初中几何常见辅助线作法口诀

合集下载

初中几何常见辅助线作法口诀大全修订版

初中几何常见辅助线作法口诀大全修订版

初中几何常见辅助线作法口诀大全修订版IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添把握定理和概念。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

初中几何常见辅助线作法歌诀汇编

初中几何常见辅助线作法歌诀汇编

初中几何常见辅助线作法歌诀汇编口诀1人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线加一倍。

梯形里面作高线,平移一腰试试看。

等积式子比例换,寻找相似很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,弦高公式是关键。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

要想作个外接圆,各边作出中垂线。

还要作个内切圆,内角平分线梦园。

如果遇到相交圆,不要忘作公共弦。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

口诀2学习几何体会深,成败也许一线牵。

分散条件要集中,常要添加辅助线。

畏惧心理不要有,其次要把观念变。

熟能生巧有规律,真知灼见靠实践。

图中已知有中线,倍长中线把线连。

旋转构造全等形,等线段角可代换。

多条中线连中点,便可得到中位线。

倘若知角平分线,既可两边作垂线。

也可沿线去翻折,全等图形立呈现。

角分线若加垂线,等腰三角形可见。

角分线加平行线,等线段角位置变。

已知线段中垂线,连接两端等线段。

辅助线必画虚线,便与原图联系看。

初中数学知识口诀有理数的加法运算同号两数来相加,绝对值加不变号。

异号相加大减小,大数决定和符号。

互为相反数求和,结果是零须记好。

【注】“大”减“小”是指绝对值的大小。

有理数的减法运算减正等于加负,减负等于加正。

初中几何常见辅助线作法口诀大全

初中几何常见辅助线作法口诀大全

初中几何多见辅助线作法口诀大全人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形多见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最便当。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要烂熟。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵敏应多变。

分析综合方法选,困难再多也会减。

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀

初中几何辅助线大全及口诀
以下是初中几何常用的辅助线和口诀:
1. 中线:连接三角形任意两个顶点,并且过第三个顶点的线段叫做中线。

中线的特点是相等,即三条中线交于一个点,这个点叫做三角形的重心。

2. 高线:从三角形一个顶点向对边所在直线引垂线,垂足到对边的线段叫做高线。

三角形的高线有三条,交于一个点,这个点叫做三角形的垂心。

3. 角平分线:从三角形一个顶点出发,把相邻的两个角平分成两个相等的角的线段叫做角平分线。

三角形内的三条角平分线交于一点,这个点叫做三角形的内心。

4. 中垂线:从三角形一个角的顶点作对边中点的垂线叫做中垂线。

三角形内的三条中垂线交于一点,这个点叫做三角形的外心。

常用口诀:
1. 重心定位,中线相等。

2. 垂心急行,高线相等。

3. 角平分线,内心定位。

4. 中垂线汇集,外心得位。

希望这些辅助线和口诀对你有所帮助!。

初中几何常见辅助线作法歌诀

初中几何常见辅助线作法歌诀

初中几何常见辅助线作法歌诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀

初中几何常有协助线作法口诀人说几何很困难,难点就在协助线。

协助线,怎样添?掌握定理和观点。

还要勤苦加研究,找出规律凭经验。

三角形图中有角均分线,可向两边作垂线。

也可将图对折看,对称此后关系现。

角均分线平行线,等腰三角形来添。

角均分线加垂线,三线合一试一试看。

线段垂直均分线,常向两头把线连。

要证线段倍与半,延伸缩短可试验。

三角形中两中点,连结则成中位线。

三角形中有中线,延伸中线等中线。

四边形平行四边形出现,对称中心均分点。

梯形里面作高线,平移一腰试一试看。

平行挪动对角线,补成三角形常有。

证相像,比线段,添线平行成习惯。

等积式子比率换,找寻线段很重点。

直接证明有困难,等量代换少麻烦。

斜边上边作高线,比率中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上如有全部线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线认真辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角均分线梦圆假如碰到订交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点一定在上边。

