模型预测控制1.答案

合集下载

《模型预测控制算法研究及其在水泥回转窑中的应用》

《模型预测控制算法研究及其在水泥回转窑中的应用》

《模型预测控制算法研究及其在水泥回转窑中的应用》篇一一、引言随着工业自动化和智能化的快速发展,模型预测控制(MPC)算法作为一种先进的控制技术,已在众多工业领域得到了广泛应用。

本文将详细研究模型预测控制算法的原理及其在水泥回转窑中的应用,以探讨其在实际生产中的优化效果。

二、模型预测控制算法研究1. 模型预测控制算法原理模型预测控制(MPC)是一种基于数学模型的先进控制方法,它通过对系统未来的行为进行预测,从而实现对系统的优化控制。

MPC算法主要包括预测模型、参考轨迹、滚动优化和反馈校正四个部分。

(1)预测模型:用于描述系统未来的动态行为,通常为线性时不变系统或非线性系统模型。

(2)参考轨迹:设定了系统期望的轨迹,用于指导系统的优化控制。

(3)滚动优化:在每个控制周期内,根据当前的状态和预测模型,计算出一个最优控制序列,以使系统的性能指标达到最优。

(4)反馈校正:根据实际系统的反馈信息,对预测模型进行校正,以提高预测的准确性。

2. 模型预测控制算法的特点模型预测控制算法具有以下特点:可处理约束问题、具有显式的控制策略、可适应时变系统和非线性系统等。

此外,MPC算法还可以与多种优化算法相结合,如线性规划、非线性规划等,以满足不同系统的需求。

三、水泥回转窑工艺及控制难题水泥回转窑是水泥生产过程中的关键设备,其工艺复杂、运行环境恶劣。

在生产过程中,需要控制的关键参数包括温度、压力、转速等。

然而,由于回转窑内物料流动的复杂性、热工过程的非线性以及外部干扰等因素的影响,使得回转窑的控制成为一个难题。

传统的控制方法往往难以满足生产要求,需要研究更先进的控制技术。

四、模型预测控制算法在水泥回转窑中的应用针对水泥回转窑的控制难题,本文将研究模型预测控制算法在水泥回转窑中的应用。

具体包括以下几个方面:1. 建立回转窑的数学模型:根据回转窑的工艺流程和实际运行数据,建立回转窑的数学模型,为MPC算法的应用提供基础。

2. 设计MPC控制器:根据回转窑的数学模型和实际控制要求,设计合适的MPC控制器,实现对回转窑的优化控制。

第1章过程控制系统概述习题与思考题

第1章过程控制系统概述习题与思考题

第1章 过程控制系统概述习题与思考题1.1 什么是过程控制系统,它有那些特点?1.2 过程控制的目的有那些?1.3 过程控制系统由哪些环节组成的,各有什么作用?过程控制系统有那些分类方法?1.4 图1.11是一反应器温度控制系统示意图。

A 、B 两种物料进入反应器进行反应,通过改变进入夹套的冷却水流量来控制反应器的温度保持不变。

试画出该温度控制系统的方框图,并指出该控制系统中的被控过程、被控参数、控制参数及可能影响被控参数变化的扰动有哪些?1.5 锅炉是化工、炼油等企业中常见的主要设备。

汽包水位是影响蒸汽质量及锅炉安全的一个十分重要的参数。

水位过高,会使蒸汽带液,降低了蒸汽的质量和产量,甚至会损坏后续设备;而水位过低,轻则影响汽液平衡,重则烧干锅炉甚至引起爆炸。

因此,必须对汽包水位进行严格控制。

图1.12是一类简单锅炉汽包水位控制示意图,要求:1)画出该控制系统方框图。

2)指出该控制系统中的被控过程、被控参数、控制参数和扰动参数各是什么。

3)当蒸汽负荷突然增加,试分析该系统是如何实现自动控制的。

V-1图1.12 锅炉汽包水位控制示意图1.6 评价过程控制系统的衰减振荡过渡过程的品质指标有那些?有那些因素影响这些指标?1.7 为什么说研究过程控制系统的动态特性比研究其静态特性更意义?1.8 某反应器工艺规定操作温度为800 10℃。

