常用多进制数字调制技术基础

合集下载

电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调

电路基础原理数字信号的调制与解调数字信号的调制与解调是电路基础原理中的重要概念。

调制是将数字信号转化为模拟信号的过程,解调则是将模拟信号还原为数字信号的过程。

本文将介绍数字信号的调制与解调原理及其应用。

一、调制的基本原理调制是为了将数字信号传输到远距离时,能够克服传输噪声、提高信号质量而进行的一种技术。

数字信号经过调制后,会转化为模拟信号,其特点是连续的波形。

1.频移键控调制(FSK)FSK是一种基本的数字信号调制方式,它通过改变信号的频率来表示不同的数字。

在FSK中,使用两个频率来分别代表二进制的0和1。

2.相移键控调制(PSK)PSK是一种通过改变信号的相位来表示不同的数字的调制方式。

在PSK中,使用不同的相位来表示二进制的0和1。

3.正交幅度调制(QAM)QAM是一种通过改变信号的振幅和相位来表示不同的数字的调制方式。

在QAM中,通过改变信号的振幅和相位的组合来表示多个二进制数字。

二、解调的基本原理解调是将模拟信号还原为数字信号的过程,其目的是还原接收到的信号,以便后续的数字信号处理。

1.频移解调频移解调是将经过FSK调制的信号还原回数字信号的过程。

解调器需要检测接收到的信号的频率,并根据频率的不同判断出二进制的0和1。

2.相移解调相移解调是将经过PSK调制的信号还原为数字信号的过程。

解调器需要检测接收到信号的相位,并根据相位的变化来判断出二进制的0和1。

3.幅度解调幅度解调是将经过QAM调制的信号还原为数字信号的过程。

解调器需要测量接收到信号的振幅和相位,并根据这些信息来判断出二进制的0和1。

三、调制与解调的应用调制与解调技术广泛应用于通信领域,特别是在无线通信中。

1.无线电广播无线电广播使用调制技术将音频信号转化为无线电信号,并通过无线电波传输到接收器中,然后通过解调技术将无线电信号还原为音频信号。

2.移动通信移动通信中的调制与解调技术被用于将数字信号通过无线电信道传输,以实现声音、图像和数据的无线传输。

多进制数字调制系统PPT课件(通信原理)

多进制数字调制系统PPT课件(通信原理)
若各信号状态出现的概率相等,则调制信 号的平均发送功率
13
8PSK信号点
14
在L=8 的5种信号星座图可以看 出,(4) 是最佳的一种方案
在同样的性能下,即在保证信 号状态点之间的最小距离为2 的情况下,(4)方案所用的平 均信号功率最小.
15
1
6.4.1 MASK
L电平的调制信号
可看成由时间上不重叠的L个不同振幅值 的OOK信号的叠加,因而,其功率谱密度便是这L 个信号的功率谱密度之和,尽管叠加后的谱结构 很复杂,但就带宽而言,L电平调制信号的带宽与 二电平的相同.
2
A(t)
×
x(t)
A(t)
BPF
× LPF 抽样判决
… 门限电平
每个四进制码元又被称为双比特码元
ab
(A方式) (B方式)
00 10 11 01
0° 90° 180° 270°
225° 315° 45° 135°
8
10
01
11
11
00
参考相位
参考相位
00
10
01
QPSK信号的矢量图
9
a
×
输入
串/并变换
-π/2
b
×
输出
+
调制
×
LPF
抽样判决
a
-π/2
并/串
×
多进制数字调制系统
特点 1. 在相同的码元传输速率下,信息传输速
率比二进制系统高。 Rb=RBN㏒2N b/s 2. 在相同的信息传输速率下,多进制码元
传输速率比二进制低。增大码元宽度, 会增加码元的能量,并能减少由于信道 特性引起的码间干扰的影响。 3. 在相同的噪声下,多进制数字调制系统 的抗噪声性能低于二进制数字调制系统。

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术

ASK、FSK、PSK、QAM数字调制技术1934年美国学者李佛西提出脉冲编码调制(PCM)的概念,从此之后通信数字化的时代应该说已经开始了,但是数字通信的高速发展却是20世纪70年代以来的事情。