要作等角添个圆,证明题目少困难。

协助线,是虚线,绘图注意勿改变。

若是图形较分别,对称旋转去实验。

基本作图很重点,平常掌握要娴熟。

解题还要多心眼,常常总结方法显。

切勿盲目乱添线,方法灵巧应多变。

剖析综合方法选,困难再多也会减。

虚心好学加苦练,成绩上涨成直线。

图形作法平移腰,转化为三角形、平行四边形。

平移对角线。

转变为三角形、平行四边形。

延伸两腰,转变为三角形。

作作高,转变助的常为直角三角形和用方法矩形。

在利用三角形中位线与腰三关系明段中点连线。

不等关系,如直接不出来,可接两点或廷某组成三角形,使中出的段在一个或几个三角形中,再运用三角形三的不等关系明,如:例1、已知如1-1:D、E △ ABC 内两点 ,A求 :AB+AC>BD+DE+CE.明:(法一)将 DE两延分交AB、 AC MD EN于 M、N,在△ AMN中, AM+AN > MD+DE+NE;( 1)在△ BDM中, MB+MD>BD;( 2)在△ CEN中, CN+NE>CE;( 3)由( 1) +( 2) +( 3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC(法二:1-2)延 BD交 AC 于 F,廷CE交 BF 于 G,B C图11AGFD EB图1C2在△ ABF和△ GFC和△ GDE中有:AB+AF> BD+DG+GF?(三角形两之和大于第三)⋯(1)GF+FC>GE+CE(同上)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.. ( 2)DG+GE>DE(同上)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯. ( 3)由( 1) +( 2) +( 3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE∴AB+AC>BD+DE+EC。

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀

初中几何常见辅助线作法口诀人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

作辅助线的常用方法在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D 、E 为△ABC 内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一)将DE 两边延长分别交AB 、AC 于M 、N , 在△AMN 中,AM+AN > MD+DE+NE;(1)在△BDM 中,MB+MD>BD ; (2) 在△CEN 中,CN+NE>CE ; (3) 由(1)+(2)+(3)得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE∴AB+AC>BD+DE+EC (法二:图1-2)延长BD 交 AC 于F ,廷长CE 交BF 于G ,在△ABF 和△GFC 和△GDE 中有:AB+AF> BD+DG+GF?(三角形两边之和大于第三边)…(1) GF+FC>GE+CE (同上)………………………………..(2) DG+GE>DE (同上)…………………………………….(3) 由(1)+(2)+(3)得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC 。

初中几何辅助线秘籍:常见辅助线作法口诀

初中几何辅助线秘籍:常见辅助线作法口诀

初中几何辅助线秘籍:常见辅助线作法口诀今天小编为大家精心整理了一篇有关初中几何辅助线秘籍:常见辅助线作法口诀的相关内容,以供大家阅读学习!三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

四边形平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆半径与弦长计算,弦心距来中间站。

圆上假设有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

假设是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

今天的内容就介绍到这里了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 初中几何常见辅助线作法口诀 人说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线。

作法 图形 2 作辅助线的常用方法

平移腰,转化为三角形、平行四边形。

A

BC

D

E 平移对角线。转化为三角形、平行四边形。 A

BC

DE

延长两腰,转化为三角形。 A

BC

DE

作高,转化为直角三角形和矩形。

A

BC

D

EF

中位线与腰中点连线。

A

BC

DEF 3

在利用三角形三边关系证明线段不等关系时,如直接证不出 来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如: 例1、 已知如图1-1:D、E为△ABC内两点, 求证:AB+AC>BD+DE+CE. 证明:(法一) 将DE两边延长分别交AB、AC 于M、N, 在△AMN中,AM+AN > MD+DE+NE;(1) 在△BDM中,MB+MD>BD; (2) 在△CEN中,CN+NE>CE; (3) 由(1)+(2)+(3)得: AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+EC (法二:图1-2)

延长BD交 AC于F,廷长CE交BF于G, 在△ABF和△GFC和△GDE中有: AB+AF> BD+DG+GF (三角形两边之和大于第三边)…(1) GF+FC>GE+CE(同上)………………………………..(2) DG+GE>DE(同上)…………………………………….(3) 由(1)+(2)+(3)得: AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC。 一、 在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理: 例如:如图2-1:已知D为△ABC内的任一点,求证:∠BDC>

∠BAC。 分析:因为∠BDC与∠BAC不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC处于在外角的位置,∠BAC处于 在内角的位置; 证法一:延长BD交AC于点E,这时∠BDC是△EDC的外角,

