高考物理一轮复习专题59动量守恒定律及其应用(讲)(含解析)

合集下载

届高三物理第一轮复习动量守恒定律及应用(上课)PPT课件

届高三物理第一轮复习动量守恒定律及应用(上课)PPT课件
由动量守恒定律得:(M+m)v0=Mv+m(v-u), mu
解得:v=v0+M+m.
二、动量守恒定律的典型应用 几个模型:
(一)碰撞 (二)反冲运动、爆炸模型 (三)人船模型:平均动量守恒
㈠、碰撞:做相对运动的两个物体相遇而发生相互作用,
在很短时间内,它们的运动状态会发生显著变化,这
一过程叫碰撞。 特点:相互作用时间短,相互作用力极大。动量守恒。
及弹簧看作系统,下列说法中不正确的是( B )
A.两手同时放开后,系统总动量始终为零 B.先放开左手,再放开右手后,系统动量不守恒 C.先放开左手,后放开右手,系统总动量向左 D.无论何时放手,两手都放开后,在弹簧恢复原长的过 程中系统总动量都保持不变,但系统的总动量不一定为零
变式训练
木块a和b用一根弹簧连接起来,放在光滑水平 面上,a紧靠在墙壁上,在b上施加向左的水平力
若: m1 <m2, v1 < 0 , v2>0 入射球返回,被碰球前进。
若: m1 >m2, v1 > 0 , v2>0 入射球与被碰球均前进。
⑵、解决碰撞问题须同时遵守的三个原则:
①.系统动量守恒原则
②.动能不增加的原则
③.物理情景可行性原则
例如:追赶碰撞:
碰撞前: V追赶 V被追
碰撞后:
在前面运动的物体的速度一定不 小于在后面运动的物体的速度
同速度V0前进,当人相对于水面以速度u向相反
方向将物体抛出时,人和船的速度为多大?(水 的阻力不计)
若相对于船以速度u向相反方向将物体抛出,则
人和船的速度又为多大?
解析:取人、船、物组成的系统为研究对象,由于水的阻力不
计,系统的动量守恒.以船速 v0 的方向为正方向,设抛出物体后人 和船的速度为 v,物体对地的速度为(v-u).

2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)

2025届高三物理一轮复习动量守恒定律及其应用(40张PPT)
答案 CD
1.碰撞:碰撞是指物体间的相互作用持续时间很短,而物体间相互作用力很大的现象。2.碰撞的特点:在碰撞现象中,一般都满足内力_______外力,可认为相互碰撞的物体组成的系统动量守恒。
考点2 碰撞问题
远大于
动量是否守恒
机械能是否守恒
弹性碰撞
守恒
_______
非完全弹性碰撞
守恒
有损失
完全非弹性碰撞
答案 D
考向3 用数学归纳法解决多次碰撞问题【典例6】 (多选)(2022·全国卷Ⅱ)水平冰面上有一固定的竖直挡板,一滑冰运动员面对挡板静止在冰面上,他把一质量为4.0 kg的静止物块以大小为5.0 m/s的速度沿与挡板垂直的方向推向挡板,运动员获得退行速度;物块与挡板弹性碰撞,速度反向,追上运动员时,运动员又把物块推向挡板,使其再一次以大小为5.0 m/s的速度与挡板弹性碰撞。总共经过8次这样推物块后,运动员退行速度的大小大于5.0 m/s,反弹的物块不能再追上运动员。不计冰面的摩擦力,该运动员的质量可能为( )A.48 kg B.53 kg C.58 kg D.63 kg
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
考向1 碰撞的可能性【典例4】 (多选)A、B两球在光滑水平面上沿同一直线、同一方向运动,A球的动量是6 kg·m/s,B球的动量是4 kg·m/s,已知mA=1 kg,mB=2 kg,当A追上B并发生碰撞后,A、B两球速度的可能值是( )A.vA'=3 m/s vB'=3.5 m/s B.vA'=2 m/s vB'=4 m/sC.vA'=5 m/s vB'=2.5 m/s D.vA'=-3 m/s vB'=6.5 m/s

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题(含答案)

