第2章-2-地层密度和岩性密度测井-print

合集下载

地球物理测井密度测井及岩性密度测井

地球物理测井密度测井及岩性密度测井

.Z
.(
NA A
. )
σ=σe.ne
因此可得到物质的康普顿吸收系数与其体 密度之间的关系:
地球物理测井.放射性测井
若将伽马射线的能量限制在0.2~1.02MeV范围内,则可 使物质对伽玛射线的吸收系数以康普顿散射吸收系数为主。 这种情况下,一定强度的伽玛射线穿过厚度为L的物质后, 由于物质对散射的吸收而造成的射线强度衰减具有以下规律:
吸收系数:单位长度物质对伽马射线的吸收概率
分别以t、σ、τ表示电子对效应、康普顿效应、光电 效应的吸收系数,则物质对伽马射线的的总吸收系数为 三种吸收系数之和,即:
=t+σ+τ
地球物理测井.放射性测井
二、伽马射线的吸收
具有一定能量,一定强度的伽马射线穿过厚度为L的物 质后,由于物质对射线的吸收而造成射线强度衰减。其衰 减遵循伽马射线强度衰减规律:
地球物理测井.放射性测井
(2)讨论泥饼对记数率的影响:
L



S

1 AL 1 ABL ) BS )
(ln
NL
BL )

AL AS
(ln
NS
BS )
b (a )L
显然,地层的真密度等于长源距测得的视密 度加上一个校正值。
其他部分和自然伽马基本相同
地球物理测井.放射性测井
伽马源的选择
我们知道,伽马射线与物质的相互作用主要有三种, 而只有康普顿效应才与地层的密度成正比关系。因此密度 测井的原理和技术手段首先要保证被探测的伽马射线的强 度主要反应伽马光子在地层中的康普顿效应。
因此密度测井选用Cs137为伽马源,它发射能量为 0.661MeV。这就排除了形成电子对的可能。如果将记录伽 马射线的阈值定为0.1,即只记录那些能量较高的一次散射 或多次散射伽马射线,这就避免了光电吸收的影响。

密度测井及岩性密度测井

密度测井及岩性密度测井
探测器类似,单位时 间内产生旳电脉冲数 与γ射线旳强度成正 比。
2、密度测井(DEN/FDC)
原理
③ Cs主137 要产生中档能量旳伽马 光子,所以伽马光子与地层 之间主要发生康普顿效应.

e
zN A A
2、密度测井(DEN/FDC)
原理
Ⅰ对于单探测器
由 b 取f得(N旳)密度为
体积密度(体积密度测井 DEN)。 主要反应泥饼和冲洗带旳 密度。
Ⅱ光子旳能量为中档( Er 0.1 ~)5m时ev,γ射线与物质旳 作用以康普顿效应为主。
Ⅲ光子旳能量较高( Er 5m)ev时,伽马射线与物质旳 作用以电子对效应为主。
Ⅳγ射线穿过物质时,同步发生三种作用而减弱,
其吸收系数为
1、伽马射线与物质旳作用
试验证明:
I I 0e L
其中:I0-γ射线源产生旳γ射线旳强度; I-γ射线经过L厚度旳介质后旳强度
2、密度测井(DEN/FDC)
原理
Ⅱ 对于双探测器
NS 主要取决于泥饼旳密度 NL 主要取决于冲洗带及泥饼旳密度
由NS、NL共同拟定密度
b f (NL, NS ) 为补偿密度(补偿密度测井 FDC)主要反应冲洗带旳密度
2、密度测井(DEN/FDC)
原理
2、密度测井(DEN/FDC)补偿密度测井曲线
2、密度测井(DEN/FDC)
原理
仪器旳构造: γ源 探测器 源距
2、密度测井(DEN/FDC)
原理
γ源
C 137
55 s
137 56
Ba
0 1
e
(0.661mev)
即伽马源产生旳是中
档能量旳光子流,自然
它在穿过物质时,主要

