单片机课程设计_基于89C51的温度报警器设计

合集下载

基于STC89C51的温度报警器设计

基于STC89C51的温度报警器设计

河南理工大学自动化专业单片机应用与仿真报告学院:班级:姓名:学号:指导老师:基于STC89C51的温度报警器设计(14级自动化2班学号)摘要:温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。

很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。

因此,智能化温度控制技术正被广泛地采用。

关键词:温度控制单片机智能化控制0引言温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。

随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。

温度控制电路在工农业生产中有着广泛的应用。

日常生活中也可以见到,如电冰箱的自动制冷,空调器的自动控制等等。

在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。

其中,温度是一个非常重要的过程变量。

例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行监控。

然而,用常规的监控方法,潜力是有限的,难以满足较高的性能要求。

采用单片机来对它们进行监控不仅具有监控方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。

因此,单片机对温度的监控问题是一个工业生产中经常会遇到的监控问题。

现代社会是信息化的社会,随着安全化程度的日益提高,而通过温度报警器及时报警,避免不必要的损失。

1 STC89C51芯片特性1.1简介STC89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压、高性能CMOS8位微处理器,俗称单片机。

单片机的可擦除只读存储器可以反复擦除100次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

基于STC89C51单片机的温度控制报警系统设计

基于STC89C51单片机的温度控制报警系统设计

基于STC89C51单片机的温度控制报警系统设计摘要:本文基于STC89C51单片机设计了一种温度控制报警系统,通过温度传感器检测环境温度,并根据设定的温度范围控制风扇运转并发出报警信号,以实现室内温度自动控制。

本文介绍了系统硬件设计、软件设计以及测试实验,并通过实验数据验证了系统的可行性和稳定性。

关键词:STC89C51单片机;温度控制;报警系统;温度传感器一、引言随着科技的不断发展,自动化控制技术在各个领域得到广泛应用。

温度自动控制是其中的一个重要应用方向。

在家庭、工厂以及医院等场所,温度的合理控制对于人们的身体健康和环境的稳定运转都有着重要的影响。

因此,设计一种基于STC89C51单片机的温度控制报警系统具有重要的研究价值和应用前景。

二、系统设计2.1 系统功能本系统主要功能为:实时检测环境温度,根据设定的温度范围控制风扇运转,并发出报警信号以实现室内温度自动控制。

2.2 系统硬件设计本系统主要硬件设计包括:温度传感器模块、LED指示灯、蜂鸣器、风扇以及STC89C51单片机。

温度传感器模块采用DS18B20型号,通过单总线接口与单片机相连,用于检测室内温度。

LED指示灯用于显示系统状态,包括运行状态和报警状态。

蜂鸣器用于发出报警信号。

风扇用于控制系统温度,实现温度自动控制。

STC89C51单片机负责系统的数据采集、运算和控制。

2.3 系统软件设计本系统的软件设计分为两部分:系统初始化和主程序部分。

系统初始化包括:串口初始化、温度传感器初始化、LED指示灯初始化、蜂鸣器初始化、风扇初始化等,主要用于对系统各个硬件进行初始化设置。

主程序部分包括:温度采集、温度判断、风扇控制和报警控制等。

主要通过程序实现室内温度的采集和判断,并根据设定温度范围控制风扇和报警控制信号等。

三、实验结果在实际测试中,将系统置于模拟室内环境中进行测试,测试数据显示本系统能够实现温度自动控制,并在温度超出设定范围时发出报警信号。

基于AT89C51单片机温度报警系统设计与制作.

基于AT89C51单片机温度报警系统设计与制作.