为确保生产安全,控制中温度最高不得超过850℃。

现运行的温度控制系统在最大阶跃扰动下的过渡过程曲线如图1.13所示。

1)分别求出稳态误差、衰减比和过渡过程时间。

2)说明此温度控制系统是否已满足工艺要求。

T/℃图1.13 某反应器温度控制系统过渡过程曲线1.9 简述过程控制技术的发展。

1.10 过程控制系统与运动控制系统有何区别?过程控制的任务是什么?设计过程 控制系统时应注意哪些问题?第3章 过程执行器习题与思考题3.1 试简述气动和电动执行机构的特点。

3.2 调节阀的结构形式有哪些?3.3 阀门定位器有何作用?3.4 调节阀的理想流量特性有哪些?实际工作时特性有何变化?3.5 已知阀的最大流量min v q =50m 3,可调范围R=30。

现代控制理论中的模型预测控制和自适应控制

现代控制理论中的模型预测控制和自适应控制

现代控制理论中的模型预测控制和自适应控制在现代控制理论中,模型预测控制和自适应控制是两种广泛应用的控制方法。

这两种控制方法各有优劣,适用于不同的控制场景。

本文将分别介绍模型预测控制和自适应控制的基本原理、应用范围和实现方法。

模型预测控制模型预测控制(MPC)是一种基于数学模型预测未来状态的控制方法。

MPC通过建立系统的数学模型,预测系统未来的状态,在控制循环中不断地更新模型和控制算法,实现对系统的精确控制。

MPC的核心思想是将控制问题转化为优化问题,通过最优化算法求解出最优的控制策略。

MPC的应用范围十分广泛,特别适用于需要对系统动态响应进行精确控制的场合,如过程控制、机械控制、化工控制等。

MPC 在控制精度、鲁棒性、适应性等方面都具有优异的表现,是目前工业控制和自动化领域的主流控制方法之一。

MPC的实现方法一般可分为两种,一种是基于离线计算的MPC,一种是基于在线计算的MPC。

离线计算的MPC是指在系统运行之前,先通过离线计算得到优化控制策略,然后将其存储到控制器中,控制器根据当前状态和存储的控制策略进行控制。

在线计算的MPC则是指在系统运行时,通过当前状态和模型预测计算器实时地优化控制策略,并将其传输到控制器中进行实时控制。

自适应控制自适应控制是指根据系统实时变化的动态特性,自动地调整控制算法和参数,以实现对系统的精确控制。

自适应控制可以适应系统动态响应的变化,提高控制精度和鲁棒性,是现代控制理论中的重要分支之一。

自适应控制的应用范围广泛,特别适用于对控制要求较高的复杂系统,如机械控制、电力控制、化工控制等。

自适应控制可以通过软件和硬件两种实现方式,软件实现是通过控制算法和参数的在线调整来实现,硬件实现则是通过控制器内部的调节器、传感器等硬件来实现。

自适应控制的实现方法一般可分为两种,一种是基于模型参考自适应控制(MRAC),一种是模型无关自适应控制(MIMO)。

MRAC是指通过建立系统的数学模型,基于参考模型的输出来进行控制的方法,适用于系统具有良好动态特性的场合;MIMO则是指在不需要建立系统数学模型的情况下,通过控制器内部的自适应算法来实现控制的方法,适用于系统非线性和时变性较强的场合。

第7章 模型预测控制1-SISO

第7章 模型预测控制1-SISO
pu (t ) u (t ) u (t ) u (t T ) ,T 1 T
time
基于动态矩阵控制的建模方法

DMC是建立在阶跃响应基础上(机理模型!) 在阶跃输入激励下系统输出在有限个周期内 可以到达稳态
y1:temperature

v1 (1) v2 (1) vNv (1) y (1) y ( 2) v1 (2) v2 (2) vNv (2) Y v v (3) v (3) v (3) y (3) 1 2 Nv
采用动态矩阵控制的前提假设

