关系,适用于大规模有序数据搜索。

实验结果表明,不同算法适用于不同规模和类型的问题。

正确选择和使用算法可以显著提高程序的执行效率和性能。

五、实验总结通过本次实验,我们深入了解了不同算法的原理和特点,并通过实际操作和数据分析对算法进行了比较和评估。

算法设计与分析习题与实验题(12.18)

算法设计与分析习题与实验题(12.18)

《算法设计与分析》习题第一章引论习题1-1 写一个通用方法用于判定给定数组是否已排好序。

解答:Algorithm compare(a,n)BeginJ=1;While (j<n and a[j]<=a[j+1]) do j=j+1;If j=n then return trueElseWhile (j<n and a[j]>=a[j+1]) do j=j+1;If j=n then return true else return false end ifEnd ifend习题1-2 写一个算法交换两个变量的值不使用第三个变量。

解答:x=x+y; y=x-y; x=x-y;习题1-3 已知m,n为自然数,其上限为k(由键盘输入,1<=k<=109),找出满足条件(n2-mn-m2)2=1 且使n2+m2达到最大的m、n。

解答:m:=k; flag:=0;repeatn:=m;repeatl:=n*n-m*n-m*n;if (l*l=1) then flag:=1 else n:=n-1;until (flag=1) or (n=0)if n=0 then m:=m-1until (flag=1) or (m=0);第二章基础知识习题2-1 求下列函数的渐进表达式:3n 2+10n ; n 2/10+2n ; 21+1/n ; log n 3; 10 log3n 。

解答: 3n 2+10n=O (n 2), n 2/10+2n =O (2n ), 21+1/n=O (1), log n 3=O (log n ),10 log3n =O (n )。

习题2-2 说明O (1)和 O (2)的区别。

习题2-3 照渐进阶从低到高的顺序排列以下表达式:!n ,3/22,2,20,3,log ,4n n n n n 。

解答:照渐进阶从低到高的顺序为:!n 、 3n、 24n 、23n 、20n 、log n 、2习题2-4(1) 假设某算法在输入规模为n 时的计算时间为n n T 23)(⨯=。

计算机算法设计与分析(第4版) 王晓东习题解答

计算机算法设计与分析(第4版) 王晓东习题解答

第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。

若f=Ο(g),则必然存在常数c1>0和n0,使得∀n≥n0,有f≤c1*g(n)。

由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。

必要性。

同理,若g=Ω(f),则必然存在c2>0和n0,使得∀n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。

2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得∀n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。

由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。

3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。

证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得∀n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。

4)log(n!)= Θ(nlogn)证明:∙由于log(n!)=∑=n i i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。

∙由于对所有的偶数n 有,log(n!)= ∑=n i i 1log ≥∑=n n i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。

当n ≥4,(nlogn)/2-n/2≥(nlogn)/4,故可得∀n ≥4,log(n!) ≥(nlogn)/4,即log(n!)= Ω(nlogn)。

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机算法设计与分析实验指导书
本书是为配合《算法分析与设计实验教学大纲》而编写的上机指导,其目的是使学生消化理论知识,加深对讲授内容的理解,尤其是一些算法的实现及其应用,培养学生独立编程和调试程序的能力,使学生对算法的分析与设计有更深刻的认识。

上机实验一般应包括以下几个步骤:
(1)、准备好上机所需的程序。

手编程序应书写整齐,并经人工检查无误后才能上机。

(2)、上机输入和调试自己所编的程序。

一人一组,独立上机调试,上机时出现的问题,最好独立解决。

(3)、上机结束后,整理出实验报告。

实验报告应包括:题目、程序清单、运行结果、对运行情况所作的分析,以及后面的《知识总结》。

本书共分阶段10个实验,其具体要求和步骤如下:
实验一C/C++环境及递归算法(2学时)
一、实验目的与要求
1、熟悉C/C++语言的集成开发环境;
2、通过本实验加深对递归过程的理解
二、实验内容:
掌握递归算法的概念和基本思想,分析并掌握“整数划分”问题的递归算法。

三、实验题
任意输入一个整数,输出结果能够用递归方法实现整数的划分。

四、实验步骤
1.理解算法思想和问题要求;
2.编程实现题目要求;
3.上机输入和调试自己所编的程序;
4.验证分析实验结果;
5.整理出实验报告。

相关文档
最新文档