一、摘要我们介绍的是一种基于单片机控制的数字温度报警,本温度系统具有多功能性,即可以当数字温度计使用,显示当前环境温度,又可以作为报警器使用,设置报警温度,当温度不在设置范围内时,可以报警,并采取措施使温度下降。

该温度报警系统控制器使用单片机AT89C51,测温传感器使DS18B20,用2位共阳极LED数码管,实现温度显示,能准确达到以上要求。

二、设计方案1、方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

2、方案二进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

温度报警系统电路设计总体设计方框图如图1所示1、单片机主板电路单片机AT89C51具有低电压供电和体积小等特点,该模块包括中央处理CPU -AT89C51、时钟电路及复位电路;图2复位电路图3 时钟电路2、DS18B20温度传感器与单片机的接口电路DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

该电路完成了信号的采集、转换和传输。

图43、上下限报警调整电路分别调整温度的上下限报警设置,有“+“、”“-”、“确定”等键图5上下限报警调整电路4、温度显示电路显示当前测得的温度,数码管采用74LS247驱动图6温度显示电路5、报警电路当环境温度超过设定温度时,蜂鸣器鸣叫,红灯点亮,发生报警;当人员发现警报时,可按图8中的按钮,暂时中断蜂鸣器的鸣叫。

基于单片机温度报警器课程设计报告

基于单片机温度报警器课程设计报告

目录毕业设计任务书 (1)一、概述 (2)1.1、毕业设计的目的和意义 (3)1.2、任务及要求 (3)1.2.1 (3)1.2.2 (3)1.2.3 (3)1.2.4 (3)1.2.5 (3)1.3、主要温度模块功能 (3)1.4、研究现状 (3)二、总体设计要求 (4)2.1、功能简介 (4)2.3、设计思路(器件的选择) (4)2.4、芯片器件 (5)三、硬件设计 (5)3.1、89C516芯片引脚图 (6)3.2温度获取 (6)DS18B20特点 (7)3.3、时钟芯片特点 (7)四、系统组成及原理 (10)4.1、复位电路 (10)4.2、时钟电路 (11)4.3、系统硬件框图 (12)4.4、总体电路图 (12)五、系统调试与结论 (13)5.1、出现的问题 (13)5.2、调试结果 (14)一概述【摘要】本系统是基于单片机的智能温度报警控制器的设计。

以STC89C516为核心,采用温度传感器DS18B20作为温度检测器,在液晶显示屏上显示实时温度。

本温度计属于多功能温度计,它不仅可以实时显示温度,还可以设置上下限报警温度。

当温度超过设置的上限温度或者低于下限温度时,蜂鸣器鸣响报警.而且还带有万年历,秒表等具有菜单功能的报警器。

1.1 毕业设计的目的和意义通过这次毕业设计,更进一步熟悉了单片机的内部结构和工作原理,掌握了单片机应用系统设计的基本方法和步骤;通过利用单片机,理解单片机在自动化装置中的作用以及掌握单片机的编程调试方法;通过设计一个简单的实际应用输入控制及显示系统,掌握protues和keil以及各种仿真软件的使用。

目前温度计的发展很快,从原始的玻璃管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等,温度计中传感器是它的重要组成部分,它的精度、灵敏度基本决定了温度计的精度、测量范围、控制范围和用途等。