系统是线性定常稳定的 在阶跃输入激励下系统输出在有限个周期内 可以到达稳态
y1:temperature
Y ( s ) F ( s )U ( s), 1 lim y (t ) y (0) im sY ( s) lim sF ( s)U ( s) lim sF ( s) F (0) time t s 0 s 0 s 0 s
第七章 模型预测控制算法 之一~5
杨根科 上海交通大学自动化系 2012年3月
内容提要

概述 动态矩阵控制 动态矩阵控制的进一步讨论 模型算法控制 应用
思想

Z域设计(直接设计) 时域设计

现代控制理论(基于状态空间):如最优控 制、极点配置等

应用航空航天(理想环境) 石油、化工、发电等 先进控制算法
模型预测控制,优点/特点



Processes are difficult to control with standard PID algorithm – long time constants, substantial time delays, inverse response, etc. There is substantial dynamic interaction among controls, i.e., more than one manipulated variable has a significant effect on an important process variable. Constraints (limits) on process variables and manipulated variables are important for normal control.

模型预测控制(全面讲解).

模型预测控制(全面讲解).

h1
h1
h2
PM 1
hi
i1
PM
第三节 模型算法控制(MAC) 二. 反馈校正
以当前过程输出测量值与模型计算值之差修正模型预测值
yP (k j) ym (k j) j y(k) ym (k)
N
ym (k) hiu(k i) i 1
对于P步预测
j 1, 2, , P
1987年,Clarke 提出了基于时间序列模型和在线辨识的 广义预测控制(Generalized Predictive Control, GPC)
1988年,袁璞提出了基于离散状态空间模型的状态反馈预 测控制(State Feedback Predictive Control, SFPC)
第一节 预测控制的发展
第一节 预测控制的发展
预测控制的特点 建模方便,对模型要求不高 滚动的优化策略,具有较好的动态控制效果 简单实用的反馈校正,有利于提高控制系统的
鲁棒性 不增加理论困难,可推广到有约束条件、大纯
滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
第二节 预测控制的基本原理
模型预测控制与PID控制 PID控制:根据过程当前的和过去的输出测量
1
0 12
t/T
t/T
y u
4.6 6 5 2
3 1.6
0 12
t/T
t/T
第三节 模型算法控制(MAC) 一. 预测模型
y 7.6 8.5
6.5
4.6 6 3.8
5
3 2.3 3 2.5 1.5 0.8 0 1 2 34 5 6 u
2 1 u(0) u(1)
y(1) h1u(0) y(2) h2u(0) h1u(1) y(3) h3u(0) h2u(1) y(4) h4u(0) h3u(1) y(5) h5u(0) h4u(1)

模型预测控制快速求解算法

模型预测控制快速求解算法

模型预测控制快速求解算法模型预测控制(Model Predictive Control,MPC)是一种基于在线计算的控制优化算法,能够统一处理带约束的多参数优化控制问题。

当被控对象结构和环境相对复杂时,模型预测控制需选择较大的预测时域和控制时域,因此大大增加了在线求解的计算时间,同时降低了控制效果。

从现有的算法来看,模型预测控制通常只适用于采样时间较大、动态过程变化较慢的系统中。

因此,研究快速模型预测控制算法具有一定的理论意义和应用价值。

虽然MPC方法为适应当今复杂的工业环境已经发展出各种智能预测控制方法,在工业领域中也得到了一定应用,但是算法的理论分析和实际应用之间仍然存在着一定差距,尤其在多输入多输出系统、非线性特性及参数时变的系统和结果不确定的系统中。

预测控制方法发展至今,仍然存在一些问题,具体如下:①模型难以建立。

模型是预测控制方法的基础,因此建立的模型越精确,预测控制效果越好。

尽管模型辨识技术已经在预测控制方法的建模过程中得以应用,但是仍无法建立非常精确的系统模型。

②在线计算过程不够优化。

预测控制方法的一大特征是在线优化,即根据系统当前状态、性能指标和约束条件进行在线计算得到当前状态的控制律。

在在线优化过程中,当前的优化算法主要有线性规划、二次规划和非线性规划等。

在线性系统中,预测控制的在线计算过程大多数采用二次规划方法进行求解,但若被控对象的输入输出个数较多或预测时域较大时,该优化方法的在线计算效率也会无法满足系统快速性需求。

