浙教版八年级上数学知识点
3.1 认识不等式八年级上册数学浙教版

说明:有些不等式中不含未知数,如 ;有些不等式中含有未知数,如 .
3.常见不等号及实际意义:
名称
符号
读法
实际意义
举例
小于号
<
小于
小于、不足、低于、少于
大于号
>
大于
大于、高出、超过、多于
小于等于号
≤
小于或等于
不大于、不超过、至多、最多
大于等于号
知识点3 在数轴上表示简单的不等式 重难点
所有的实数在数轴上都可以找到一个点与之对应,所以数轴上的点可以表示全体实
不等式
意义
表示小于 的全体实数
表示大于 的全体实数
表示小于或等于 的全体实数
表示大于或等于 的全体实数
在数轴上的表示
本节知识归纳
解:(1) ;(2)(4)
(2) 的 与 的 的和是非负数; “非负数”即“正数和0”,用“ <m></m> ”表示
(3) 与3的和不小于5; “不小于”即“大于或等于”,用“≥”表示
(4) 的 与 的和大于 的3倍.
例题点拨:用不等式表示不等关系时,尤其要注意条件中是否含有“不”字,如不少于、不低于用“≥”表示,不大于、不超过用“≤”表示.
知识点2 列不等式重点 重点
1.用不等式表示不等关系的一般步骤:
(1)找准题中表示不等关系的量;
(2)正确理解题中表示不等关系的词语,如多、少、快、慢、超过、不足等确切的含义;
(3)选择与题意符合的不等号将表示不等关系的量连接起来.
2.常见不等式的基本语言与符号表示:
不等式的基本语言
符号表示
不等式的基本语言
典例2 用“<”“>”“≥”或“≤”填空:
(完整版)浙教版初中数学八年级上册知识点及典型例题

数学八年级上册知识点及典型例题第一章平行线1.1同位角、内错角、同旁内角所截,构成了八个角。
如图:直线l , l被直线l321L3 a3L1 14a12358L2 a267的同旁,并且分别位于直线l , ll 的相同一侧,这样的一51. 观察∠1与∠的位置:它们都在第三条直线231对角叫做“同位角”。
2. 观察∠3与∠5的位置:它们都在第三条直线l的异侧,并且都位于两条直线l , l 之间,这样的一对213角叫做“内错角”。
3. 观察∠2与∠5的位置:它们都在第三条直线l的同旁,并且都位于两条直线l , l之间,这样的一对角231叫做“同旁内角”。
想一想问题1.你觉得应该按怎样的步骤在“三线八角”中确定关系角?确定前提(三线)寻找构成的角(八角)确定构成角中的关系角问题2:在上面同位角、内错角、同旁内角中任选一对,请你看看这对角的四条边与“前提”中的“三线”有什么关系?结论:两个角的在同一直线上的边所在直线就是前提中的第三线。
1.2 平行线的判定(1)复习画两条平行线的方法:A A L12L1o抽象成几何图形(图形的平移变换)L1oL B2B.21)怎样用语言叙述上面的图形?提问:(1 被AB所截)(直线l,l 21(2)画图过程中,什么角始终保持相等?2)(同位角相等,即∠1=∠位置关系如何?,3)直线ll (21)l∥l (21(4)可以叙述为:2∵∠1=∠)(∥∴ll ? 1 2。
语言叙述:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单地说:同位角相等,两直线平行。
21=∠几何叙述:∵∠l∥l(同位角相等,两直线平行)∴ 2 1想一想c a21b若a⊥b,b⊥c则a c2在同一平面内,垂直于同一条直线的两条直线互相平行。
平行线判定方法的特殊情形:2)1.2 平行线的判定(CDAB与=180°,则AB与CD平行吗?②若∠2+∠4图中,直线AB 与CD被直线EF所截,①若∠3=∠4,则平行吗?E1A B432 C DF°42+∠=180°,∠2+∠3=180 ,∠①∵∠3=∠41=∠4 ②∵∠=∠4 ∴∠3 1∴∠=∠3)()∴AB∥CD (∥∴ABCD内错角相等,两直线平行两条直线被第三条直线所截,如果内错角相等,则两条直线平行。
2.8 直角三角形全等的判定八年级上册数学浙教版

注意:“HL”只能判定两个直角三角形全等,因此在依据此定理书写证明过程时,要突出直角三角形这个条件,且必须是斜边和一条直角边对应相等.