《地球物理测井》Ch11.密度和岩性密度测井

《地球物理测井》Ch11.密度和岩性密度测井
1、康普顿效应与介质密度的关系 伽马射线与物质的相互作用包括: 光电效应 康普顿效应 电子对效应 吸收系数: 表征单位厚度的介质对伽马射线的吸收能力。 (10-1) (10-2) (10-3)
由上三式可见,只有康普顿效应与介 质密度关系比较简单。(10-2)式表明康 普顿散射引起的伽马射线减弱程度与介质 密度 或电子密度 成正比。 (10-2)式是对单一元素物质表示 的,对于多种化合物也同样遵循这一关 系,例如对于多中原子构成的矿物,其关 系为: (10-4)
一般而言,伽马光子会随着源距的增强而减小。 则有:
因一般储集层都有泥饼,密度测井都采用不同源距的两个伽 马射线探测器,以补偿泥饼对测量的影响,称为双源距补偿密 度测井。常用短源距为15-25cm,长源距35-40cm。
长源距 探测器
短源距 探测器
伽马源
图10-2 双源距补偿密度测井仪器结构
第二节 泥饼影响及密度测井仪刻度方法
不同岩性地层,其测井响应值(幅度)不同
岩性
砂岩 石灰岩 白云岩 硬石膏
声波时差 微秒/米 164~184 156 143 164 微秒/英尺 50~56 47.5 43.5 50 密 度
1、泥饼对计数率的影响(实验) (1)地层没有泥饼时,用长、短源距计数率 都可得到地层密度,而且两者结果一致。 (2)当存在泥饼时,长、短源距计数率将偏 离正常位置。
即长、短源距探测器计 数率(对数坐标)呈线 性关系,所确定的直线 称为“脊线”,其斜率为 AL/AS,该线与横轴的夹
图10-3 无泥饼时的实验曲线
考虑到以上特点,常将密度孔隙度与补偿中子 孔隙度重叠显示以此来区分岩性。
图10-5 某层系的LDT-CNL-GR曲线
3、划分裂缝带或气层

测井地质学知识点

测井地质学知识点

测井地质学知识点第二章测井层序地层分析第二节层序地层单元及其测井特征一、基本术语:体系域、低位域、海侵域、高位域、陆架边缘体系域等二、体系域1.类型:低位域、海侵域、高位域、陆架边缘体系域2.低位域:陆棚坡折和深水盆地沉积背景、斜坡构造背景、生长断层背景下的低位域组成3.海侵域:以沉积作用缓慢、低砂泥比值,一个或多个退积型准层序组为特征、主要沉积体系类型4.高位域:沉积物供给速率常>可容空间增加的速率,形成了向盆内进积的一个或多个准层序组,底部以下超面为界,顶部以Ⅰ型或Ⅱ型层序界面为界特征;主要沉积体系类型5.陆架边缘体系域:以一个或多个微弱前积到加积准层序组为特征,准层序组朝陆地方向上超到Ⅱ型层序边界之上,朝盆地方向下超到Ⅱ层序边界之上。