而在非线性系统中,在线优化过程通常采用序列二次优化算法,但该方法的在线计算成本相对较高且不能完全保证系统稳定,因此也需要不断改进。

③误差问题。

由于系统建模往往不够精确,且被控系统中往往存在各种干扰,预测控制方法的预测值和实际值之间一定会产生误差。

虽然建模误差可以通过补偿进行校正,干扰误差可以通过反馈进行校正,但是当系统更复杂时,上述两种校正结合起来也无法将误差控制在一定范围内。

模型预测控制答案

模型预测控制答案

考虑有控制作用 u(k)时的预测输出为
y ˆ N 1 y ˆ 1 k 1 / k y ˆ 1 k 2 / k y ˆ 1 k N / k T y ˆN k 1 y ˆN k 0 a u k
a a 1 a 2 a N T
30.03.2020
第五讲 模型预测控制
18
第五讲 模型预测控制
1
计算机控制系统理论与应用
本节内容要点
模型预测控制发展背景 特点 基本原理 动态矩阵控制DMC 模型算法控制MAC 在工业中的应用举例
----Coperight by SEC----
30.03.2020
第五讲 模型预测控制
2
计算机控制系统理论与应用
----Coperight by SEC----
第五讲 模型预测控制
22
计算机控制系统理论与应用
----Coperight by SEC----
动态矩阵控制的优化策略示意图
wP(k)
yˆPMk
w(k+1) w(k+2)
1 2
yˆMk1y ˆ/M kk2/kTP
k TM
u(k+1)
k+M
ΔuM(k) u(k)
Δu(k+M-1)
w(k+P)
P
y ˆMkP/k
第五讲 模型预测控制
14
计算机控制系统理论与应用
----Coperight by SEC----
5-2 动态矩阵控制(DMC)
基于被控对象的单位阶跃响应 – 适用于渐近稳定的线性对象 即,设一个系统的离散采样数据{a1,
a2 ,…,aN}(如P18的示意图),则有
限个采样周期后, 满足

模型预测控制公式

模型预测控制公式

模型预测控制公式模型预测控制(Model Predictive Control,简称 MPC)公式,听起来是不是有点高大上?但其实它在很多领域都有着重要的应用。

咱们先来说说模型预测控制到底是个啥。

简单来讲,它就像是一个聪明的“指挥官”,能够根据系统当前的状态和未来的目标,提前规划出一系列的控制动作。

MPC 的核心公式可以表示为:\[\begin{align*}\min_{u(k),\cdots,u(k+N_c-1)} & \sum_{i=1}^{N_p} \left( y(k+i|k) - r(k+i) \right)^2 + \sum_{i=0}^{N_c-1} \lambda_i u^2(k+i) \\\text{s.t.} & x(k+1|k) = Ax(k) + Bu(k) \\& y(k) = Cx(k) \\& u_{\min} \leq u(k+i) \leq u_{\max} \\& x_{\min} \leq x(k+i) \leq x_{\max} \\\end{align*}\]哎呀,别被这一堆公式给吓住啦!我来给您慢慢解释解释。