传感器应用极其广泛,目前已经研制出多种新型传感器。

基于at89c51的数字温度报警系统

基于at89c51的数字温度报警系统

数字温度报警器附proteus仿真文件当温度在-20和70之间时:当温度大于70(71度)度时:当温度在小于-20(-30度)度时:C 程序源代码:#include<reg52.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P1^4; //ds18b20与单片机连接口sbit BG=P1^3;unsigned char code str[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x00,0x40} ; //共阴数码管字码表unsigned char code str1[]={0x0bf,0x86,0x0db,0x0cf,0x0e6,0x0ed,0x0fd,0x87,0x0ff,0x0ef}; //个位带小数点字码表unsigned char code wei[]={0x0fe,0x0fd,0x0fb,0x0f7}; uchar data disdata[5];uint tvalue; //温度值uchar tflag; //温度正负标志/**********ds1820程序************/void delay_18B20(unsigned int i) //延时1微秒{while(i--);}void ds1820rst() /*ds1820复位*/{unsigned char x=0;DQ = 1; //DQ复位delay_18B20(4); //延时DQ = 0; //DQ拉低delay_18B20(100); //精确延时大于480usDQ = 1; //拉高delay_18B20(40);}uchar ds1820rd() /*读数据*/{unsigned char i=0;unsigned char dat = 0;for (i=8;i>0;i--){DQ = 0; //给脉冲信号dat>>=1;DQ = 1; //给脉冲信号if(DQ) dat|=0x80;delay_18B20(10);}return(dat);}void ds1820wr(uchar wdata) /*写数据*/{unsigned char i=0;for (i=8; i>0; i--){DQ = 0;DQ = wdata&0x01;delay_18B20(10);DQ = 1;wdata>>=1;}read_temp() /*读取温度值并转换*/{uchar a,b;ds1820rst();ds1820wr(0xcc); // 跳过读序列号ds1820wr(0x44); // 启动温度转换ds1820rst();ds1820wr(0xcc); // 跳过读序列号ds1820wr(0xbe); // 读取温度a=ds1820rd();b=ds1820rd();tvalue=b;tvalue<<=8;tvalue=tvalue|a;if(tvalue<0x0fff)tflag=0;else{tvalue=~tvalue+2; tflag=1; //负温度}tvalue=tvalue*(0.625); //温度值扩大10倍,精确到1位小数return(tvalue);}/*********************************/void ds1820disp() //温度值显示{uchar i;disdata[0]=tvalue/1000; //百位数disdata[1]=tvalue%1000/100; //十位数disdata[2]=tvalue%100/10; //个位数disdata[3]=tvalue%10; //小数位if(tflag==0){if(disdata[0]==0x00){disdata[0]=0x0a; //百位数位为0不显示if(disdata[1]==0x00) disdata[1]=0x0a; //十位数位为0不显示}}else //负温度{disdata[0]=0x0b; //负温度百位显示负号:- if(disdata[1]==0x00) disdata[1]=0x0a; //十位数位为0不显示for(i=0;i<150;i++){P2=wei[0];P0=str[disdata[3]];delay_18B20(20);P0=0;P2=wei[1];P0=str1[disdata[2]];delay_18B20(20);P0=0;P2=wei[2];P0=str[disdata[1]];delay_18B20(20);P0=0;P2=wei[3];P0=str[disdata[0]];delay_18B20(20);P0=0;}}/************主程序**********/void main(){int t;ds1820rst(); //初始化显示while(1){t=read_temp();read_temp(); //读取温度ds1820disp(); //显示if(t>700||((tflag==1)&t>200))BG=0;elseBG=1;}}下载地址:/s/1bnvm4hT。

基于89C51温度报警器的设计

基于89C51温度报警器的设计

目录1 概述 (4)1.1 研究背景 (4)1.2 发展方向 (4)1.3 设计思想及基本功能 (3)2 总体方案设计 (3)2.1 方案选取 (3)2.2 系统框图 (5)2.3 总体方案设计 (6)3 硬件电路设计 (6)3.1 晶振电路 (4)3.2 复位电路 (5)3.3 键盘电路 (9)3.4 温度检测电路 (9)3.5显示电路 (11)3.6 报警电路 (9)4 系统软件设计 (13)4.1 主程序软件设计 (13)4.2 键盘程序设计 (14)4.3 显示程序设计 (16)5总结 (20)参考文献 (17)附录系统原理图 (18)1. 概述1.1研究背景温度是一个十分重要的物理量,对它的测量与控制有十分重要的意义。

随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。

温度控制电路在工农业生产中有着广泛的应用。

日常生活中也可以见到,如电冰箱的自动制冷,空调器的自动控制等等。

1.2发展方向现代信息技术的三大基础是信息采集控制(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)。

温度控制器属于信息技术的前沿尖端产品,尤其是温度控制器被广泛用于工农业生产、科学研究和生活等领域,数量日渐上升。

进入21世纪后,温度控制器正朝着智能化、高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟温度控制器和网络温度控制器、研制单片测温控温系统等高科技的方向迅速发展。

