初中几何中点辅助线作法

合集下载

初中几何辅助线大全-最全

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例一、延长已知边构造三角形:分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。

证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE (AAS )∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。

(当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。

)二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。

三、有和角平分线垂直的线段时,通常把这条线段延长。

分析:要证BD =2CE ,想到要构造线段2CE ,同时CEAE FABCDE17-图O与∠ABC 的平分线垂直,想到要将其延长。

证明:分别延长BA ,CE 交于点F 。

∵BE ⊥CF (已知)∴∠BEF =∠BEC =90° (垂直的定义)在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE=21CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知)∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE四、取线段中点构造全等三有形。

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结

初中数学做辅助线的方法总结
在初中数学中,做辅助线是解题的重要方法之一。

以下总结了几
种常见的做辅助线的方法:
1. 对称性辅助线法:当一个图形或方程式具有对称性时,可以
画出一条对称轴或一些对称线,从而利用对称性来简化问题。

例如,
在求三角形的中线长度相等定理时,可以描绘出三角形的垂直平分线,并在中点处作垂线,得到两个相等的直角三角形。

2. 垂线辅助线法:当一个角、线段或线段的垂线很难直接操作时,可以画出一条垂线,将问题转化为一个直角三角形问题。

例如,
在求一条线段的垂线长度时,可以先画出一条垂线与该线段相交,并
组成一个直角三角形。

3. 平移辅助线法:当一个几何图形或方程式涉及到平移时,可
以通过向图形或方程式添加平移线或平移量来使问题变得简单。

例如,在证明平行四边形对角线平分的定理时,可以平移一个平行四边形,
使其成为一个重合的平行四边形,从而使问题变得简单。

4. 分割辅助线法:当一个图形或方程式很复杂时,可以通过将
其分解成几个简单的部分来解题。

例如,在求多边形面积时,可以将
多边形分割成几个三角形或梯形,并将它们的面积相加,从而得到多
边形的面积。

总之,做辅助线的方法不只有以上四种,还可以根据具体问题的
不同情况选用其他的方法。

需要注意的是,在使用辅助线时,要注意
画出清晰的图形,并理解各种辅助线的作用,才能有效地解决问题。

最新1初中数学《几何辅助线秘籍》中点模型的构造1(倍长中线法;构造中位线法)资料

最新1初中数学《几何辅助线秘籍》中点模型的构造1(倍长中线法;构造中位线法)资料

学生姓名学生年级学校上课时间辅导老师科目教学重点中点模型的构造(倍长中线法;构造中位线法;构造斜边中线法)教学目标系统有序掌握几何求证思路,掌握何时该用何种方法做辅助线开场:1.行礼;2.晨读;3.检查作业;4.填写表格新课导入知识点归纳1.已知任意三角形(或者其他图形)一边上的中点,可以考虑:倍长中线法(构造全等三角形);2.已知任意三角形两边的中点,可以考虑:连接两中点形成中位线;3.已知直角三角形斜边中点,可以考虑:构造斜边中线;4.已知等腰三角形底边中点,可以考虑:连接顶点和底边中点利用“三线合一”性质.新课内容做辅助线思路一:倍长中线法经典例题1:如图所示,在△ABC中,AB=20,AC=12,求BC边上的中线AD的取值范围.【课堂训练】1.如图,已知CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE,则以上结论正确的是()A.①②④B.①③④C.①②③D.①②③④第1题图第2题图2.如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD,BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A. 2B. 3C. 4D. 53.如图,在△ABC中,点D、E为边BC的三等分点,则下列说法正确的有()①BD=DE=EC;②AB+AE>2AD;③AD+AC>2AE;④AB+AC>AD+AE。

