四格表卡方检验

合集下载

四格表卡方检验

四格表卡方检验
四格表卡方检验
本章结构
第一节 四格表 2检验
第二节 四格表确切概率法
第三节 R×C 表资料的 2检验
第四节 配对四格表资料的 McNemar检验
第五节 多个样本率的两两比较
2023年3月29日
第一节 四格表 2检验
卡方检验的基本思想 四格表专用公式 四格表卡方检验的应用条件 校正卡方检验
2023年3月29日
表8-4 两组疗效比较
05水准不拒绝H0,不能认为两法疗效不同。
第五节 多个样本率的两两比较
2023年3月29日
衡量理论数与实际数的差别
检验统计量 2 值:
2R,C(ArcTrc)2
( AT) 2
T r,c1
rc
T
2023年3月29日
2(27125.324)2(522.76)2(7491.76)2
Statistics→Crosstable(交叉表) 指定 Row(s):组别 Columns(s):疗效 击Statistics按钮选择Chi-square。
2023年3月29日
输出结果
理论数小于5的格子数为2(占50%),最小理论数为4.18 卡方检验:有效观测数 n=71>40,有两个格子理论数T<5,故用
2 检验
2 检验(Chi-square test)是现代统计学的
创始人之一,英国人K . Pearson(1857-1936 )于1900年提出的一种具有广泛用途的统计方 法,可用于两个或多个率间的比较,计数资料 的关联度分析,拟合优度检验等等。
本章仅限于介绍两个和多个率或构成比比较
的 2检验。
2023年3月29日
相反
2023年3月29日
1.建立数据文件

40第四节-四格表的卡方检验

40第四节-四格表的卡方检验
例2: 教科书第238页。
第四节 四格表旳卡方检验
• 一、独立样本四格表旳卡方检验 • 独立样本四格表旳χ2检验,就是最简朴旳双向表 即22表旳χ2检验。它既能够用缩减公式来计算χ2值, 又能够用χ2检验旳基本公式来计算χ2值。
例1: 教科书第240页。
例如: 教科书第242页。
例如: 教科书第244页。
关键词:普小教师 有特殊教育需要旳学生 随班就读态度

2.校正χ2值旳计算
• 在有关样本四格表中,假如(b+c)<30或 (b+c)<50(即要求比较严格),则要对χ2值进 行亚茨连续性校正。其校正公式为:
2 ( b c 1)2
bc
例1: 教科书第246页。
北京、香港两地普小教师对有特殊教育需要学生
随班就读态度旳比较研究
韦小满、袁文得、刘全礼
摘要:从北京、香港两个地域旳一般小学中随机抽取了 225名教师进行问卷调查。成果表白,在对有特殊教育需要学 生在一般班级随班就读旳基本态度上,香港地域持赞同态度旳 教师百分比高于北京地域。但对各类有特殊教育需要学生旳随 班就读,两地教师旳态度既有相同旳方面,也有不同旳方面。 两地教师对随班就读旳接受程度明显受学生旳残疾类型和残疾 程度旳影响。