在20世纪90年代中期最早推出的智能温度控制器,采用的是8位A/D转换器,其测温精度较低,分辨力只能达到2℃。

目前,国外已相继推出多种高精度、高分辨力的智能温度传感器,所用的是9~12位A/D 转换器,分辨力一般可达0.5~0.0625℃。

为了提高多通道智能温控器的转换速率,也有的芯片采用高速逐次逼近式A/D转换器。

新型温度控制器的测试功能也在不断增强。

另外,温度控制器正从单通道向多通道的方向发展,这就为研制和开发多路温度测控系统创造了良好条件。

基于STC89C51单片机的防盗报警器设计

基于STC89C51单片机的防盗报警器设计

基于STC89C51单片机的防盗报警器设计1. 引言1.1 背景介绍随着社会的不断发展和进步,人们的生活水平和财产安全意识越来越强。

随之而来的犯罪问题也日益严重,尤其是盗窃案件频发。

如何有效地保护个人及家庭财产安全成为人们关注的焦点。

在这样的背景下,设计一种基于STC89C51单片机的防盗报警器显得尤为重要。

该报警器能够及时发出警报,提醒居民家中发生入室盗窃或其他意外事件,起到一定的防范和警示作用,有效保护家庭财产安全。

通过本设计,我们将结合STC89C51单片机的特点和防盗报警器的设计原理,详细阐述硬件设计和软件设计的过程,并展示实验结果的分析。

通过实验结果的分析,可以验证该报警器在实际使用中的有效性和稳定性。

结合结论总结和展望未来部分,将进一步探讨该防盗报警器的优势和未来发展方向。

1.2 研究目的本研究旨在基于STC89C51单片机设计一种高效可靠的防盗报警器,以满足日常生活和工作中对安全防范的需求。

随着社会的发展和科技的进步,人们对家庭和财产安全的保护意识越来越强。

设计一种可靠的防盗报警器成为当今的一个迫切需求。

1. 研究STC89C51单片机的特点和优势,了解其在嵌入式系统设计中的应用价值,为后续的防盗报警器设计提供技术支持和基础知识。

2. 探讨防盗报警器的设计原理,深入分析其工作原理和实现方式,为设计过程提供理论指导。

3. 进行硬件设计,包括传感器、报警器等元件的选择和连接,确保防盗报警器具有稳定性和可靠性。

4. 进行软件设计,编写程序实现对传感器信号的采集和处理,实现报警功能。

5. 进行实验并对结果进行分析,验证防盗报警器的功能和性能,检验设计的有效性和实用性。

通过以上研究目的的实现,本研究旨在为社会提供一种可靠的防盗报警器设计方案,提升家庭和工作场所的安全保障水平,促进社会和谐稳定发展。

2. 正文2.1 STC89C51单片机的特点1. 高性价比:STC89C51单片机具有较低的价格,性能稳定可靠,成本较低,适合于大规模生产和应用。

(完整版)基于单片机的温度显示报警器

(完整版)基于单片机的温度显示报警器
当晶体振荡频率为12MHz时,RC的典型值为C=10μF,R=8.2KΩ。
3.2.3 最小系统
图3-2-3 单片机最小系统
3.3 DS18B20与单片机接口电路的设计
DS18B20可以采用两种供电方式:一种是采用电源供电方式,此时DS18B20的第1引脚接地,第2引脚作为信号线,第3引脚接电源;另外一种是寄生电源供电方式
减法计数器1对低温度系数振荡器产生的脉冲信号进行减法计数,当减法计数器1的预置减到0时,温度寄存器的值将加1,减法计数器1的预置值将重新被装入,并重新开始对低温度系数振荡器产生的脉冲信号进行计数。如此循环,直到减法计数器2计数到0时,停止温度计数器值的累加,此时温度寄存器中的数值就是所测温度值。图3-1-4中的斜率累加器用于补偿和修正测温过程的非线形性,直到温度寄存器达到被测温度值。
第2章 方案论证
若采用一般温度传感器采集温度信号,则需要设计信号调理电路、A/D转换及相应的接口电路,才能把传感器输出的模拟信号转换成数字信号送到计算机去处理。这样,由于各种因素会造成检测系统较大的偏差;又因为检测环境复杂及各种干扰的影响,会使检测系统的稳定性和可靠性下降。所以温度检测系统的设计的关键在于:温度传感器的选择。温度传感器应用范围广泛、使用数量庞大,也高居各类传感器之首。