这里面的 \(y(k+i|k)\) 表示在 \(k\) 时刻对未来 \(i\) 时刻的输出预测,\(r(k+i)\) 则是未来 \(i\) 时刻的期望输出。

我们的目标就是让预测输出和期望输出的差距尽可能小,同时还要考虑控制动作 \(u(k)\) 的大小,不能太大也不能太小,得在允许的范围内。

我给您讲个我自己的经历吧。

有一次,我参加了一个智能机器人的研发项目。

这个机器人要在一个复杂的环境中自主移动,避开各种障碍物,到达指定的目标点。

这时候,模型预测控制就派上用场了。

我们通过各种传感器获取机器人当前的位置、速度、姿态等信息,然后把这些数据输入到模型预测控制的公式中。

就像是给这个“聪明的大脑”提供了思考的素材。

然后,公式开始运算,计算出接下来一段时间内机器人应该怎么移动,转向多少角度,速度是多少等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/1/21 第五讲 模型预测控制 1
计算机控制系统理论与应用
----Coperight by SEC----
本节内容要点
模型预测控制发展背景 特点 基本原理 动态矩阵控制DMC
模型算法控制MAC
在工业中的应用举例
2018/1/21
第五讲 模型预测控制
2
计算机控制系统理论与应用
考虑有控制作用
u(k)时的预测输出为
ˆ N1 y ˆ1 k 1/ k y ˆ1 k 2 / k y ˆ1 k N / k T y
ˆ N1 k y ˆ N0 k a uk y
a a1
2018/1/21
a2
aN
T
第五讲 模型预测控制
k+1
第五讲 模型预测控制
t/T
12
计算机控制系统理论与应用
----Coperight by SEC----
5-1 反馈校正(1)
每到一个新的采样时刻,都要通过实际
测到的输出信息对基于模型的预测输出 进行修正,然后再进行新的优化。不断 根据系统的实际输出对预测输出值作出 修正使滚动优化不但基于模型,而且利 用了反馈信息,构成闭环优化。
滚动优化的性能指标
– 通过优化指标,确定出未来M
个控制增量,使 未来P个输出预测值尽可能地接近期望值w如 P24页图如示。 – 不同采样时刻, 优化性能指标不同, 但都具有 同样的形式, 且优化时域随时间而不断地向前 推移。
2 2 min J ( k ) qi [ w( k i ) y M ( k i / k )] rj u ( k j 1) i 1 j 1 P M
ˆ N0 k y
ˆ k 1 / k y
y(k)
k
2018/1/21
k+1
k+2
k+3
k+N
k+N+1
26
t/T
第五讲 模型预测控制
计算机控制系统理论与应用
----Coperight by SEC----
18
计算机控制系统理论与应用
----Coperight by SEC----
根据输入控制增量预测输出的示意图
ˆ PM k y
aP-M+1Δu(k+M-1)
ˆ M k 2 / k y ˆ M k 2 / k y
a1Δu(k+1) a1Δu(k)
a1Δu(k+2)
aP-1Δu(k+1)
模型预测控制的发展背景(2)
工业过程的特点 –多变量、非线性、时变性、强耦合、
不确定性 工业过程对控制的要求 –高质量的控制性能 –对模型要求不高 –实现方便
2018/1/21 第五讲 模型预测控制 4
计算机控制系统理论与应用
----Coperight by SEC----
预测控制的特点(1)
第五讲 模型预测控制
11
计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化) (2)

滚动优化示意图
yr
y
k时刻优化 2 1 3
1─参考轨迹yr (虚线) 2─最优预测输出y(实线)
3─最优控制作用u
u
k+1时刻优化
yr
y
2 1
3
u
k
2018/1/21
2018/1/21
第五讲 模型预测控制
13
计算机控制系统理论与应用
----Coperight by SEC----
5-1 反馈校正(误差校正) (2)

误差校正示意图
2 3 y u 4 1
k
k+1
t/T
1─k时刻的预测输出 2─k+1时刻实际输出 3─预测误差 4─k+1时刻校正后的预测输出
2018/1/21 第五讲 模型预测控制 14
2018/1/21
第五讲 模型预测控制
21
计算机控制系统理论与应用
----Coperight by SEC----
5-2 DMC的滚动优化(2)
控制增量的最优开环解
–在采样时刻t=kT,
根据性能指标, 可求出控制增量的最优开环解 –但由于完全根据预测模型,故为 开环解。
2018/1/21
第五讲 模型预测控制
系统的线性性
– 则保证了可用线性系统的迭加性等
2018/1/21
第五讲 模型预测控制
16
计算机控制系统理论与应用
----Coperight by SEC----
5-2 DMC的预测模型(1)