四格表卡方检验结果解读

四格表卡方检验结果解读

四格表卡方检验结果解读
卡方检验是一种统计方法,用于判断两个分类变量之间是否存在关联性。

四格表卡方检验是卡方检验的一种特殊形式,常用于比较两个变量的分布,特别是当变量有两个分类且分别为两个互斥的水平时。

四格表卡方检验的结果解读主要包括卡方值、自由度和显著性水平等。

卡方值是用于衡量观察到的频数与期望频数之间的偏离程度。

自由度是指用于计算卡方值的度量数量,计算方法为(行数-1)*(列数-1)。

显著性水平是指判断卡方值是否显著的阈值,通常使用0.05或0.01作为判断标准。

当卡方值显著小于显著性水平时,我们可以认为两个变量之间不存在关联性。

这意味着两个变量的分布在统计上没有差异,变量之间的关联是由于随机差异引起的。

反之,当卡方值显著大于等于显著性水平时,我们可以认为两个变量之间存在关联性。

这意味着两个变量的分布在统计上存在差异,变量之间的关联是非随机的。

需要注意的是,卡方检验只能表明两个变量之间是否存在关联性,不能确定关联性的方向和强度。

如果想要探究更深入的关系,可以使用其他统计方法,如相关分析或回归分析等。

四格表卡方检验是一种常用的统计方法,用于判断两个变量之间的关联性。

通过解读卡方值、自由度和显著性水平,可以得出两个变量之间是否存在关联性的结论。

然而,卡方检验只能表明是否存在关联性,不能确定其方向和强度。

如需深入了解两个变量的关系,可以考虑其他统计方法。

简述四格表资料卡方检验的应用条件

简述四格表资料卡方检验的应用条件

简述四格表资料卡方检验的应用条件一、卡方检验的应用条件为使各类数据资料分析结果与理论预测结果保持良好的相关,必须了解卡方检验应用的几个条件。

二、卡方检验的结果表示1、卡方检验的基本公式2、卡方检验的应用范围3、卡方检验的计算公式为:4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。

3、卡方检验的计算公式为:4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。

5、卡方检验不能确定因果关系。

4、卡方检验的注意事项1)注意运用多种分析方法进行综合分析以取得更加可靠的资料2)注意进行独立性检验,在检验时,无论是计算卡方还是求t值,当观察到两组数据呈直线相关或曲线相关的时候,应再做一次相关分析,以证实是否有系统误差3)如果要证明资料之间是协方差关系,则先要作协方差分析,协方差分析即资料本身包含着平方和,如果只有协方差没有平方和,则说明原始资料包含有错误,若同时出现卡方值的协方差和平方和,则说明是随机误差所致,反映了这种资料具有良好的数据处理性质。

配对四格表资料卡方检验的公式选用条件

配对四格表资料卡方检验的公式选用条件

配对四格表资料卡方检验的公式选用条件配对四格表资料卡方检验的公式选用条件引言•配对四格表资料卡方检验是统计学中常用的分析方法之一,用于判断两个变量之间是否存在关联关系。

•在进行配对四格表资料卡方检验时,正确选用公式是至关重要的。

公式选用条件1.样本数据满足独立性:在进行配对四格表资料卡方检验时,需要保证样本数据中的观测值之间相互独立,即每个观测值的出现与其他观测值的出现无关。

2.样本数据满足随机性:样本数据需要能够代表总体的特点,即样本选择要随机进行,以减小抽样偏差对检验结果的影响。

3.样本数据满足预期频数要求:进行配对四格表资料卡方检验时,需要确保每个分类下的观测值的预期频数大于等于5,以保证卡方检验的准确性。

4.样本数据满足分类独立性:进行配对四格表资料卡方检验时,需要确保变量的分类是相互独立的,即不出现因两个变量分类方法不同而导致的观测值分类重叠的情况。

公式推导•配对四格表资料卡方检验的公式选用条件主要基于卡方检验的原理进行推导。

•卡方检验是通过比较观测频数与预期频数之间的差异来判断两个变量之间的关系。

•在配对四格表资料卡方检验中,需要计算卡方值,并基于卡方值进行假设检验。

结论•在进行配对四格表资料卡方检验时,应遵守公式选用条件,确保样本数据的独立性、随机性、预期频数要求和分类独立性。

•正确选用公式可以提高卡方检验的准确性,从而更好地判断两个变量是否存在关联关系。

参考文献•[1] Agresti, A. (2002). Categorical data analysis (2nd ed.). Wiley-Interscience.公式选用条件的解释1.样本数据满足独立性:–独立性是指样本数据中的观测值之间相互独立,即每个观测值的出现与其他观测值的出现无关。

–例如,在研究两种药物治疗效果时,如果每个患者的数据只与自己所接受的药物有关,而不受其他患者的影响,那么就满足了独立性的条件。

2.样本数据满足随机性:–随机性是指样本数据能够代表总体的特点,即样本选择要随机进行,以减小抽样偏差对检验结果的影响。

完全随机设计四格表资料的卡方检验,其校正公式

完全随机设计四格表资料的卡方检验,其校正公式

完全随机设计四格表资料的卡方检验,其校正公式完全随机设计四格表资料的卡方检验及校正公式 卡方检验是一种常用的统计方法,用于判断两个或多个分类变量之间是否存在关联性。