三、湖平面变化与层序结构1.湖平面变化与体系域2.层序结构类型及特征:一分层序、二分层序、三分层序、四分层序第三节测井地层地层分析方法一、基本术语:基准面、基准面旋回、分形二、一般工作流程1.测井—地震—生物等时地层格架建立2.关键层序界面识别3.研究区测井—地质岩相知识库的建立4.关键井的岩相识别、重建岩相序列5.建立多井关键性剖面6.预测油气分布三、单井测井层序分析方法1.测井资料预处理2.沉积旋回分析:旋回性及旋回级次是沉积岩层重要的固有属性;旋回级次分析:常规测井旋回分析、小波分析和地层累积方法等3.沉积间断点识别:地层倾角测井--累计倾角交会图法、地层倾角测井--累积水平位移交汇图法、地层倾角测井--倾角矢量图法、自然电位和视电阻率组合法、声波时差响应法等四、米氏周期分析及分形研究五、沉积层序的分形特征研究1.分形的概念2.地质学运用分形理论需要考虑的问题3.分数维的计算4.分数维的应用第三章测井沉积学研究第一节测井沉积学概念一、基本概念:测井相、测井相标志二、测井相分析的基本原理三、测井相标志与地质相标志的关系:确定岩石组分的测井相标志、判断沉积结构的测井相标志、判断沉积构造的测井相标志四、由测井相到沉积相的逻辑模型第二节岩石组合及层序的测井解释模型一、测井曲线的一般特征1.常规组合测井曲线:测井曲线幅度特征、测井曲线形态特征、接触关系、曲线光滑程度、齿中线、多层的幅度组合--包络线形态、层序的形态组合特征2.地层倾角测井的微电导率曲线特征:从曲线形态和曲线的相似性判断岩性—颗粒粗细,进行微细旋回的划分;根据四条电导率曲线特征值的平行度,可以衡量平行及非平行层理;利用倾角矢量模式解释沉积构造,研究古水流方向;根据倾角矢量模式组合解释褶皱、断层、不整合;利用倾角测井曲线识别裂缝;利用双井径差值分析现代地应力二、层序特征测井解释模型1.粒序模型2.不同沉积相带的自然电位曲线特征:冲积扇、河流相、三角洲相、滩坝相、近岸水下扇、重力流沉积--对比不同环境下SP曲线的差异3.利用自然伽马曲线划分沉积相带三、岩石组合(成分、颗粒)测井解释模型1.测井响应特征值2.测井相图的编制3.岩石组合测井解释模型在实际处理中的选择第三节沉积构造、沉积体结构测井解释模型一、倾角模式及其地质含义:绿模式、红模式、蓝模式、杂乱模式二、微电导率插值环井眼成像三、沉积构造的地层倾角测井解释模型1.岩心刻度2.沉积构造的测井解释图版3.层理角度与沉积相四、沉积体内部充填结构测井解释模型1.平行结构、前积构造、发散结构、杂乱结构五、古水流研究1.古水流研究方法:全方位频率统计法、红蓝模式法2.用倾斜资料判断沉积环境(古水流)实例六、沉积构造的成像测井解释1.冲刷面、斜层理、槽状交错层理、板状交错层理、结核、透镜状层理、小型砂纹交错层理、生物钻孔构造、沉积构造垂向序列解释第四节碎屑岩测井沉积微相建模与划分一、关键井测井沉积亚相与微相模型的建立二、测井沉积相剖面对比三、平面展布及古水流系统分析第四章测井构造地质精细分析第一节测井构造研究的一般方法一、地层倾角测井构造解释原理二、井壁成像测井构造解释原理第二节褶皱构造倾角解释方法一、褶曲的形态分类二、地层倾角测井的褶皱解释方法1.对称背斜2.非对称背斜3.倒转背斜4.平卧褶曲5.对称向斜6.非对称向斜三、用单井倾斜测井资料研究地下构造和褶曲要素1.确定井孔剖面的地层产状2.判断地下构造的偏移方向3.构造的识别方法四、地层倾角确定盐丘、泥丘第三节断裂构造倾角测井解释方法一、断层要素及分类二、井下钻遇断层的主要地质标志★三、地层倾角测井的断层解释方法★★--不同类型断层的解释方法1.正断层2.逆断层3.逆掩断层4. 地层倾角测井应用---两口井之间确定断层四、利用井壁成像研究断层第四节不整合面的地层倾角测井解释一、.平行不整合(假整合)解释二、角度不整合解释第五节井旁复杂地质构造的精细解释一、井旁高陡构造的精细解释二、应用一--用测井资料在渤海湾下古生界首次发现逆掩断层-平卧褶曲构造三、应用二--塔里木盆地轮南地区第五章裂缝储层的测井评价第一节概述一、裂缝型储层二、裂缝-孔隙型储层三、裂缝-洞穴型储层第二节裂缝性储层的实验观察与研究一、储层裂缝系统的成因二、岩心裂缝观测与分析1.岩心裂缝几何参数的相关分析2.岩心裂缝密度和裂缝孔隙度的统计与分析三、裂缝的评价1.岩心裂缝的描述--单一裂缝参数和多裂缝参数2.裂缝分布密度的分形方法第三节裂缝的测井响应一、常规测井曲线对裂缝的响应1.微侧向测井(微球形聚焦测井)2.双侧向测井3.补偿密度测井4.长源距声波测井5.岩性密度测井6.自然伽马测井7.地层倾角测井二、成像测井对裂缝的响应1.裂缝的分类及其基本图像特征2.真、假裂缝的识别3.天然裂缝与人工诱导裂缝的鉴别第四节裂缝有效性的测井评价及参数计算一、裂缝有效性评价1.从裂缝的张开度来评价裂缝的有效性★★⑴充填缝和张开缝的判别⑵有效张开缝的判别2.从裂缝的径向延伸特征判断裂缝的有效性3.从裂缝的连通性和渗滤性来判断裂缝的有效性⑴从裂缝的连通性判断裂缝的有效性⑵从裂缝的渗透性来判断裂缝的有效性二、裂缝参数计算1.全井眼地层微电阻率扫描测井计算裂缝参数2.双侧向测井信息估算裂缝参数第五节裂缝发育规律及现代地应力场研究一、现代构造应力方向分析二、构造应力方向分析在勘探与开发中的应用第六章烃源岩与盖层的测井研究第一节烃源岩的测井分析方法一、烃源岩的测井响应1.地层的组成2.导致测井异常的基本原理二、烃源岩的测井识别1.烃源岩的单一测井方法分析⑴自然伽马测井⑵自然伽马能谱测井⑶密度测井⑷电阻率测井⑸声波测井2.用交会图识别烃源岩⑴自然伽马--声波测井交会图⑵电阻率--自然伽马交会图⑶电阻率--声波时差交会图3.声波-电阻率曲线重叠法三、烃源岩的测井评价参数1.烃源岩含油气饱和度★2.烃源岩剩余烃含量VHC 第二节盖层的测井分析与评价一、有效盖层的识别与评价1.有效盖层识别2.泥页岩盖层等级划分二、储盖组合测井分析。