高考物理动量守恒定律的应用及其解题技巧及练习题 (含答案)一、高考物理精讲专题动量守恒定律的应用1.竖直平面内存在着如图甲所示管道,虚线左侧管道水平,虚线右侧管道是半径R=1m 的半圆形,管道截面是不闭合的圆,管道半圆形部分处在竖直向上的匀强电场中,电场强度 E=4X 10/m .小球a 、b 、c 的半径略小于管道内径, b 、c 球用长L 2m 的绝缘细轻杆连接,开始时c 静止于管道水平部分右端P 点处,在M 点处的a 球在水平推力F 的作用下由静止向右运动,当 F 减到零时恰好与b 发生了弹性碰撞,F-t 的变化图像如图乙所示,且满足F 2 t 2 —.已知三个小球均可看做质点且 m a =0.25kg , m b =0.2kg , m c =0.05kg ,小球 (1) 小球a 与b 发生碰撞时的速度 v o ; (2) 小球c 运动到Q 点时的速度v ;(3) 从小球c 开始运动到速度减为零的过程中,小球 c 电势能的增加量.【答案】(1) V 4m/s (2) v=2m/s (3) E p 3.2J 【解析】【分析】对小球 a ,由动量定理可得小球 a 与b 发生碰撞时的速度;小球a 与小球b 、c 组 成的系统发生弹性碰撞由动量守恒和机械能守恒可列式,小球c 运动到Q 点时,小球b 恰好运动到P 点,由动能定理可得小球 c 运动到Q 点时的速度;由于b 、c 两球转动的角速 度和半径都相同,故两球的线速度大小始终相等,从c 球运动到Q 点到减速到零的过程列能量守恒可得; 解:⑴对小球a ,由动量定理可得I m a V 。

0 由题意可知,F-图像所围的图形为四分之一圆弧 ,面积为拉力F 的冲量,由圆方程可知S 1m 2 代入数据可得:v 0 4m/s(2)小球a 与小球b 、c 组成的系统发生弹性碰撞 , 由动量守恒可得 m a V 0 m a V | (m b m c )v 21 2 1 2 12由机械能守恒可得 m a v 0m a v 1 (m b m c )v 222 2解得 V 1 0, V 2 4m/ sA E阳1r c 带q=5 x 1'0)C 的正电荷,其他小球不带电,不计一切摩擦, g=10m/s 2,求小球c运动到Q点时,小球b恰好运动到P点,由动能定理1 2 1 2 m c gR qER ㊁血 mjv ㊁血 mjv ?代入数据可得v 2m/ s⑶由于b 、c 两球转动的角速度和半径都相同,故两球的线速度大小始终相等,假设当两球速度减到零时,设b 球与O 点连线与竖直方向的夹角为 从c 球运动到Q 点到减速到零的过程列能量守恒可得:1 2(m b m c )v qERsin 22.如图所示,小明参加户外竞技活动,站在平台边缘抓住轻绳一端,轻绳另一端固定在 '点,绳子刚好被拉直且偏离竖直方向的角度0 =60.小明从A 点由静止往下摆,达到 O 点正下方B 点突然松手,顺利落到静止在水平平台的平板车上,然后随平板车一起向右运 动•到达C 点,小明跳离平板车(近似认为水平跳离),安全落到漂浮在水池中的圆形浮漂 上•绳长L=1.6m ,浮漂圆心与 C 点的水平距离x=2.7m 、竖直高度y=1.8m ,浮漂半径 R=0.3m 、不计厚度,小明的质量m=60kg ,平板车的质量 m=20kg ,人与平板车均可视为质点,不计平板车与平台之间的摩擦.重力加速度g=10m/s 2,求:_*』吩(1) 轻绳能承受最大拉力不得小于多少? (2) 小明跳离平板车时的速度在什么范围?(3) 若小明跳离平板车后恰好落到浮漂最右端,他在跳离过程中做了多少功 ?【答案】(1) 1200N (2) 4m/s Wv< 5m/s( 3) 480J 【解析】 【分析】(1)首先根据机械能守恒可以计算到达B 点的速度,再根据圆周运动知识计算拉力大小.(2)由平抛运动规律,按照位移大小可以计算速度范围( 3)由动量守恒和能量守恒规律计算即可. 【详解】解(I)从A 到B .由功能关系可得1 2 mgL(1 cos ) mv ①2代人数据求得v=4 m/s ②m b gR(1cos ) m c gRsin 解得sin0637因此小球c 电势能的增加量: E p qER(1 sin ) 3.2J2在最低点B处,T mg mv③联立①②解得,轻绳能承受最大拉力不得小于T=1200N(2) 小明离开滑板后可认为做平抛运动1 2竖直位移y gt1 2 3④2离C点水平位移最小位移x R v min t⑤离C点水平位移最大为X R V min t⑥联立④⑤⑥解得小明跳离滑板时的速度 4 m/s Wvw 5 m/s(3) 小明落上滑板时,动量守恒mv (m m0)V| ⑦代人数据求得V i=3 m/s⑧离开滑板时,动量守恒(m m0)v| mv C m o V2⑨将⑧代人⑨得V2=-3 m/s由功能关系可得1 2 1 2 1 2 W ( — mv C m0v2) m m0 v1⑩.2 2 2解得W=480 J3. 某种弹射装置的示意图如图所示,光滑的水平导轨MN右端N处于倾斜传送带理想连接,传送带长度L=15.0m,皮带以恒定速率v=5m/s顺时针转动,三个质量均为m=1.0kg的滑块A、B C置于水平导轨上, B C之间有一段轻弹簧刚好处于原长,滑块B与轻弹簧连接,C未连接弹簧,B C处于静止状态且离N点足够远,现让滑块A以初速度V0=6m/s 沿B、C 连线方向向B运动,A与B碰撞后粘合在一起•碰撞时间极短,滑块C脱离弹簧后滑上倾角0 =37的传送带,并从顶端沿传送带方向滑出斜抛落至地面上,已知滑块C与传送带之间的动摩擦因数卩=0.8重力加速度g=10m/s2, sin37=0.6, cos37°0.8.1滑块A、B碰撞时损失的机械能;2滑块C在传送带上因摩擦产生的热量Q;3若每次实验开始时滑块A的初速度V。