方案二:
采用LCD液晶屏进行显示。LCD液晶显示器是一种低压、微功耗的显示器件,只要2~3伏就可以工作,工作电流仅为几微安,是任何显示器无法比拟的,同时可以显示大量信息,除数字外,还可以显示文字、曲线,比传统的数码LED显示器显示的界面有了质的提高。在仪表和低功耗应用系统中得到了广泛的应用。优点为:
本课题研究的重要意义在于生产过程中随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数,就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是数字温度传感器技术,在我国各领域已经应用的非常广泛可以说是渗透到社会的每一个领域,与人民的生活和环境的温度息息相关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机系统课程设计成绩评定表设计课题:基于89C51的温度报警器设计学院名称:电气工程学院专业班级:学生姓名:学号:指导教师:设计地点:设计时间:指导教师意见:成绩:签名:年月日单片机系统课程设计课程设计名称:基于89C51的温度报警器设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间:单片机系统课程设计任务书学生姓名专业班级学号题目课题性质工程设计课题来源选题指导教师主要内容(参数)利用89C51设计温度报警器实现以下功能:1.实现对环境温度的测量和显示;2.温度超过设定值时,蜂鸣器报警;3.报警同时系统发出中断命令停止工作;任务要求(进度)第1-2天:熟悉课程设计任务及要求,查阅技术资料,确定设计方案。

第3-4天:按照确定的方案设计单元电路。

要求画出单元电路图,元件及元件参数选择要有依据,各单元电路的设计要有详细论述。

第5-8天:软件设计,编写程序,要求内容完整、图表清晰。

第9-10天:撰写课程设计报告。

要求文理流畅、格式规范、方案合理、设计正确。

主要参考资料[1] 张迎新.单片微型计算机原理、应用及接口技术(第2版)[M].北京:国防工业出版社,2004[2]伟福LAB6000系列单片机仿真实验系统使用说明书[3] 阎石.数字电路技术基础(第五版).北京:高等教育出版社,2006审查意见系(教研室)主任签字:年月日目录1 引言 (4)2 总体方案设计 (4)2.1总体方案 (4)2.2 方案论证 (4)2.3 硬件组成 (6)3 硬件电路设计 (7)3.1 时钟电路 (7)3.2 复位电路 (7)3.3 A/D转换设计 (8)3. 4放大电路设计 (9)3.5 显示电路设计 (10)3.6 报警电路 (11)4 系统软件设计 (12)4.1 主程序设计 (12)4.2 显示子程序的设计 (13)4.3 AD转换设计 (14)5 总结 (15)附录A 总原理图...................................................................... 错误!未定义书签。

附录B 部分源程序.................................................................. 错误!未定义书签。

1 引言随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。

在人类的生活环境中,温度扮演着极其重要的角色。

无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。

进入了21世纪后温度传感器正朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向迅速发展。

本设计以PT100热电阻为温度检测元件,设计了一个对单点温度实时检测并在温度超过一定值时进行报警的的单片机温度检测系统,可以实现以下功能:1.实现对环境温度的测量和显示;2.能通过按键设置报警温度;3.温度超过设置值时产生光声报警;4. 报警同时系统发出中断命令停止工作。