密度测井 第二版

密度测井 第二版

e
Z

NA A
b
对于沉积岩来说,大多数核素Z/A均接近于0.5,
常见的砂岩、石灰岩、白云岩的Z/A也近似等于0.5,
所以对于一定能量范围的伽马射线(σe为常数),
∑只与ρb有关。密度测井利用此关系,通过记录康
普顿散射的射线来测量岩石的密度。
勘探开发工程监督管理中心
一、密度测井的地质物理基础
(Formation Density Log, FDL)
密度测井:根据伽马射线与地层的康普顿效应 (Compton Effect)测定地层密度(Density)的测井 方法。
(Litho Density Log, LDL)
岩性密度测井:利用伽马射线与地层的光电效应 (Photoelectric Effect)和康普顿效应(Compton Effect)同时测定地层的岩性(Lithology)和密度 (Density)的测井方法,是密度测井的改进和扩展。
电子 原子核
伽马射线
图7-1(a)
勘探开发工程监督管理中心
一、密度测井的地质物理基础
2
伽马射线与物质的作用
(2)、康普顿效应
γ射线的能量为中等数值,γ射线 与原子的外层电子发生碰撞时,把 一部分能量传给电子,使电子从某 一方向射出,此电子称之为康普顿 电子,损失了部分能量的射线向另 一方向散射出去称为散射γ射线。 如图7-1(b)所示。这种现象称为 康普顿效应。
勘探开发工程监督管理中心
二、密度测井
1 密度测井的基本原理
实际测井中,泥饼影响不可忽视,为此,采用双 源距探测器的补偿密度测井仪,其中长源距的计数率 受泥饼影响小,短源距受泥饼影响大,用长源距得到 一个视地层密度ρb’,再由长、短源距计数率得到泥 饼校正值△ρ,则地层密度ρb= ρb’+ △ρ。最终 得到随深度变化的一条ρb曲线和△ρ曲线。