典例1(2022·杭州拱墅区期中)如图, , , ,要根据“HL”证明 ,则还要添加一个条件是( )
第2章 特殊三角形
2.8 直角三角形全等的判定
学习目标
1.掌握判定直角三角形全等的“斜边、直角边”定理.
2.掌握角平分线性质定理的逆定理.
3.能利用HL证明两个直角三角形全等.
知识点1 斜边、直角边定理(HL) 重点
判定定理
几何语言
图示
斜边和一条直角边对应相等的两个直角三角形全等(可以简写. D.
A
解析:添加的条件是 .理由: , , .在 和 中, .
知识点2 角平分线性质定理的逆定理 重点
角平分线性质定理的逆定理:角的内部,到角两边距离相等的点,在这个角的平分线上.几何语言:如图, , , , 平分 (或 ).
注意 利用角平分线性质定理的逆定理证明点在角平分线上时,必须有“两垂直,一相等”这三个条件,缺一不可.
典例2 如图,已知 于点 , 于点 , , 相交于点 ,连结 , .求证: 平分 .
证明:在 和 中,∵∴ ,∴ .又 , ,∴点 在 的平分线上,∴ 平分 .
1.6 尺规作图八年级上册数学浙教版

[解析]
选项
判断
理由
A
×
射线 是从 向 无限延伸
B
√
圆心和半径长即可确定弧线的形状
C
×
直线的长度无法测量
D
×
延长线段 至 ,则
知识点2 两种基本尺规作图
1.用尺规作一个角等于已知角
已知: (如图).求作: ,使 .理论依据是:“三边对应相等的两个三角形全等”和“全等三角形的对应角相等”基本尺规作图包括:①作一条线段等于已知线段;②作一个角等于已知角;③作一个角的平分线;④作一条线段的垂直平分线;⑤过一点作已知直线的垂线;⑥过直线外一点作这条
难度
常考题型
考点:尺规作图,通过阅读尺规作图的步骤理解属于哪种基本尺规作图,并结合线段垂直平分线、角平分线的性质等知识进行计算.
选择题、填空题、解答题
考点 尺规作图背景下的有关计算
典例4 [2021·宜昌中考] 如图,在 中, , .
(1) 通过观察尺规作图的痕迹,可以发现直线 是线段 的_____________,射线 是 的_________;
求作: ,使 , , .
作法与示范:
作法
作一条线段 .
分别以点 , 为圆心,以 , 的长为半径作弧,两弧交于点 .
连结 , 就是所求作的三角形.
示范
2.尺规作图的基本要求:只能使用没有刻度的直尺和圆规.
3.直尺和圆规的用途:没有刻度的直尺的主要用途是画直线;圆规的主要用途是画圆、画弧、截取一条线段等于已知线段.
典例1 下列尺规作图的语句正确的是( )A.延长射线 到 B.以点 为圆心,任意长为半径画弧C.作直线 D.延长线段 至 ,使
敲黑板 已知三角形的三条边作该三角形的方法已知三角形的三条边作该三角形的方法:先作出一条边(即先确定三角形的两个顶点),再分别以这条边的两个端点为圆心作弧,这两条弧的交点即该三角形的第三个顶点.