2 总体方案设计2.1 总体方案本方案以AT89C51单片机系统为核心,对单点的温度进行实时测量检测,并采用热电阻PT100作为温度传感器,AD620作为信号放大器、ADC0809作为A/D 转换部件,对于温度信号的采集具有大范围、高精度的特点。

在功能、性能、可操作性等方面都有较大的提升,具有更高的性价比。

2.2 方案论证2.2.1单片机选型本方案使用的是AT89C51单片机,AT89系列的单片机对于一般用户来说,有下列明显的优点:①AT89C51单片机在一块芯片上集成了CPU、RAM、ROM、定时器/计数器和多种功能的I/O口设备等,相当于一台计算机所需要的基本功能部件。

②内部含有Flash存储器,在系统开发过程中很容易修改程序,可以大大缩短了系统的开发时间。

③AT89系列并不对80C31的简单继承,功能进一步增强。

在我国这种单片机受到广泛青睐,很多以前使用80C51、80C52的用户都转而使用AT89系列。

对于有丰富编程经验的用户而言,不需要仿真器,可以直接将程序载入芯片,放在目标板上加电直接运行,观察运行结果,出现问题时再进行修改,然后重新写程序,再进行试验,直至成功。

AT89系列包括两大类,第一类是常规的,就是AT89C系列,这类单片机要用常规的并行方法编程,必需使用编程器编程;第二类是在系统可编程ISP Flash系列,也就是AT89S系列,这类单片机除了用常规的并行方法变成外,还2.2.2 温度传感器选择传感器是测控系统前向通道的关键部件,它也称换能器和变换器,一般是指非电物理量与电量的转换,即传感器是将被测的非电量(如压力、温度等)转换成与之对应的电量或电参量(如电流、电压、电阻等)输出的一种装置。

采集温度是有一下几种方案:方案一:采用温度传感器AD590。

它具有较高的精度,相比于热敏电阻精度有所提高,但非线性误差为±0.3℃,且检测温度范围为:-55~+155℃。

方案二:采用Pt100。

它的国际测温标准为:-40~+450℃,可选环境温度为:-40~70℃,精度为:±0.1℃,且安装尺寸小,可直接安装在印刷电路板上,可焊SIP封装。

采用热电阻电路测温。

热电阻是利用导体的电阻率随温度变化这一物理现象来测量温度的。

铂易于提纯,物理化学性质稳定,电阻率较大,能耐较高的温度,因此用PT100作为实现温标的基准器。

pt100是铂热电阻,简称为:PT100铂电阻,它的阻值会随着温度的变化而改变。

PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。

它的工业原理:当PT100在0摄氏度的时候他的阻值为100欧姆,它的的阻值会随着温度上升它的阻值是成匀速增涨的。

方案三:采用热电偶温差电路测温,温度检测部分可以使用低温热偶,热电偶由两个焊接在一起的异金属导线所组成,热电偶产生的热电势由两种金属的接触电势和单一导体的温差电势组成。

通过将参考结点保持在已知温度并测量该电压,便可推断出检测结点的温度。

数据采集部分则使用带有A/D 通道的单片机,在将随被测温度变化的电压或电流采集过来,进行A/D 转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

热电偶的优点是工作温度范围非常宽,且体积小,但是它们也存在着输出电压小、容易遭受来自导线环路的噪声影响以及漂移较高的缺点,并且这种设计需要用到A/D转换电路,感温电路比较麻烦。

基于对以上三种方案的分析以及实验室的设备,选择方案二的PT100作为温度传感器。

2.2.3模数转换器选型模拟量输入到计算机,首先要经过模拟量到数字量的转换,简称A/D转换,计算机才能接收。

实现模/数转换的设备称A/D转换器或ADC。

A/D转换器的种类有很多,而A/D转换的好与坏直接关系到真个系统的精确度。

由于本系统测量的是温度信号,响应时间长,滞后大,不要求快速转换,因此选用8位串行A/D转换ADC0809能达到设计的基本要求。

为进一步提高精度,可以直接采用12位A/D转换器,也可以采用过采样和求均值技术来提高测量分辨率。

2.3 硬件组成按照温度报警器设置的组成以及所需完成的功能,本设计需要以下硬件:1 热敏电阻PT100:完成对温度的采集,将温度的变化转换成电压信号;2 放大器AD620:将热敏电阻所转化的电压信号进行放大,并送到模数转换器ADC0809中;3 声光报警系统: 当温度超过设定值时用于报警的系统4 控制器:作为控制系统的核心,可采用工控机、PLC、DCS或微控制器,本设计采用单片机。