地层密度测井

地层密度测井

四、伽马射线通过物质时的能谱
中等能量的单色伽马射线通过物质时,由于和物质发生光电效应与康普顿 效应,部分伽马光子会在发生光电效应中被吸收,伽马射线强度要逐渐减小, 而在发生康普顿效应中,则会使伽马光子的能量逐渐下降,因为每个伽马光 子的康普顿散射次数不同,因而形成每种能量的伽马光子的强度不同的能谱 分布。 图8-1为能量0.661MeV的中能伽马射线打入密度相同而原子序数不同的三 种地层介质的伽马能谱曲线。位于低能区即光电效应区,随着原子序数的增 加而伽马计数率下降。 图8-2是原子序数相同而密度不同的伽马能谱分布, 由图可见在高能区即康普顿效应区,计数率将随密度增加而下降。
第二节
地层密度测井
一、密度测井的基本原理
图8-3是常用的一种密度测井仪器示意图,该仪 器包括有一个伽马源,两个接受伽马射线的探测器, 即长源距探测器和短源距探测器。他们安装在滑板 上,测井是被推靠到井壁上。在下井仪器的上方装 有辅助电子线路。 137 通常用 Cs 作伽马源,它发射的伽马射线具有 中等能量(0.661MeV),用它照射物质只能产生康普 顿散射和光电效应。由于地层的密度不同,则对伽 马光子的散射和吸收的能力不同,探测器接受到的 伽马光子的计数率也就不同。我们已知通过距离为L 的伽马光子的计数率为: L
在已知岩性和孔隙流体的情况下,就可以由密度测井的测量值求纯岩石的孔 隙度。它可以由公式计算,也可以应用图版求取。典型的泥岩和泥岩夹层的密度 为2.2-2.65克/立方厘米。通常泥岩和储集层中泥质的密度较岩石骨架的密度小, 所以在求含泥质地层的孔隙度时,应考虑泥质影响,否则求出的孔隙度偏大。 2、识别气层,判断岩性 密度测井和中子测井曲线重叠可以识别气层,判断岩性。 3、确定岩性求孔隙度 密度-中子测井交会图法,可以确定岩性求解孔隙度。

《测井地质学》第二章-测井方法及地质响应

《测井地质学》第二章-测井方法及地质响应
王贵文:Wanggw@
概述
哈里伯顿公司 • 地面采集系统:EXCELL-2000i (裸眼井+套管井+射 孔),EXCELL-2000m(套管井) • Flow2000生产测井平台 • 多参数生产测井组合仪(PLT) • 阵列电容持水率成像测井仪(FloImager) • 持气率测井仪(GHT) • 储层监测仪(RMT) • 多臂井径测井仪(MAC) • 井眼环形声波扫描仪(CAST-V) • 管子检测仪(PIT) • 多频电磁厚度测井仪(METG) • 水泥胶结测井仪(CBL) • 脉冲回波测井仪(PET)
王贵文:Wanggw@
概述
¾ 电阻率测井系列(2)
国产仪器:电极系,微电极,微球形聚焦测井仪,侧 向测井仪,感应测井仪。 主要生产厂家: 西安石油勘探仪器总厂 中国石油测井有限公司 北京环鼎公司 电子科技集团公司第二十二研究所 胜利测井公司
王贵文:Wanggw@
概述
¾ 岩性测井系列(2)
国产仪器:自然伽马测井仪,自然电位测井仪,井径测井 仪,等。 主要生产厂家: 西安石油勘探仪器总厂 中国石油测井有限公司 北京环鼎公司 电子科技集团公司第二十二研究所 胜利测井公司
王贵文:Wanggw@
概述
¾辅助测井系列
进口仪器和国产仪器基本相同,包括: • 井径测井仪 • 泥浆电阻率测井仪 • 井温测井仪 • 加速度测井仪 • 伽马测井仪
概述 测井研究内容与体系
测井学包括: 1、测井理论与方法 ①电、磁场理论与方法 ②声学理论与方法 ③核物理理论与方法 ④流体力学、岩石力学理论与方法以及其他方法
王贵文:Wanggw@
概述
测井研究内容与体系
2、测井信息的采集、传输与质量控制 ①地面与井下测井采集装备与地层信息获取 ②测井信息地下、地面与空中传输系统 ③测井信息的质量控制与评价