在实际应用中,有一类叫做四格表的数据分析问题,即由两个分类变量构成的表格。

本文将介绍如何进行完全随机设计四格表资料的卡方检验,并给出相应的校正公式。

一、完全随机设计四格表资料的卡方检验的步骤:1. 确定研究问题和假设: 在进行卡方检验之前,需要明确研究问题和研究假设。

例如,我们想知道两个分类变量X和Y是否存在关联性,即是否存在某种程度的相关关系。

2. 构建四格表: 根据研究问题,我们需要构建一个四格表来表示变量X和Y的关系。

四格表由两个分类变量构成,每个变量有两个水平。

研究中可以将观察单位按照两个变量进行分类,并统计每个分类组合的数量。

将这些数量填入四格表格中,得到以下形式:Y=1 Y=03. 计算期望频数: 在进行卡方检验时,需要计算期望频数,即在假设不存在关联性的情况下,每个格子的期望数量。

计算方法为:在保持边际分布不变的条件下,计算每个格子的期望频数。

即计算每个分类组合的边际比例乘以总体数量。

4. 计算卡方统计量: 卡方统计量用于判断观察频数和期望频数之间的差异。

计算方法为:将每个格子的观察频数与期望频数之差的平方,除以期望频数,然后将所有格子的结果相加。

得到的卡方统计量符合自由度为1的卡方分布。

5. 判断是否存在关联性: 根据卡方统计量的分布,可以计算出其对应的p值。

通过比较p值和显著性水平(通常为0.05),可以判断是否存在关联性。

若p 值小于显著性水平,即拒绝原假设,说明存在关联性。

二、校正公式: 在实际应用中,四格表可能会出现某个格子的期望频数小于5的情况。

这会导致卡方统计量的计算结果不准确,影响判断结果的可靠性。

为了解决这个问题,可以使用校正公式进行修正。

1. 构建校正后的四格表: 在校正前,首先需要确定哪些格子的期望频数小于5。

四格表资料分析 卡方检验 以及Poisson资料分析

四格表资料分析 卡方检验 以及Poisson资料分析

四格表资料分析卡方检验以及Poisson资料分析内容1四个表和卡方检验原理2成组设计两样本率比较的卡方检验3确切概率法4配对设计两样本率比较的卡方检验5Poisson资料分析概述卡方检验是以卡方分布为基础的一种常用假设检验方法,主要用于分类变量,它基本的无效假设是(不包括配对资料):卡方检验在H 0为真时,实际观察数与理论数之差A i -T i 应该比较接近0。

所以在H 0为真时,检验统计量2()kA T -方法原理表6.2 使用含氟牙膏与一般牙膏儿童的龋患率牙膏类型患龋齿人数未患龋齿人数调查人数龋患率(%)方法原理理论频数▪基于H 0成立,两样本所在总体无差别的前提下n n方法原理•从卡方的计算公式可见,当观察频数与期望频数完全一致时,卡方值为0;方法原理卡方分布▪显然,卡方值的大小不仅与A、E之差有关,还操作步骤1. 建立检验假设和确定检验水准▪H:使用含氟牙膏和一般牙膏儿童龋患率相等操作步骤4. 确定P值和作出推断结论▪查附表8,χ2界值表,得p>0.05。

按α= 0.05卡方检验假设的等价性两组儿童的龋齿率相同▪两组发生率的比较四格表χ2值的校正英国统计学家Yates认为,χ2分布是一种连续型分布,而四格表资料是分类资料,属离散型分布,由此计算的χ2值的抽样分布也应当是不连续的,分析实例注意:确切概率法不属于χ2检验的范畴,但常作为χ2检验应用上的补充。

分析实例1.建立检验假设和确立检验水准▪H0:新药组与对照组疗效相等,即π1 = π2方法原理在四格表周边合计不变的条件下,在相应的总体中进行抽样,四格表中出现各种排列组合情况的概率方法原理表6.10 在四格表(表6.9)周边合计不变的条件下,π1=π2时的概率分布计算d 0 1 2 3 4 5 6* 7 8一点补充确切概率法可以考虑单边检验对于较大的行乘列表,确切概率法的计算量将变方法原理例6.9 用A、B两种方法检查已确诊的乳腺癌患者140名,A法检出91名(65%),B法检出77名(55%),A、B两法一致的检出56名(40%),问哪种方法阳性方法原理•显然,本例对同一个个体有两次不同的测量,从设计的角度上讲可以被理解为自身配对设计方法原理注意▪考虑该例四格表中两处理阳性检出率是否相同方法原理根据H0得b、c两格的理论数均为T b = T c = (b+c)/2,对注意事项McNemar检验(配对卡方检验)只会利用非主对角线单元格上的信息,即它只关心两者不一致的评价情况,用于比较两个评价者间存在怎样的倾向。