温度报警器系统框图见图2.1所示。

传感器放大电路A/D转换器单片机显示驱动电路蜂鸣器图2.1 温度报警器系统框图可以在系统下用下载线进行编程,省去价格昂贵的编程器,而且可以在目标板上直接修改程序。

3 硬件电路设计3.1 时钟电路给一块内部含有程序存储器的单片机配上时钟电路和复位电路就可以构成单片机的最小应用系统。

89C51系列单片机内部有一个高增益反相放大器,用于构成振荡器,但要形成时钟,外部还需附加电路,89C51的时钟产生方法有两种,内部时钟方式和外部时钟方式,本设计采用内部时钟方式,内部时钟电路图如图3.1所示。

X4CRYSTALC111nFC121nFXTAL1XTAL2图3.1 内部时钟电路图 3.2 复位电路复位是单片机的初始化操作,单片机在启动运行时,都需要先复位,它的作用是使CPU 和系统中其它部件都处于一个确定的初始状态,并从这个状态开始工作。

例如复位后,PC 初始化为0,于是单片机自动从0单元开始执行程序。

因而复位是一个很重要的操作方式。

本设计采用按键脉冲复位,其原理图如图3.2所示。

R32 10k R33 10kC13 1nFC141nFRST图3.2 按键脉冲复位原理图3.3 A/D转换设计3.3.1 8位逐次逼近式A/D转换器ADC0809ADC0809是带有8位A/D转换器、8路多路开关以及微处理器兼容的控制逻辑的CMOS组件。

它是逐次逼近式A/D转换器,可以和单片机直接接口。

它是目前应用最广泛的8位通用的A/D转换的芯片。

3.3.2 ADC0809应用注意事项:①ADC0809内部带有输出锁存器,可与AT89S52单片机直接相连。

②初始化时,使ST和OE信号为低电平。

③送要转换的那一通道的地址到A,B,C端口上。

④在ST端给出一个至少100ms宽的正脉冲信号。

⑤是否转换完毕,我们根据EOC信号来判断。

⑥当EOC变为高电平时,这时给OE为高电平,转换的数据就输出给单片机了。

3.3.3模数转换模块电路ADC0809接线图,即A/D转换电路如图3.3所示。

D 2Q5CLK3Q6S4R1U9:A74LS74D03Q02D14Q15D27Q26D38Q39D413Q412D514Q515D617Q616D718Q719OE 1LE 11U1474LS373OUT121ADD B 24ADD A 25ADD C 23VREF(+)12VREF(-)16IN31IN42IN53IN64IN75START 6OUT58EOC 7OE9CLOCK 10OUT220OUT714OUT615OUT817OUT418OUT319IN228IN127IN026ALE 22U15ADC0809P 2.0P 2.1P 2.2P 2.3P 2.7P 2.6P 2.5P 2.4Q0Q1Q230GNDV C CIN0U16NANDU17NANDP 3.6P 3.766O E34U6:B74LS04LECLOCK图3.3 A/D 转换电路 3.4 放大电路设计测温原理:采用 R1、R2、VR2、Pt100 构成测量电桥(其中 R29=R28),温度变化时,当Pt100 的电阻值和 R27 的电阻值不相等,电桥输出一个 mV 级的压差信号,这个压差信号经过运放 AD620 放大后输出期望大小的电压信号,该信号可直接连 A/D 转换芯片。

相关文档
最新文档