A. 1个B. 2个C. 3个D. 4个4.如图,在△ABC 中,AB >BC ,E 为BC 边的中点,AD 为∠BAC 的平分线,过E 作AD 的平行线,交AB 于F ,交CA 的延长线于G ,求证:BF =CG .5.如图所示,已知在△ABC 中,AD 是BC 边上的中线,F 是AD 上的一点,连接BE 并延长交AC 于点F ,AE =EF ,求证:AC =BF.6.如图所示,在△ABC 中,分别以AB 、AC 为直角边向外做等腰直角三角形△ABD 和△ACE ,F 为BC 边上中点,FA 的延长线交DE 于点G ,求证:①DE =2AF ;②FG ⊥DE .FGE D B C AF DB C AE GFB C A D E7.如图所示,在Rt △ABC 中,∠BAC =90°,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且ED ⊥FD.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形,或者是钝角三角形?8.四边形ABCD 是矩形,E 是BC 边上的中点,△ABE 沿着直线AE 翻折,点B 落在点F 处,直线AF 与直线CD 交于点G ,请探究线段AB 、AG 、G C 之间的关系.9.如图所示,△ABC 中,点D 是BC 的中点,且∠BAD =∠DAE ,过点C 作CF//AB ,交AE 的延长线于点F ,求证:AF +CF =AB.FD A B C EG F E D B C A FD B C A E做辅助线思路二:构造中位线法经典例题2:梯形ABCD 中,AD ∥BC ,AD =12,BC =16,中位线EF 与对角线分别相交于H 和G ,则GH 的长是________.【课堂训练】1.已知,如图,四边形ABCD 中,AB =CD ,E 、F 分别是AD 、BC 的中点,BA 、FE 的延长线相交于点M ,CD 、FE 的延长线相交于点N.求证:∠AME =∠DNE.2.已知,如图,四边形ABCD 中,AC 、BD 相交于点O ,且AC =BD ,E 、F 分别是AD 、BC 的中点,EF 分别交AC 、BD 于点M 、N.求证:OM =ON.A B F C D N M E D A B COE FM N P3.BD 、CE 分别是的△ABC 外角平分线,过A 作AF ⊥BD ,AG ⊥CE ,垂足分别是F 、G ,易证FG=21(AB+BC+AC )。

初中辅助线102种方法

初中辅助线102种方法

初中辅助线102种方法1.绘制直线段:在所给的两个点上画辅助线,连接两点即可获得直线段。

2.绘制垂直线:在给定直线上选取一点,作与该点不共线的直线,通过该点引垂直线即可。

3.绘制平行线:在给定直线上选取一点作线段,然后以该线段为半径作圆,在另一点处画一条线段,两条线段平行。

4.绘制等分线:在直线上选择两个点,作圆使其与直线交于两点,连接两点画线段。

5.绘制三等分线:在直线上选择三个不共线的点,分别与直线上的点相连接,形成三个等腰三角形的底面,在三个对应顶点之间画线段。

6.绘制中位线:在三角形的两边上选择两点,使其各自与一个端点形成中位线,在两点之间画线段。

7.绘制角平分线:在给定角的两边上选择两个点,以该点为圆心作圆相交于两点,然后连接两点即可。

8.绘制垂直平分线:对于给定线段,以其中一点为圆心作大于一半长度的圆,在另一端点处画线段,连接两点即可。

9.绘制等腰三角形的高:在一个顶角上选择一点,然后与两边的端点相连,两条线段相交的点就是等腰三角形的高。

10.绘制正方形的对角线:在正方形的两个对角线上选择相对的两点,连接两点即可。

11.绘制圆:以给定的圆心为圆心,以圆上两个点的距离作半径画圆。

12.绘制圆的切线:以切点为圆心,在圆上选择两个点,连接两点即可。

13.绘制圆的弦:在圆上选择两个点,连接两点即可。

14.绘制正多边形的对角线:在正多边形的两个对角线上选择相对的两点,连接两点即可。

15.绘制垂直于圆的切线:以圆心为圆心,在圆上选择两个点,作圆与圆外一点的连线,得到的直线即为切线。

16.绘制等边三角形的高:在等边三角形的一个顶点上选择一点,然后与底边上两个相对的顶点相连,两条线段相交的点即为高所在位置。

17.绘制与给定角相等的角:在给定角的两边上选择两个点,分别以这两个点为圆心与给定角的两边相交,连接两个交点即可。

18.绘制与给定线段等长的线段:在给定线段上选择一点,以该点为圆心作圆的交点即为与给定线段等长的线段的两端点。

中考数学复习--几何图形辅助线 与中点有关的辅助线作法

中考数学复习--几何图形辅助线  与中点有关的辅助线作法

5221专题一与中点有关的辅助线作法1.如图,在平行四边形ABCD 中,对角线AC、BD 相交于点O,过点O 作OE⊥AC 交AD 于点E,若AE=4,DE=2,AB=,求AC 的长,2.如图,在Rt△ABC 中,∠ACB=90°,D、E 分别是AB、AC 的中点,延长BC 到点F,使得CF=BC,连接DE、EF.求证:∠B=∠F.3.如图,在圆O 中,∠AOB+∠COD=180°,弦CD=6,OE⊥AB 于点E.求OE 的长。