地层密度测井

地层密度测井

b f
ma ma
适用条件: 纯岩层
含泥质岩层 b ma • (1 Vsh ) f • Vsh • sh
岩石有多种矿物构成:
n
ma
mai •Vmai
1
3、密度与中子曲线重叠确定岩性、判别气层
4、密度--中子交会图法
确定岩性
孔隙度
岩石的骨架成分 交会图
六:岩性密度测井 (一)、岩石的宏观光电吸收截面 1、宏观光电吸收截面 :单位体积的岩石对一个伽马光子的吸收概
一:伽马射线与物质的相互作用
射线的能量<30Mev,则与物质相互作用的三
种形式: 电子对效应: (>1.02Mev)
原子核
+e
-e
核外电子
康普顿效应: (0.2>E>1.02Mev)
射线
e 散射的射线E1
光电效应: (0.2 Mev >E)
射线
光电子
二:伽马射线的吸收
吸收:射线粒子的消失
吸收系数:单位长度的物质对射线的吸收概
岩性密度测井曲线识别岩性
b U 、 而Pe的影响很小,由
此称之为岩性系数。
2)可用P146的图8-10确定
求出单 矿物的 孔隙度
作垂线 过交点 与斜线 作水平 的交点 线
已知的Pe 与水平线
的交点
据交 点确 定岩 性
Pe
白云石
3:计算泥质含量 用U求(体积模型写出) 4:计算由三矿物构成的复杂岩石中个矿物的 相对含量 b= maa(1- )+ f
U=Umaa(1- )+Uf maa= AVA+ BVB+ CVC
Umaa= UAVA+ UBVB+ UCVC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

油气地球物理测井工程
物理意义:一个入射光子与单位面积上一个靶原子(或电子)发生作用的几率,因具有面积的量纲,所
作为截面的单位,,截面的大小与伽马射线能量及靶物质
,对于
的伽马光子,
5
成正比,说明低能伽马射线对
较重的原子产生光电效应的几率高,据此,发
吸收物质时产生

7
时的计数率为
d
个伽马射线探测器,以补偿泥饼对测量的影响,
关系曲线在脊线上方。

,,则绘成右图的关系图。

是负值,其大小与泥饼厚度有关。

28
两条曲线!
29
Examples of Density Log GaoJ-2-2
实验表明:
长源距低能窗总计数率N
lith 与其高能窗总计数率N
的比
LS
∆ρ
φD
Peρb
GaoJ-2-236
e
a
)在孔隙度区由孔
隙度值画垂直线;点做水平线与
值垂线点所在阴影区域
对应的岩性即为b
41
42
SP CAL AC,us/ft DEN CNL RT
基线>BS >70 2.2~2.7 高值低、平直
正差异=BS 105~160 1.19-1.47 高值38-60+ 中高、平直
明显差异<=BS >55.5 2.1~2.65 中等Rw/phi/Sw
异常=<BS >47 2.4~2.71 低值高
异常=<BS >43.5 2.5~2.87 低值高
基线=BS 50 2.98 -2 高
基线>BS 67 2.05 -3 高
189 1 100
43
RT
低、平直中高、平直Rw/phi/Sw 高



0 100
44
Fe2CO3
19(
Pe b GaoJ-2-2。

相关文档
最新文档