随着时代的发展,用户不再满足于听到声音,而且还要看到图像;通信终端也不局限于单一的电话机,而且还有传真机和计算机等数据终端。

现有的传输媒介电缆、微波中继和卫星通信等将更多地采用数字传输。

而这些系统都使用到了数字调制技术,本文就数字信号的调制方法作一些详细的介绍。

一数字调制数字信号的载波调制是信道编码的一部分,我们之所以在信源编码和传输通道之间插入信道编码是因为通道及相应的设备对所要传输的数字信号有一定的限制,未经处理的数字信号源不能适应这些限制。

由于传输信道的频带资源总是有限的,因此提高传输效率是通信系统所追求的最重要的指标之一。

模拟通信很难控制传输效率,我们最常见到的单边带调幅(SSB)或残留边带调幅(VSB)可以节省近一半的传输频带。

由于数字信号只有"0"和"1"两种状态,所以数字调制完全可以理解为像报务员用开关电键控制载波的过程,因此数字信号的调制方式就显得较为单纯。

在对传输信道的各个元素进行最充分的利用时可以组合成各种不同的调制方式,并且可以清晰的描述与表达其数学模型。

所以常用的数字调制技术有2ASK、4ASK、8ASK、BPSK、QPSK、8PSK、2FSK、4FSK等,频带利用率从1bit/s/Hz~3bit/s/Hz。

更有将幅度与相位联合调制的QAM技术,目前数字微波中广泛使用的256QAM的频带利用率可达8bit/s/Hz,八倍于2ASK或BPSK。

此外,还有可减小相位跳变的MSK等特殊的调制技术,为某些专门应用环境提供了强大的工具。

近年来,四维调制等高维调制技术的研究也得到了迅速发展,并已应用于高速MODEM中,为进一步提高传输效率奠定了基础。

总之,数字通信所能够达到的传输效率远远高于模拟通信,调制技术的种类也远远多于模拟通信,大大提高了用户根据实际应用需要选择系统配置的灵活性。

多进制数字调制原理

多进制数字调制原理

多进制数字调制原理咱先得知道啥是数字调制哈。

你想啊,咱们生活中有好多信息,像你给朋友发的短信内容啊,手机上看的视频啥的,这些信息在传播的时候可不能就那么原封不动地“走”,得经过处理,这个处理的过程就有点像给信息穿上不同的“衣服”,这就是调制啦。