浙教版八年级数学上册知识点梳理

浙教版八年级数学上册知识点梳理【浙教版八年级数学上册知识点梳理】一、有理数的认识与运算1. 有理数的概念:有理数是整数和分数的统称。
2. 有理数的分类:正有理数、负有理数和零。
3. 绝对值的概念:一个数与零之间的距离。
4. 有理数的比较:绝对值越大,数值越大;同号比较大小。
二、实数的认识与运算1. 无理数的概念:无理数是不能写成两个整数的比例。
2. 实数的分类:有理数和无理数。
3. 实数的运算:加法、减法、乘法、除法、乘方等。
4. 分数的运算:加法、减法、乘法、除法等。
三、代数式1. 代数式的定义:用字母和数的组合表示数学关系的式子。
2. 简化与展开:将代数式进行合并或展开。
3. 等式的性质:等式两边加(减)一个相等的数仍相等。
4. 代数式的运算:加法、减法、乘法、除法等。
四、一元一次方程1. 方程的概念:含有未知数的等式。
2. 解方程的基本思路:变量相互抵消,化简为等价的方程。
3. 方程解的概念:使等式成立的未知数的值。
4. 解一元一次方程的方法:等式两边逐步变等,通解与特解。
五、比例与比例方程1. 比例的概念:相同量类的两个比值。
2. 比例的性质:比例脱离比例量可以推出三者成比例。
3. 比例的应用:计算长度、面积、体积等。
4. 比例方程:两个比例关系的等式。
六、直线和角的认识1. 平面直线的特征:无限延伸,包含任意两点。
2. 直线的表示方法:点斜式、一般式等。
3. 角的基本概念:由两个射线公共端点构成的图形。
4. 角的分类:锐角、钝角、直角等。
七、平面图形的认识与计算1. 多边形的分类:三角形、四边形、五边形等。
2. 三角形的分类:锐角三角形、直角三角形、钝角三角形。
3. 四边形的分类:矩形、正方形、菱形、平行四边形等。
4. 平行线与平行四边形的性质:中位线、对角线等。
八、圆的认识与计算1. 圆的概念:平面上距离一个给定点相等的点的集合。
2. 圆的要素:圆心、半径、直径等。
3. 圆的计算:圆的面积与周长。
初二数学上册知识点归纳浙教版三篇

初二数学上册知识点归纳浙教版【三篇】2021初二上数学用例(一) ;同类项的概念:所含字母相同,并且相同字母的大写字母指数也相同的项叫做同类项。
几个常数项也叫乘子。
;判断三四个单项式或项,是否是同类项的两个标准: ;①所含字母相同。
②相同符号的次数也相同。
;判断同类项时与系数无关,与字符排列的顺序也无关。
;合并礼侨的概念:把多项式中的同类项合并成一项叫做合并同类项。
;合并同类项的法则:同类项的系数相加,当期结果作为系数,字母和字母的指数不变。
;合并同类项步骤: ;⑴.准确的找出同类项。
;⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
;⑶.写出合并而后的结果。
;合并同类项时注意: ;(1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。
;(2)不要记住不能合并的项。
;(3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
;(4)不是同类项千万不能进行合并。
;2021初二上所数学知识点(二) ;一、平均数、中位数、众数的概念 ;1.平均数 ;平均数是指对在一组数据中所有数据之和再除以中会数据的个数。
;2.中位数 ;中位数是指将统计总体当中暗指的各个变量值按大小顺序排列起来,形成一个数列,处于变量数列中间位置的自变量变量值就称为平均收入。
;3.众数 ;众数是一组中出现次数最多的数值,叫众数,有时众数在一组数中有好几个。
;二、平均数、中位数、众数的区别 ;1.平均数的大小与一组数据里的每个数均有,其中任何数据的变动都会相应引起惹来平均数的变动。
;2.总数着眼于对各数据出现频率的考察,其大小只与这组数据粗细的部分数据有关,当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量。
;3.中位数仅与数据的排列有关,一般来说,部分数据的变动对中位数没有影响,当一组数据中所个别数据变动较大时,可用中位数来描述其中开始集中的趋势。
浙教版八年级上册初二数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版八年级上册初中数学全册知识点梳理及重点题型巩固练习认识三角形(基础)知识讲解【学习目标】1. 理解三角形及与三角形有关的概念,掌握它们的文字、符号语言及图形表述方法;2. 理解并能够证明三角形内角和定理;3. 掌握并会把三角形按角分类;4. 掌握并会应用三角形三边之间的关系;5. 理解三角形的高、中线、角平分线的概念,掌握它们的画法;并能正确应用概念解题.【要点梳理】要点一、三角形的定义由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点诠释:(1)三角形的基本元素:①三角形的边:即组成三角形的线段;②三角形的角:即相邻两边所组成的角叫做三角形的内角,简称三角形的角;③三角形的顶点:即相邻两边的公共端点.(2)三角形的定义中的三个要求:“不在同一条直线上”、“三条线段”、“首尾顺次相接”. (3)三角形的表示:三角形用符号“△”表示,顶点为A、B、C的三角形记作“△ABC”,读作“三角形ABC”,注意单独的△没有意义;△ABC的三边可以用大写字母AB、BC、AC 来表示,也可以用小写字母a、b、c来表示,边BC用a表示,边AC、AB分别用b、c表示.