ABCDENM

11图

A

BCDEFG

21图

ABCDEFG

12图 4

∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC于F,这时∠BDF是△ABD的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC。 注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三 角 形的内角位置上,再利用不等式性质证明。 二、 有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如: 例如:如图3-1:已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF。 分析:要证BE+CF>EF ,可利用三角形三边关系定理证明,须把BE,CF,EF移到同一个三角形中,而由已知∠1=∠2, ∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF移到同个三角形中。 证明:在DN上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE和△NDE中: DN=DB (辅助线作法) ∠1=∠2 (已知) ED=ED (公共边) ∴△DBE≌△NDE (SAS) ∴BE=NE (全等三角形对应边相等) 同理可得:CF=NF 在△EFN中EN+FN>EF(三角 形两边之和大于第三边) ∴BE+CF>EF。 注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素。 三、 有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形。 例如:如图4-1:AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF 证明:廷长ED至M,使DM=DE,连接 CM,MF。在△BDE和△CDM中, BD=CD (中点定义) ∠1=∠5 (对顶角相等) ED=MD (辅助线作法)

ABCDEFN

13图1234

14图ABCDEF

M123

4 5

∴△BDE≌△CDM (SAS) 又∵∠1=∠2,∠3=∠4 (已知) ∠1+∠2+∠3+∠4=180°(平角的定义) ∴∠3+∠2=90° 即:∠EDF=90° ∴∠FDM=∠EDF =90° 在△EDF和△MDF中 ED= MD (辅助线作 法) ∠EDF=∠FDM (已证) DF=DF (公共边) ∴△EDF≌△MDF (SAS) ∴EF=MF (全等三角形对应边相等) ∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边) ∴BE+CF>EF 上题也可加倍FD,证法同上。 注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中。 四、 在三角形中线时,常廷长加倍中线,构造全等三角形。 例如:如图5-1:AD为 △ABC的中线,求证:AB+AC>2AD。 分析:要证AB+AC>2AD,由图想到: AB+BD>AD,AC+CD>AD,所以有AB+AC+ BD+CD > AD +AD=2AD,左边比要证结论多BD+CD,故不能直接证出此题,而由2AD想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去 证明:延长AD至E,使DE=AD,连接BE,CE ∵AD为△ABC的中线 (已知) ∴BD=CD (中线定义) 在△ACD和△EBD中 BD=CD (已证) ∠1=∠2 (对顶角相等) AD=ED (辅助线作法) ∴△ACD≌△EBD (SAS) ∴BE=CA(全等三角形对应边相等) ∵在△ABE中有:AB+BE>AE(三角形两边之和大于第三边) ∴AB+AC>2AD。 (常延长中线加倍,构造全等三角形)

ABCD

E15图

ABCD

EF

25图 6

练习: 已知△ABC,AD是BC边上的中线,分别以AB边、AC边为直角边各向外作等腰直角三角形,如图5-2, 求证EF=2AD。

五、 截长补短法作辅助线。 例如:已知如图6-1:在△ABC中,AB>AC,∠1=∠2,P为AD上任一点 求证:AB-AC>PB-PC。 分析:要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB上截取AN等于AC,得AB-AC=BN, 再连接PN,则PC=PN,又在△PNB中,PB-PN即:AB-AC>PB-PC。 证明:(截长法) 在AB上截取AN=AC连接PN , 在△APN和△APC中 AN=AC(辅助线作法) ∠1=∠2 (已知) AP=AP (公共边) ∴△APN≌△APC (SAS), ∴PC=PN (全等三角形对应边相等) ∵在△BPN中,有 PB-PN∴BP-PC证明:(补短法) 延长AC至M,使AM=AB,连接PM, 在△ABP和△AMP中 AB=AM (辅助线作法) ∠1=∠2 (已知) AP=AP (公共边) ∴△ABP≌△AMP (SAS) ∴PB=PM (全等三角形对应边相等) 又∵在△PCM中有:CM>PM-PC(三角形两边之差小于第三边) ∴AB-AC>PB-PC。 六、 延长已知边构造三角形: 例如:如图7-1:已知AC=BD,AD⊥AC于A ,BC⊥BD于B, 求证:AD=BC 分析:欲证 AD=BC,先证分别含有AD,BC的三角形全等,有几种方案:△ADC与△BCD,△AOD与△BOC,△ABD与△BAC,

ABCDN

M

P

16图

12

相关文档
最新文档