那多进制数字调制又是啥呢?普通的二进制数字调制呢,就像是只有两种选择,是或者不是,0或者1。

但是多进制数字调制就像是打开了一个多选项的大门。

比如说四进制数字调制,就有0、1、2、3这四个选项呢。

这就好比你去买冰淇淋,二进制的时候就只有香草味和巧克力味两种选择,四进制就像是突然多了草莓味和抹茶味。

多进制数字调制为啥要这么干呢?这是因为它能在同样的带宽下传输更多的信息。

就像一条小路上,二进制的时候一次只能运两种东西,多进制的时候就能运更多种类的东西啦。

比如说在无线通信里,咱们都想在有限的频段里传更多有用的信息,多进制数字调制就像是一个超级搬运工,能把更多信息一股脑儿地搬过去。

那多进制数字调制是怎么实现的呢?这就涉及到一些数学魔法啦。

咱们以四进制相移键控(QPSK)为例。

它是通过改变信号的相位来表示不同的数字信息的。

想象一下,信号就像一个小舞者在跳舞,它可以跳到四个不同的位置,每个位置就代表一个四进制的数字。

比如说,0度的相位可以代表0,90度的相位代表1,180度代表2,270度代表3。

这小舞者可机灵了,它根据要传输的数字信息,快速地跳到相应的位置,接收端呢,就看着这个小舞者跳到哪了,然后就知道传来的是啥数字啦。

再说说多进制数字调制的信号特点吧。

它的信号看起来可比二进制复杂多啦。

就像是一幅色彩更丰富的画,二进制的画可能只有黑白两种颜色,多进制的画就有好多种颜色混合在一起。

但是这种复杂也带来了一些挑战。

比如说在接收端,要更准确地判断这个复杂的信号到底代表啥数字就有点难度,就像你在一堆五颜六色的小珠子里找特定颜色组合的珠子一样。

在实际的通信系统里,多进制数字调制可是大功臣呢。

通常采用多进制数字调制系统

通常采用多进制数字调制系统
载 波 正 交 的 2PSK 调 制 器 构 成。
b ×
相位选择法产生4PSK
输入 串 /并 变换 逻辑 选相 电路 4 5°1 35 °2 25 °3 15 ° 四相 载波产 生器 带通 滤波 器 输出
在2PSK信号相干解调过程中会产生180°相位模糊。 同样, 对4PSK信号相干解 调也会产生相位模糊问题,并且是0°、 90°、180°和270°四个相位模糊。因此, 在实际中更实用的是四相相对移相调制,即4DPSK方式。
数字信号频带传输
多进制调制
多进制数字调制系统
二进制数字调制系统是数字通信系统最基本的方式, 具有较好的抗 干扰能力。由于二进制数字调制系统频带利用率较低,使其在实际应用 中受到一些限制。在信道频带受限时 为了提高频带利用率,通常采用多 进制数字调制系统。其代价是增加信号功率和实现上的复杂性。 由信息传输速率Rb、码元传输速率RB和进制数M之间的关系 可知,在信息传输速率不变的情况下, 通过增加进制数M,可以降低码 元传输速率,从而减小信号带宽,节约频带资源,提高系统频带利用率。 由关系式
2 PSK
-4 0
-6 0 1 2Ts 1 Ts 3 2Ts 2 Ts f-fc
图6-41 4进值数字相位调制信号功率谱
a
4PSK 信 号 可 以 采用正交调制 的方式产生, 正交调制器可
输入 串/ 并 变换 载波 振荡
× cos ct - 移相 2 sin ct 输出 +
以看成由两个
信 道

M
检波 器
带通 f1 带通 f2
输出
逻辑 电 路
抽样 判决 器
检波 器
接收 滤波 器
MFSK信号具有较宽的频 带,因而它的信道频带 利用率不高。多进制数 字频率调制一般在调制 速率不高的场合应用

多进制数字调制技术

多进制数字调制技术

概述
特点
在相同的码元传输速率下,多进制调制系统信息传输速率 比二进制系统高。
Rb RBN log 2 N
b
s
在相同的信息传输速率下,多进制码元传输速率比二进制 低。增大码元宽度,会增加码元能量,并能减少由于信道 特性引起的码间干扰的影响。 在相同的噪声下,多进制数字调制系统的抗噪声性能低于 二进制数字调制系统。
k
RS W 1
概述
常见的多进制调制:多振幅调制(MASK)、多频率调制、多相位调 制以及它们的组合等。 多进制调制提高了信息速率,同时节约了频带。但是误码率会增加。
概述
在相同时间内二进制编码只传输6位二进制数,但多进制 编码共传输了12位二进制
(a)用二进制数进行传输二进制数“101101”的波形图 ( b )是用四进制数传输四进制数 “011011100010 (用二进制表示四 进制数)的波形图
项目1-2 数字调制技术
鄢立
多进制调制技术


Contents
02
01
概述 多进制数字调制技术
Part
01
概述
鄢 立
概述
为了有效利用频带,提高信息传输速率而采用多进制调制。 多进制调制通常以降低功率利用率为代价来提高其频带利用 率。 (1)频带利用率——单位频带内所能传输的最大比特率。频 带利用率大于2bit/Hz的调制为高效调制。 (2)功率利用率——误码率达到要求时所需的最小信号与噪 声的功率比值。
多进制频移键控(MFSK)
利用串并变换电路和逻辑电路将输入的二进制码转换成多 进制码。当某组二进制码到来时,逻辑电路的输出仅打开 相应的一个门电路,将和该门电路相应的载波发送出去; 其他频率对应的门电路此时是关闭的。当一组组二进制码 元输入时,通过相加器输出的就是一个多进制频率键控的 波形。