要点二、三角形的内角和三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.要点三、三角形的分类【:与三角形有关的线段三角形的分类】1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 要点诠释:①锐角三角形:三个内角都是锐角的三角形; ②钝角三角形:有一个内角为钝角的三角形. 要点四、三角形的三边关系定理:三角形任意两边之和大于第三边. 要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形. (3)证明线段之间的不等关系.要点五、三角形的三条重要线段三角形的高、中线和角平分线是三角形中三条重要的线段,它们提供了重要的线段或角的关系,为我们以后深入研究三角形的一些特征起着很大的帮助作用,因此,我们需要从【典型例题】类型一、三角形的内角和1.证明:三角形的内角和为180°. 【答案与解析】解:已知:如图,已知△ABC ,求证:∠A+∠B+∠C =180°.证法1:如图1所示,延长BC 到E ,作CD ∥AB .因为AB ∥CD (已作),所以∠1=∠A (两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等). 又∠ACB+∠1+∠2=180°(平角定义), 所以∠ACB+∠A+∠B=180°(等量代换).证法2:如图2所示,在BC 边上任取一点D ,作DE ∥AB ,交AC 于E ,DF ∥AC ,交AB 于点F .因为DF ∥AC (已作),所以∠1=∠C (两直线平行,同位角相等), ∠2=∠DEC (两直线平行,内错角相等). 因为DE ∥AB (已作).所以∠3=∠B ,∠DEC=∠A (两直线平行,同位角相等). 所以∠A=∠2(等量代换).又∠1+∠2+∠3=180°(平角定义), 所以∠A+∠B+∠C=180°(等量代换).【总结升华】理解并掌握三角形内角和的证明方法,有助于帮助我们更深刻的去记忆三角形的内角和是180°.2.在△ABC中,已知∠A+∠B=80°,∠C=2∠B,试求∠A,∠B和∠C的度数.【思路点拨】题中给出两个条件:∠A+∠B=80°,∠C=2∠B,再根据三角形的内角和等于180°,即∠A+∠B+∠C=180°就可以求出∠A,∠B和∠C的度数.【答案与解析】解:由∠A+∠B=80°及∠A+∠B+∠C=180°,知∠C=100°.又∵∠C=2∠B,∴∠B=50°.∴∠A=80°-∠B=80°-50°=30°.【总结升华】解答本题的关键是利用隐含条件∠A+∠B+∠C=180°.本题可以设∠B=x,则∠A=80°-x,∠C=2x建立方程求解.【:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型二、三角形的分类3.一个三角形的三个内角分别是95°、30°、45°,这个三角形是()A 锐角三角形B 钝角三角形C 直角三角形【答案与解析】解:因为这个三角形的其中一个内角是95°,95°是钝角,所以这个三角形是钝角三角形,故选:B.【总结升华】主要考察了三角形的分类方法.举一反三【变式】一个三角形中,一个内角的度数等于另外两个内角的和的2倍,这个三角形是()三角形A 锐角B 直角C 钝角 D无法判断【答案】C【解析】利用三角形内角和是180°以及已知条件,可以得到其中较大内角的度数为120°,所以三角形为钝角三角形.类型三、三角形的三边关系4.(2015春•滕州市期中)下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()①7cm,5cm,11cm ②4cm,3cm,7cm ③5cm,10cm,4cm ④2cm,3cm,1cm.A.①B.②C.③D.④【思路点拨】根据三角形的三边关系对各选项进行逐一分析即可.【答案】A.【解析】解:①∵7+5>11,∴能围成三角形,②∵3+4=7,∴不能围成三角形,③∵4+5<10,∴不能围成三角形,④∵1+2=3,∴不能围成三角形.能围成三角形的是①,故选A.【总结升华】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【:与三角形有关的线段例1】举一反三:【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8.【答案】(1)能;(2)不能;(3)能.类型四、三角形中重要线段5.(2016春•普宁市期末)下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【思路点拨】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC 的高.【答案】D;【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部,一条高在三角形的内部.举一反三:【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.6.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD 的周长大3.【答案与解析】解:依题意:△BCD的周长比△ACD的周长大3cm,故有:BC+CD+BD-(AC+CD+AD)=3.又∵ CD为△ABC的AB边上的中线,∴ AD=BD,即BC-AC=3.又∵ BC=8,∴ AC=5.答:AC的长为5cm.