独立四格表资料卡方检验的应用条件

独立四格表资料卡方检验的应用条件

独立四格表资料卡方检验的应用条件1. 独立四格表资料卡方检验啊,那可不是随随便便就能用的。

就好比你要进一个高级俱乐部,得满足人家的会员条件才行。

比如说研究两种药物对治疗某种病的效果,把病人分成两组,一组用A药,一组用B药,最后看治愈和未治愈的人数,这时候想用到卡方检验,就得看看是否符合应用条件呢。

2. 卡方检验在独立四格表资料里的应用,哇塞,超讲究的!你要是不按规则来,那就像没带钥匙就想开门一样。

我有个朋友做市场调查,关于两种广告方案对产品销量影响,分了看了广告和没看广告的人群,再看购买和不购买产品的情况,这里要是想用卡方检验,可不能马虎对待应用条件。

3. 独立四格表资料卡方检验的应用条件可重要啦,这就像厨师做菜前得知道食材搭配的规则。

像学校里对比两种教学方法对学生及格与不及格人数的影响,这样的数据如果要进行卡方检验,那些应用条件就是我们必须要清楚的东西,可不能瞎搞哦。

4. 嘿,独立四格表资料卡方检验的应用条件可不能小瞧。

这就如同建房子要先打好地基一样。

比如在调查男女对某一电影类型喜欢和不喜欢的比例时,想要用卡方检验来分析,就得看看是否达到它的应用条件,不然结果可能就像歪歪扭扭的房子一样不可靠。

5. 卡方检验在独立四格表资料中的应用条件啊,真的是像游戏里的通关规则。

我同事做实验研究两种肥料对植物生长好坏的影响,把植物分成两组施肥,最后统计健康和不健康的数量,要是打算用卡方检验,那这些应用条件就像关卡一样必须得通过呀。

6. 独立四格表资料卡方检验的应用条件,哎就像运动员参加比赛要遵守比赛规则。

想象一个调研中比较两个城市居民对某项政策支持和不支持的人数比例,要进行卡方检验的话,这应用条件就是比赛的规则,遵守了才能得到靠谱的结果呢。

7. 卡方检验用于独立四格表资料时,其应用条件可不能被忽视,这就如同开车要遵守交通规则。

例如对比新旧两款手机被不同年龄段用户接受和不接受的比例,若想采用卡方检验,就必须审视应用条件,不然就像乱开车一样容易出问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式计算卡方值。 公式(p.340) 2
(
f0
fe 1/2)2 fe
例题:p.341
如果三项分类或更多时,出现某一单元
格内的理论次数小于5的情况,则不需要 进行校正也能得到较为准确的结果。
精品课件
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
出来的卡方值要乘以100/N后,再与查 表所得的临界值进行比较。
例题:p.337
精品课件
五、二项分类的配合度检验与比 率显著性检验的一致性
二者实质相同,只是表示方式不同。
相比较而言,配合度检验计算方法更为
简单。
例题:p.338
精品课件
六、卡方的连续性校正
当某一期望次数小于5时,应该利用校正
第十章 卡方检验
教科所 张念成
精品课件
教学目标
了解卡方检验的一般原理; 掌握卡方检验的具体方法,例如配合度
检验、独立性检验和同质性检验。
精品课件
卡方检验适用情况
对计数数据进行统计分析,应该用卡方
检验。
如果测量数据的总体分布形态不清楚,
也可以用卡方检验等非参数检验的方法 进行分析。
精品课件
差异显著说明有关联
精品课件
二、四格表的独立性检验
独立样本四格表卡方检验
利用基本公式或简捷公式 例题:p.347
相关样本四格表卡方检验
用简捷公式较为简单 例题:p.349
精品课件
二、四格表的独立性检验
四格表卡方值的近似校正
当四格表的任一格理论次数小于5时,要用Yates连续 性校正公式计算卡方值(具体公式见书p.349)。
精品课件
独立性检验
独立性检验主要用于两个或两个以上因素多项
分类的计数资料分析,也就是研究两类变量之 间的关联性和依存性问题。
如果两变量无关联即相互独立,说明对于其中
一个变量而言,另一变量多项分类次数上的变 化是在无差范围之内;如果两变量有关联即不 独立,说明二者之间有交互作用存在。
独立性检验的两个母总体指的是两个变量所代