调制方式

调制方式
由于己调波具有快速高频滚降的频谱特性,
使信号能量大部分集中在一定的带宽内,
因此提高了频带的利用率。根据这些要求,
人们在实践中创造了各式各样的调制方式,
我们称之为现代恒包络数字调制技术。
现代数字调制技术的发展方向是最小功率谱占有率的恒包络数字调制技术。
现代数字调制技术的关键在于相位变化的连续性。MSK是移频键控FSK的一种改进形式。
、正交幅度调制(QAM)、正交频分复用调制(OFDM)等等。
4、QAM--又称正交幅度调制法。在二进制ASK系统中,其频带利用率是1bit/s·Hz,
若利用正交载波调制技术传输ASK信号,可使频带利用率提高一倍。如果再把多进制与其它技术结合
起来,还可进一步提高频带利用率。能够完成这种任务的技术称为正交幅度调制(QAM)。
也能减小由于信道特性引起的码间干扰的影响等。
二进制2ASK与四进制MASK调制性能的比较:
在相同的输出功率和信道噪声条件下,MASK的解调性能随信噪比恶化的速度比OOK要迅速得多。
这说明MASK应用对SNR的要求比普通OOK要高。在相同的信道传输速率下M电平调制与二
电平调制具有相同的信号带宽。即在符号速率相同的情况下,二者具有相同的功率谱。
影响,以便在有限的带宽资源条件下获得更高的传输速率。这些技术的研究,
主要是围绕充分节省频谱和高效率的利用频带展开的。多进制调制,是提高频谱利用率的有效方法,
恒包络技术能适应信道的非线性,并且保持较小的频谱占用率。
从传统数字调制技术扩展的技术有最小移频键控(MSK)、高斯滤波最小移频键控(GMSK)
其相位通常是不连续的。所谓MSK方式,就是FSK信号的相位始终保持连续变化的一种特殊方式。

多进制数字调制技术及应用

多进制数字调制技术及应用

多进制数字调制技术及应用
多进制数字调制技术是一种将数字信号转化为不同进制数字的技术。

常用的数字进制有二进制、八进制、十进制和十六进制,不同进制数字可以用不同的符号表示。

在通信系统、计算机网络、数字信号处理、电力系统等领域都有广泛的应用。

在计算机领域,多进制数字调制技术被广泛应用于数据传输和存储。

计算机内部使用二进制数字表示数据,而外部输入输出的数据则常常使用八进制或十六进制数字表示,便于人们理解和操作。

同时,不同进制数字之间的转换也是计算机编程中的基本操作之一。

在通信系统中,多进制数字调制技术可以用于数字信号的编码和解码。

常见的数字调制方法包括ASK、FSK、PSK、QAM等,这些方法都可以将数字信号转化为不同进制数字进行传输。

例如,QAM技术常用的是十六进制数字表示,可实现高速数据传输和高传输效率。

在电力系统中,多进制数字调制技术可以用于电力系统的控制与保护。

例如,电力系统中的控制设备常使用二进制数字表示开关状态、变量状态等信息,以便进行控制和监测。

总之,多进制数字调制技术是一种非常重要的技术,在许多领域都有应用,它可以大大提高数据传输和处理的效率。

在数字化时代,我们需要更加深入地了解和
掌握这一技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常用多进制数字调制技术基础
1 常用多进制数字调制技术及应用
1.1 QPSK(四相相移键控)技术及应用
(1)QPSK技术
在相移键控(PSK)技术中,通过改变载波信号的相位来表示二进制数0、1,而相位改变的同时,最大振幅和频率则保持不变。

例如,可以用两种不同相位的正弦信号分别表示0和1,用0°相位表示0,用180°相位表示1,这种PSK技术称为二相位PSK或2-PSK,信号之间的相位差为180°。

同样,可以用4种不同相位的正弦信号分别表示00、01、10和11,例如,用0°相位表示00,用90°相位表示01,用180°相位表示10,用270°相位表示11。

这样每种相位的正弦信号可以表示两位二进制信息,信号之间的相位差为90°,这种PSK技术称为四相位PSK或QPSK,由于4个相位与四进制的4个符号相对应,也称四进制PSK调制。