【总结升华】运用三角形的中线的定义得到线段AD=BD是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法.举一反三:【变式】(2014秋•西昌市期末)下列说法中错误的是()A.三角形三条角平分线都在三角形的内部B.三角形三条中线都在三角形的内部C.三角形三条高都在三角形的内部D.三角形三条高至少有一条在三角形的内部【答案】C.【巩固练习】一、选择题1.一位同学用三根木棒拼成如图所示的图形,其中符合三角形概念的是( )2.如图所示的图形中,三角形的个数共有( )A.1个 B.2个 C.3个 D.4个3.任何一个三角形至少有()个锐角A.1 B.2 C.3 D.不能确定4.已知三角形两边长分别为 4 cm和9 cm,则下列长度的四条线段中能作为第三边的是( )A.13 cm B.6 cm C.5 cm D.4 cm5.为估计池塘两岸A、B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么AB间的距离不可能是( )A.5m B.15m C.20m D.28m6.(2016春•成安县期末)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A.①②③ B.①②C.②③D.①③7.(2015•滨州)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°8.如图,AM是△ABC的中线,那么若用S1表示△ABM的面积,用S2表示△ACM的面积,则S1和S2的大小关系是( )A.S1>S2 B.S1<S2 C.S1=S2 D.以上三种情况都有可能9.若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为( )A.40° B.80° C.60° D.120°二、填空题10.(2015春•潜江校级期中)一个三角形的周长为81cm,三边长的比为2:3:4,则最长边比最短边长_______________.11.如果三角形的两边长分别是3 cm和6 cm,第三边长是奇数,那么这个三角形的第三边长为________cm.12. (2016•大庆)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.13. 如图,AD、AE分别是△ABC的高和中线,已知AD=5cm,CE=6cm,则△ABE和△ABC的面积分别为________________.14.在△ABC中,(1)若∠A:∠B:∠C=1:2:3,则∠A=_______,∠B=_______,∠C=_______,此三角形为_______三角形;(2) 若∠A大于∠B+∠C,则此三角形为________三角形.三、解答题15.(2015春•太康县期末)在△ABC中,AB=9,AC=2,并且BC的长为偶数,求△ABC的周长.16.如图,在△ABC中,∠BAD=∠CAD,AE=CE,AG⊥BC,AD与BE相交于点F,试指出AD、AF分别是哪两个三角形的角平分线,BE、DE分别是哪两个三角形的中线?AG是哪些三角形的高?17.如图所示,已知AD,AE分别是ΔABC的中线、高,且AB=5cm,AC=3cm,则ΔABD与ΔACD的周长之差为多少,ΔABD与ΔACD的面积有什么关系.18.利用三角形的中线,你能否将图中的三角形的面积分成相等的四部分(给出3种方法)?【答案与解析】一、选择题1. 【答案】D;2. 【答案】C;【解析】三个三角形:△ABC, △ACD, △ABD.3. 【答案】B;4. 【答案】B;【解析】根据三角形的三边关系进行判定.5. 【答案】D;【解析】由三角形三边关系定理可知.只有C选项中3+4>5.故选C (2)画图分析,不难判断出选C.(3)因为第三边满足:|另两边之差|<第三边<另两边之和,故16-12<AB <16+12 即4<AB<28故选D.6.【答案】B;【解析】根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上作答.7.【答案】C;【解析】解:180°×==75°即∠C等于75°.故选:C.8.【答案】C;【解析】两个三角形等底同高,面积相等9.【答案】B;【解析】根据三角形内角和180°,以及已知条件可以计算得出∠B的度数为120°二、填空题10.【答案】18cm .【解析】解:设三角形的三边长为2x ,3x ,4x ,由题意得,2x+3x+4x=81, 解得:x=9,则三角形的三边长分别为:18cm ,27cm ,36cm , 所以,最长边比最短边长:36﹣18=18(cm ). 故答案是:18cm .11.【答案】5 cm 或7 cm ; 12.【答案】110°【解析】∵D 点是∠ABC 和∠ACB 角平分线的交点,∴有∠CBD=∠ABD=∠ABC , ∠BCD=∠ACD=∠ACB ,∴∠ABC +∠ACB=180°﹣40°=140°,∴∠DBC +∠DCB=70°, ∴∠BDC=180°﹣70°=110°.13.【答案】15cm 2,30cm 2;【解析】△ABC 的面积是△ABE 面积的2倍 . 14.【答案】(1)30°,60°,90°;直角(2)钝角 三、解答题15.【解析】解:根据三角形的三边关系得:9﹣2<BC <9+2, 即7<BC <11, ∵BC 为偶数, ∴AC=8或10,∴△ABC 的周长为:9+2+8=19或9+2+10=21.16.【解析】解:AD 、AF 分别是△ABC ,△ABE 的角平分线.BE 、DE 分别是△ABC ,△ADC 的中线,AG 是△ABC ,△ABD ,△ACD ,△ABG ,△ACG ,△ADG 的高.17.【解析】解: (1)ΔABD 与ΔACD 的周长之差=(AB +BD +AD)-(AD +CD +AC),而BD =CD.所以上式=AB -AC =5-3=2.(2)S ΔABD =21BD ·AE ,S ΔACD =21CD ·AE 。