个变量或两个样本无关联时,期望值为 列联表中各单元格的理论次数,即各个 单元格对应的两个边缘次数的积除以总 次数。
精品课件
五、小期望次数的连续性校正
如果个别单元格的理论次数小于5,处理
方法有以下四种:
1、单元格合并法 2、增加样本数 3、去除样本法 4、使用校正公式
精品课件
六、应用卡方检验应注意取样设计
实际研究中预先不知道其总体分布,而 是要根据对样本的次数分布来判断是否 服从某种指定的具有明确表达式的理论 次数分布。
关于分布的假设检验方法有很多,运用
卡方值所做的配合度检验是最常用的一 种。
精品课件
举例:正态分布吻合性检验
例题:p.336
精品课件
四、比率或百分数的配合度检验
如果计数资料用百分数表示,最后计算
四格表的Fisher精确概率检验方法
在理论次数小于5时,也可用费舍精确概率检验法, 代替卡方检验法。
公式和例题(p.350)
精品课件
三、R*C表独立性检验
基本方法与四格表的独立性检验相同。
精品课件
四、多重列联表分析
如果有三个自变量,可以将其中一个人
口学变量看作控制变量,对于控制变量 的不同水平进行单个列联表分析。
自由度的确定
通常为分类数减去1
理论次数的计算
根据某种经验或理论
精品课件
二、配合度检验的应用
1、检验无差假说 理论次数=总数*1/分类项数 例题p.332
2、检验假设分布的概率 理论次数的计算按照理论分布求得 例题p.333
精品课件
三、连续变量分布的吻合性检验
对于连续随机变量的计量数据,有时在
注意取样的代表性
精品课件
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
精品课件
配合度检验
配合度检验主要用于检验单一变量的实
际观察次数分布与某理论次数分布是否 有差别。
精品课件
一、配合度检验的一般问题
统计假设
虚无假设:实际数等于理论数 备择假设:实际数不等于理论数
同质性检验
主要目的在于检定不同人群母总体在某一个变量的 反应是否具有显著差异。
精品课件
三、卡方检验的基本公式
2 ( f0 fe)2
fe
f0为实际观察次数 fe为理论次数
精品课件
四、期望次数的计算
在配合度检验时,期望值为总体的实际
数值,或是某一理论存在的数值。
在独立性检验和同质性检验中,如果两
而且,对这些计数数据的统计分析是根
据卡方分布进行的。
精品课件
卡方检验的功能
处理一个因素两项或多项分类的实际观
察频数与理论频数分布是否相一致的问 题,或者说有无显著差异的问题。
关于实际次数和理论次数
实际频数:指在实验或调查中得到的计数资 料。
理论次数:指根据概率原理、某种理论、某 种理论次数分布或经验次数分布计算出来的 次数。
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
精品课件
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
精品课件
为什么叫作卡方检验
计数数据一般应用属性统计方法,因为
这类数据是按照事物属性进行多项分类 的。
若多个列联表呈现的结果一致,可以将
数据合并;若不一致,则需要各自进行 分别的解释。
精品课件
主要内容
第一节 卡方检验的原理 第二节 配合度检验 第三节 独立性检验 第四节 同质性检验
精品课件
同质性检验
同质性检验目的在于检验不同人群母总体在某
表的概念母总体,而非人口学上的母总体。
精品课件
ቤተ መጻሕፍቲ ባይዱ 一、独立性检验的一般问题与步骤
统计假设
虚无假设:多因素之间独立 备择假设:多因素之间有关联或者说差异显著
理论次数的计算
单元格所对应的行的总合乘以对应的列的总合,然后 再除以总数
自由度的确定
df=(R-1)(C-1)
统计方法的选择(不同情况有简便公式) 结果及解释
精品课件
一、卡方检验的假设
分类相互排斥、互不包容; 观测值相互独立; 每一个单元格中的期望次数至少为5。
精品课件
二、卡方检验的类别
配合度检验
主要用来检验一个因素多项分类的实际观察数与某 理论次数是否接近。
独立性检验
用来检验两个或两个以上因素各种分类之间是否有 关联或是否具有独立性的问题。
相关文档
最新文档