因每种相位的正弦信号可以表示两位二进制信息,与2-PSK相比,其编码效率提高了1倍。

以此类推,当不同相位的载波数为8、16……时,分别称为8-PSK(八进制PSK)、16-PSK(十六进制PSK)……,理论上,不同相位差的载波越多,可以表征的数字输入信息越多,频带的压缩能力越强,可以减小由于信道特性引起的码间串扰的影响,从而提高数字通信的有效性。

但在多相调制时,相位取值数增大,信号之间的相位差也就减小,传输的可靠性将随之降低,因而实际中用得较多的是四相制(4-PSK)和八相制(8-PSK)。

(2)QPSK的应用
QPS K广泛应用于数字微波通信系统、数字卫星通信系统、宽带接入与移动通信及有线电视的上行传输。

在卫星数字电视传输中普遍采用的QPSK调谐器可以说是当今卫星数字电视传输中对卫星功率、传输效率、抗干扰性以及天线尺寸等多种因素综合考虑的最佳选择。

欧洲与日本的数字电视首先考虑的是卫星信道,采用QPSK调制,我国也出现了采用QPSK调制解调的卫星广播和数字电视机。

要实现卫星电视的数字化,必须在卫视传输中采用高效的调制器和先进的压缩技术,因为我国现行的PAL制彩色电视是采用625行/50场,其视频带宽5 MHz,根据4∶2∶2的标准,625行/50场的亮度信号(Y)的取样频率为13.5 MHz,每个色差信号(R-Y)和(B-Y)的取样频率均为6.75 MHz。

当Y,(R-Y),(B-Y)信号的每个取样为8 bit量化时,电视信号经数字化后的亮度信号码率为13.5×8=108 Mbps,色度信号的码率为6.75×8×2=108 Mbps,总码率为色亮码率之和,即216 Mbps,在现有的传输媒介中要传送这样宽带的数字电视信号是不可能的。

采用四相相移键控(QPSK)调制之后,可把传输的带宽降到100 MHz左右,再使用电视图像及伴音压缩编码技术,常用MPEG-2(运动图像压缩编码标准),可以把数字电视信号中包含的冗余信息去除,即在保证接收端电视图像质量的前提下,采用数字视频压缩技术,可以降低传送码率,使传送带宽减少,实现多路传输。

目前,已经可以做到把216 Mbps速率的数字电视信号压缩到5 Mbps,使原来只能传送1路模拟电视的36 Mbps卫星转发器,现在可同时传送5路数字电视信号。

这样,数字信号经码率压缩技术处理后,信号传输容量会得到数倍甚至数十倍的增加。

1.2 QAM(正交幅度调制)技术及应用
(1) QAM技术
正交幅度调制(QAM)是一种矢量调制,它将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号,然后将符号的I、Q分量(对应复平面的实部和虚部)采用幅度调制,分别对应调制在相互正交(时域正交)的两个载波(cos wt和sin wt)上。

这样与幅度调制(AM)相比,其频谱利用率提高1倍。

QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下可实现更高的频带利用率,目前QAM最高已达到1024QAM(1 024个样点)。

样点数目越多,其传输效率越高,例如具有16个样点的16-QAM 信号,每个样点表示一种矢量状态,16-QAM有16态,每4位二进制数规定了16态中的一态,16-QAM中规定了16种载波和相位的组合,16-QAM的每个符号和周期传送4比特。

(2)QAM应用
QAM调制主要用在有线数字视频广播和宽带接入等通信系统方面。

QAM调制方式的多媒体高速宽带数据广播系统采用DVB-C有线数字视频广播标准,代表着数字化发展方向,有16QAM、32QAM、64QAM、128QAM、256QAM之分,数字越大,频带利用率越高,但同时抗干扰能力也随之降低。

采用64QAM调制方式,可在传统的8 MHz模拟频道带宽上传输约40 Mbps数据流,可在一个标准PAL通道上传输4~8套数字电视节目,它的末端用户可以是计算机,也可以是带数字机顶盒的电视机。