方法归纳与中点有关的辅助线的作法如下:方法1.构造中位线如图①,点D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E,则DE=1/2BC方法2.构造中线(1)如图②,在Rt△ABC 中,D 为斜边AC 的中点,连接BD,则CD=DB=AD=1/2AC.(2)如图③,在等腰△ABC 中,点D 是底边BC 的中点,连接AD,则AD⊥BC,∠BAD=∠CAD.方法3.构造等腰三角形如图④,在ABC 中,D 为BC 的中点.DE⊥BC 交AC 于点E,连接BE,则△BEC 为等腰三角形。

例1如图,在等腰直角△ABC中,∠B=90°,D为边AC的中点,E、F分别为AB、BC边上的点,且DE⊥DF,连接EF,若AE=4,FC=3,求EF的长。

思路点拨:题目中要求EF的长,根据ABC形状的特殊性,可构造中线辅助线得三角形全等,将已知边转化到有边EF的直角三角形中求解即可;或也可根据DE⊥DF构造等腰三角形,利用全等三角形的性质和勾股定理求解。

作法1:构造中线求解,具体辅助线作法为。

作法2:构造等腰三角形求解,具体辅助线作法为。

例2如图,在矩形ABCD中,E是CB延长线上一点,且CE=AC,F是AE的中点.求证:BF⊥DF。

思路点拨:题目中要求证BF⊥DF,结合已知条件无法直接求证,根据矩形对角线的交点和F为AE的中点,可构造中位线,利用中位线的性质和矩形的性质求证;或根据CE=AC,F是AE的中点,可构造中线,利用等腰三角形“三线合一”的性质和全等三角形的性质求证。

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解

初中数学辅助线口诀及图解初中数学辅助线口诀及图解 1作辅助线的方法和技巧题中有角平分线,可向两边作垂线。

垂直平分线,可以把线连接到两端。

三角形中两中点,连结则成中位线。

三角形中有中线,延长中线同样长。

成比例,正相似,常为平行线。

如果所有的线都在圆的外面,则通过切割圆心来连接这些线。

如果两圆内外切,经过切点作切线。

两个圆相交于两点,这两点一般作为它们的公共弦。

它是直径,在一个半圆里,我想把线连接成直角。

作等角,添个圆,证明题目少困难。

辅助线是虚线。

小心不要更改图纸。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

需要将线段对折一半,延伸和缩短都可以测试。

三角形的两个中点相连形成中线。

三角形有一条中线,中线延伸。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

移动平行对角线组成三角形是很常见的。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径和弦长计算,弦中心到中间站的距离。

圆上若有一切线,切点圆心半径连。

勾股定理是计算切线长度最方便的方法。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆形,要连接成直角的弦。

圆弧的中点与圆心相连,竖径定理要记完整。

圆周角边两条弦,直径和弦端点连。

切角、切边、切弦、找同弧、同对角线等。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交的圆,别忘了把它做成普通串。

内外相切的两个圆,通过切点公切线。

如果添加了连接线,切点必须在连接线上。

在等角图上加一个圆很难证明问题。

辅助线,是虚线,画图注意勿改变。

如果图形是分散的,对称旋转进行实验。

画画是必不可少的,平时也要熟练。

解题还要多心眼,经常总结方法显。

不要盲目加线。

方法要灵活多变。

分析综合方法选,困难再多也会减。

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!

初中数学14种方法教会你给三角形加辅助线!1.垂线:对于任意三角形ABC,可以从顶点A引一条垂线AD,垂足D位于BC边上。

通过垂线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

2.中线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中线可以将三角形分成三个等边三角形,进而使用等边三角形的性质解决问题。