初二上册数学知识点归纳浙教版

初二上册数学知识点归纳浙教版一、三角形1、三角形的定义由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
3、三角形的内角和三角形的内角和为 180°。
4、三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角的和。
三角形的一个外角大于与它不相邻的任何一个内角。
5、三角形的分类(1)按角分类:锐角三角形、直角三角形、钝角三角形。
(2)按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。
6、三角形的中线、高线、角平分线(1)中线:连接三角形一个顶点和它对边中点的线段叫做三角形的中线。
(2)高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。
(3)角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
二、全等三角形1、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形的对应边相等,对应角相等。
(2)全等三角形的周长相等,面积相等。
3、全等三角形的判定(1)“边边边”(SSS):三边对应相等的两个三角形全等。
(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
(4)“角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
(5)“斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称1、轴对称图形如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
2、轴对称把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级上数学知识点第一章 三角形的初步知识 复习总目1、掌握三角形的角平分线、中线和高线2、理解三角形的两边之和大于第三边的性质3、掌握三角形全等的判定方法 知识点概要1、 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示. 注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC 是三角形ABC 的符号标记,单独的△没有意义.2、 三角形的分类: (1)按角分类: (2)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形_C_B _A 三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形 等边三角形21DC BAD CB ADC BA3、 三角形的主要线段的定义: (1)三角形的中线三角形中,连结一个顶点和它对边中点的线段. 表示法:是△ABC 的BC 上的中线.=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部; ③三角形三条中线交于三角形内部一点; ④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:是△ABC 的∠BAC 的平分线.2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点; ④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:是△ABC 的BC 上的高线.⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.4、三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.5、三角形的角与角之间的关系:(1)三角形三个内角的和等于180?;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.6、三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.注意:(1)三角形具有稳定性;(2)四边形没有稳定性.7、全等三角形(1)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。
(2)三角形全等的判定三角形全等的判定定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)(3)全等变换只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
中考规律盘点及预测三角形的两边之和大于第三边的性质历年来是经常考到的填空题的类型,三角形角度的计算也是考到的填空题的类型,三角形全等的判定是很重要的知识点,在考试中往往会考到。