QAM在安全授权方面比QPSK调制方式更可靠,完全能满足海量信息传输的需要,其传输速率更高,通道还可优化。

QAM目前还被广泛用于ADSL调制技术,在QAM调制中,发送数据在比特/符号编码器内被分成速率各为原来1/2的两路信号,分别与一对正交调制分量相乘,求和后输出。

接收端完成相反过程,正交解调出两个相反码流,均衡器补偿由信道引起的失真,判决器识别复数信号并映射回二进制信号。

采用QAM调制技术,信道带宽至少要等于码元速率,为了定时恢复,还需要另外的带宽,一般要增加15%左右。

与其他调制技术相比,QAM调制技术具有充分利用带宽、抗噪声强等特点。

1.3 VSB(残留边带调制)技术及应用
(1)VSB技术
残留边带调制(VSB)是一种幅度调制法(AM),它是在双边带调制的基础上,通过设计适当的输出滤波器,使信号一个边带的频谱成分原则上保留,另一个边带频谱成分只保留小部分(残留)。

该调制方法既比双边带调制节省频谱,又比单边带易于解调。

在残留边带调制方式中,根据调制电平级数的不同,VSB可分为4-VSB,8-VSB,16-VSB等,其中的数字表示调制电平级数。

如8-VSB,表示有8种调制电平,即+7,+5,+3,+1,-1,-3,-5,-7等8种电平(和八进制的8个符号相对应),这样每个调制符号可携带3比特信息。

16-VSB,32-VSB的工作原理与此类似。

(2)VSB的应用
由于VSB抗多径能力差,在移动接收方面,即使采用4-VSB,其效果也不令人满意。

但残留边带调制的优点是技术成熟,便于实现,对发射机功放的峰均比要求低。

上海交通大学、浙江大学等高校和研究所自主研制和完成了我国第一套完整的含基于单载波VSB技术和多载波COFDM(编码的正交频分复用调制)技术两种传输方案的HDTV地面广播传输系统,已实现了我国数字高清晰度电视系统技术的整体重大突破,率先攻克了单载波调制技术无法在数字电视地面广播传输方面同时实现固定/移动接收这一核心技术难题,解决了数字高清晰度电视系统的7项重大关键技术。

1.4 COFDM(正交频分复用)调制技术及应用
正交频分复用是一种多载波调制方式。

编码的正交频分复用就是将经过信道编码后的数据符号分别调制到频域上相互正交的大量子载波上,然后将所有调制后信号叠加(复用),形成OFDM 时域符号。

由于正交频分复用采用大量(N个)子载波的并行传输,在相等的传输数据率下,OFDM时域符号长度是单载波符号长度的N倍,这样其抗符号间干扰(ISI)的能力可显著提高,从而减轻对均衡的要求。

由于OFDM符号是大量相互独立信号的叠加,从统计意义上讲,其幅度近似服从高斯分布,这就造成OFDM信号的峰均功率比高,从而提高了对发射机功放线性度的要求,降低了发射机的功率效率。

目前,欧洲数字电视地面传输标准DVB-T中采用的就是COFDM。

由于COFDM调制抗动态多径干扰能力强,使得其既可用于地面传输固定接收,也可用于便携和移动接收。

在我国数字电视地面广播上海试验区,公交920路进行的测试表明,即使在城区多径丰富的地区,接收效果也良好。

1.5 各种多进制调制技术的比较
表1列出了各种数字调制技术频谱利用率的理论值和实用值。

表2为4种典型数字调制技术实现的难易比较。

表1数字调制技术频谱利用率(单位:bit/s/Hz)
调制技术理论值实用值
QPSK 21.4
16QAM 43.3
32QAM 24.3
64QAM 65.3
128QAM 76.1
256QAM 86.6
1024QAM 106.6
OFDM-16QAM 43.3
8VSB 5.3
16VSB 7.1
表2 QPSK、QAM、VSB、OFDM数字调制技术实现难易比较
调制技术实现难易单频组网能力应用地区实现复杂
QPSK易有欧洲、日本、中国易
QAM易无美国相对复杂
VSB易无美国易
OFDM可以有欧洲复杂
常用多进制数字调制技术基础(2) 2 数字调制新技术。

相关文档
最新文档