系统的单位阶跃采样数据示意图
y 模型截断
aN-1
aN
a1 0 1 2
a2 3
a3 N-1 N t/T
2018/1/21
计算机控制系统理论与应用
----Coperight by SEC----
5-2 DMC的预测模型(3)
M
个连续的控制增量 u(k), u(k+1), … u(k+M-1)作用下,系统在未来P时刻的 预测输出 ˆ PM k y ˆ P0 k A uM k y
Δu M k uk uk 1 uk M 1
T
A称为DMC的动态矩阵,P是滚动优化时
域长度,M是控制时域长度。
2018/1/21
第五讲 模型预测控制
20
计算机控制系统理论与应用
----Coperight by SEC----
5-2 DMC的滚动优化(1)
计算机控制系统理论与应用
----Coperight by SEC----
5-2 动态矩阵控制(DMC)
基于被控对象的单位阶跃响应 –适用于渐近稳定的线性对象
即,设一个系统的离散采样数据{a1, a2 ,…,aN}(如P18的示意图),则有 限个采样周期后, 满足
aN a()
2018/1/21

t=kT 时刻,u(k)已实施到系统上 t=(k+1)T时刻, 可测到实际输出值y(k+1)

比较y(k+1)出与预测值
ˆ1 k 1 / k y
ˆ1 k 1 / k 得 ek 1 yk 1 y

基于e(k+1)对未来偏差的预测为
hi*e(k+1),
----Coperight by SEC----
预测控制的特点(2)
对模型要求不高 鲁棒性可调 可处理约束(操作变量MV、被控变量CV) 可处理“方”、“瘦”、“胖”,进行自
动转换 可实现多目标优化(包括经济指标) 可处理特殊系统:非最小相位系统、伪积 分系统、零增益系统
2018/1/21 第五讲 模型预测控制 6
计算机控制系统理论与应用
----Coperight by SEC----
第五讲
模型预测控制—MPC Model Predictive Control
Department of Control Science &Engineering, Zhejiang University Copyright by HuiWang
----Coperight by SEC----
模型预测控制的发展背景(1)
现代控制理论及应用的发展与特点


要求 » 精确的模型 » 最优的性能指标 » 系统的设计方法 应用 » 航天、航空 » 军事等领域
第五讲 模型预测控制 3
2018/1/21
计算机控制系统理论与应用
----Coperight by SEC----
22018/1/2110计算机控制系统理论与应用
----Coperight by SEC----
5-1 滚动优化(在线优化)(1)
控制目的
– 通过某一性能指标的最优,
确定未来的控制
作用
优化过程
随时间推移在线优化,反复进行 每一步实现的是静态优化 全局看却是动态优化
2018/1/21
第五讲 模型预测控制
7
计算机控制系统理论与应用
----Coperight by SEC----
5-1 预测控制的基本原理
1978年,J.Richalet等就提出了预测控制
算法的三要素: – 内部(预测)模型、参考轨迹、控制算法 现在一般则更清楚地表述为: – 内部(预测)模型、滚动优化、反馈控制
建模方便,不需要深入了解过程内部机理 非最小化描述的离散卷积和模型,有利于
提高系统的鲁棒性 滚动的优化策略,较好的动态控制效果 不增加理论困难,可推广到有约束条件、 大纯滞后、非最小相位及非线性等过程 是一种计算机优化控制算法
2018/1/21 第五讲 模型预测控制 5
计算机控制系统理论与应用
计算机控制系统理论与应用
----Coperight by SEC----
目前预测控制的发展方向
多变量预测控制系统的稳定性、鲁棒性
线性系统、自适应预测—理论性较强 非线性预测控制系统 – 内部模型用神经网络(ANN)描述 针对预测控制的特点开展研究 – 国内外先进控制软件包开发所采用

2018/1/21
22
计算机控制系统理论与应用
----Coperight by SEC----
动态矩阵控制的优化策略示意图
wP(k)
w(k+1) w(k+2)
ˆ PM k y
1 2
w(k+P)
P
ˆ M k 2 / k y TP ˆ M k 1 / k y
相关文档
最新文档