3.角平分线:对于任意三角形ABC,可以从顶点A引一条角平分线AD,使得∠CAD=∠BAD。

通过角平分线可以将一个角平分成两个相等的角,从而使用相等角的性质解决问题。

4.内切圆:对于任意三角形ABC,可以画出其内切圆,该圆与三角形的三条边都相切。

通过内切圆可以获得三个切点,进而使用切点的性质解决问题。

5.外切圆:对于任意三角形ABC,可以画出其外切圆,该圆与三角形的三条边都相切。

通过外切圆可以获得三个切点,进而使用切点的性质解决问题。

6.高线:对于任意三角形ABC,可以从顶点A引一条高线AH,垂足H位于BC边上。

通过高线可以将三角形分成两个直角三角形,进而使用直角三角形的性质解决问题。

7.中位线:对于任意三角形ABC,可以从任意两个顶点A和B引两条中位线CD和EF,其中C和D是AB边的中点,E和F是AC边和BC边的中点。

通过中位线可以将三角形分成三个面积相等的三角形,进而使用面积相等的性质解决问题。

8.三角形的对称性:对于任意三角形ABC,可以观察到三个顶点关于其中一条边的对称性,根据这种对称性可以找到一些相等的角或边,从而简化问题的解决。

9.倒错:对于任意三角形ABC,可以考虑将这个三角形倒转或翻转,从而改变三角形的位置和形态,进而简化问题的解决。

10.几何图形的组合:对于给定的三角形ABC,可以考虑将它与其他几何图形进行组合,例如,与一个正方形、矩形或平行四边形组合,从而改变问题的形式,解决新问题。

与中点有关的引辅助线方法

与中点有关的引辅助线方法

与中点有关的引辅助线方法中点是平面几何中一个重要的概念,它与图形的对称性、平行性、垂直性等性质有着密切的关系。

为了帮助解决与中点有关的问题,我们可以使用引辅助线的方法。

下面我将介绍一些与中点有关的引辅助线方法。

1.引中点辅助线法这是最基本的与中点有关的引辅助线方法。

当我们需要求线段的中点时,可以通过引一条过该线段两端点的直线,然后取该直线上的中点即可。

这样,我们就引出了一个与中点有关的辅助线。

2.引垂直平分线法当我们需要将一个线段平分时,可以通过引一条垂直于该线段的直线,并让该直线与线段的中点相交。

这样,该垂直直线就成为了该线段的垂直平分线。

3.引中垂线法当我们需要求一个线段的中垂线时,可以通过引一条垂直于该线段的直线,并让该直线的中点与该线段的中点相连。

这样,我们就得到了一个与中点有关的辅助线,也就是该线段的中垂线。

4.引平行线法当我们需要构造一个与条直线平行的直线时,可以通过引一条经过该直线上一点的平行线,并让该平行线上的距离与该点到该直线的距离相等。

这样,我们就得到了一个与中点有关的辅助线,也就是与原直线平行的直线。

5.引垂直线法当我们需要构造一个与条直线垂直的直线时,可以通过引一条经过该直线上一点的垂直线,并让该垂直线与原直线相交。

这样,我们就得到了一个与中点有关的辅助线,也就是与原直线垂直的直线。

以上就是与中点有关的几种常用引辅助线方法。

利用这些方法,我们可以更方便地解决与中点有关的问题。

当我们遇到与中点有关的几何问题时,可以根据具体情况选择合适的引辅助线方法,并运用相关的定理和性质进行推导和证明。

通过加深对中点的理解和运用,我们能够更好地掌握几何知识,提高解题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中几何中点辅助线作法
姓名:__________
指导:__________
日期:__________
【基本模型2】
已知任意三角形两边的中点,连接三角形两边上的中点.
三角形的中位线
A.连接三角形两边中点的线段叫做三角形的中位线.
B. 三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.
C.中点三角形:三角形三边中点的连线组成的三角形,其周长是原三角形周长的一半,面积是原三角形面积的四分之一.【基本模型3】
已知任意一个四边形及各边的中点,连接四边形四边上的中点及对角线.
中点四边形
A.连接任意四边形四边的中点得到的四边形是平行四边形.
B.连接矩形四边的中点得到的四边形是菱形.
C.连接菱形四边的中点得到的四边形是矩形.
D.连接正方形四边的中点得到的四边形是正方形.总结:
1.已知三角形两边的中点,可以连接这两个中点构造中位线;
2.已知三角形一边的中点,可以在另一边上取中点,连接两中点构造中位线;
3.已知三角形一边的中点,过中点作其他两边任意一边的平行线可构造相似三角形【典型例题1】中考真题
【答案解析】
【典型例题2】
【思路分析】根据模型做辅助线,连接EF,FG , GH,HE. 【答案解析】。

相关文档
最新文档