第二章特殊三角形复习总目1、掌握等腰三角形的性质及判定定理2、了解直角三角形的基本性质2、掌握勾股定理的计算方法知识点概要1、图形的轴对称性质:对称轴垂直平分连接两个对称点的线段;成轴对称的两个图形是全等图形2、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
3、三角形中的中位线连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
4、直角三角形的性质(1)直角三角形的两个锐角互余(2)在直角三角形中,30°角所对的直角边等于斜边的一半。
(3)直角三角形斜边上的中线等于斜边的一半(4)勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即2c22+ba=(5)摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项∠ACB=90°BD2AD=CD•⇒AB2=AC•ADCD⊥AB AB2=BC•BD(6)常用关系式由三角形面积公式可得:AB•CD=AC•BC中考规律盘点及预测特殊三角形中的等腰三角形与第一章的全等三角形的证明结合起来这种题型会常出现,等腰三角形的性质是基础知识,必须得掌握并灵活的运用到各类题型中去,这类题型中考也是必考的。
第三章一元一次不等式复习总目1、理解不等式的三个基本性质2、会用不等式的基本性质解一元一次不等式并掌握不等式的解题步骤3、会解由两个一元一次不等式组成的不等式组知识点概要一、不等式的概念1、不等式:用不等号表示不等关系的式子,叫做不等式。
2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。
3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
4、求不等式的解集的过程,叫做解不等式。
5、用数轴表示不等式的方法二、不等式基本性质1、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
2、不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
3、不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。
②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立;三、一元一次不等式1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)将x项的系数化为1四、一元一次不等式组1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
3、求不等式组的解集的过程,叫做解不等式组。
4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
5、一元一次不等式组的解法(1)分别求出不等式组中各个不等式的解集(2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。
6、不等式与不等式组不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
7、不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式中考规律盘点及预测一元一次不等式(组)的解法及其应用,在初中代数中有比较重要的地位,它是继一元一次方程、二元一次方程的学习之后,又一次数学建模思想的学习,是培养学生分析问题和解决问题能力的重要内容,在近几年来的考试中会出现此类型的题目第四章图形与坐标复习总目1、掌握平面直角坐标系的建立和坐标点的描述2、根据需要建立适当的直角坐标系,并在直角坐标系中画出图形3、掌握坐标平面内的图形的轴对称和平移的变换知识点概要1、平面上物体的位置可以用有序实数对来确定。
2、在平面内确定物体的位置一般需要几个数据有哪些方法(1)用有序数对来确定;(2)用方向和距离(方位)来确定;3、在平面内有公共原点而且互相垂直的两条数轴,就构成了平面直角坐标系。
简称直角坐标系,坐标系所在的平面就叫做坐标平面4、掌握各象限上及x轴,y轴上点的坐标的特点:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)5、x轴上的点纵坐标为0,表示为(x,0);y轴上的点横坐标为0,表示为(0,y)6、(1)关于x轴对称的两点:横坐标相同,纵坐标互为相反数。
(2)关于y轴对称的两点:纵坐标相同,横坐标互为相反数。
(3)关于原点对称的两点:横坐标互为相反数,纵坐标互为相反数。
7、平移点a(x1,y1)向右、左平移 h个单位,则得到的新坐标a’(x1+/-h,y1)点b(x2,y2)向上、下平移 g个单位,则得到的新坐标a’(x2,y2+/-g)中考规律盘点及预测通过对近几年各地的中考试题的研究发现,对有关图形的轴对称、平移、旋转、相似、图形与坐标等知识点的考查呈发展趋势,题型以选择、填空、作图、解答等多面孔出现。
第五章一次函数复习总目1、能用待定系数法求一次函数的解析式2、会根据一次函数的图象解相应的问题并会取得函数解析式的基本方法和步骤3、掌握一次函数的性质知识点概要1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。