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)

高考物理动量守恒定律试题(有答案和解析)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)

2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)

高考物理一轮总复习考点突破:考点2 动量守恒定律在电磁感应中的应用(能力考点·深度研析)光滑的平行导轨示意图质量m b=m a电阻r b=r a长度L b=L a力学观点杆b受安培力做变减速运动,杆a受安培力做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动运动图像能量观点系统动能的减少转化为内能动量观点两杆组成的系统动量守恒(2023·全国甲卷)如图,水平桌面上固定一光滑U形金属导轨,其平行部分的间距为l,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计。

导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B。

一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上。

导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短。

碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。

P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。

不计空气阻力。

求:(1)金属棒P滑出导轨时的速度大小;(2)金属棒P在导轨上运动过程中产生的热量;(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。

[解析](1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得3mv 0=3mv Q +mv P12×3mv 20=12×3mv 2Q +12mv 2P 联立解得v P =32v 0,v Q =12v 0 由题知,碰撞一次后,P 和Q 先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P 滑出导轨时的速度大小为v P ′=v Q =12v 0。

(2)根据能量守恒有12mv 2P =12mv P ′2+Q 解得Q =mv 20。

(3)P 、Q 碰撞后,对金属棒P 分析,根据动量定理得-B I l Δt =mv P ′-mv P 又q =I Δt ,I =E R =ΔΦR Δt =Blx R Δt 联立可得x =mv 0R B 2l 2由于Q 为绝缘棒,无电流通过,做匀速直线运动,故Q 运动的时间为t =x v Q =2mR B 2l 2。

2023年高考物理一轮复习讲义——动量定理及应用

2023年高考物理一轮复习讲义——动量定理及应用
答案D
解析汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触.司机在很短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减小;又知安全气囊打开后,司机受力面积变大,因此减小了司机单位面积的受力大小;碰撞过程中,动能转化为内能.综上可知,选项D正确.
2.冲量的计算方法
(1)恒力的冲量:直接用定义式I=Ft计算.
(2)变力的冲量
①作出F-t图线,图线与t轴所围的面积即为变力的冲量,如图所示.
②对于易确定始、末时刻动量的情况,可用动量定理求解.
考向1动量与动能的比较
例1 (多选)在光滑水平面上,原来静止的物体在水平力F的作用下,经过时间t、通过位移L后动量变为p、动能变为Ek.以下说法正确的是()
3.用细绳拴一小球在竖直面内做圆周运动,从A点再次转到A点的过程中,不计空气阻力,下列说法正确的是()
A.合力的冲量为0
A. +mgB. -mg
C. +mgD. -mg
答案A
解析安全带对人起作用之前,人做自由落体运动;由v2=2gh可得,安全带对人起作用前瞬间,人的速度v= ;安全带达到最大伸长量时,人的速度为零;从安全带开始对人起作用到安全带伸长量最大,取竖直向下为正方向,由动量定理可得(mg- )t=0-mv,故 = +mg= +mg,故选项A正确.
A.整个过程物块运动的时间为6s
B.整个过程物块运动的时间为8s
C.整个过程中物块的位移大小为40m
D.整个过程中物块的位移大小为60m
答案B
解析在整个过程中由动量定理得Ft1-μmgt=0,解得t=8s,选项A错误,B正确;在物块前4s运动的过程中由动量定理得Ft1-μmgt1=mv,解得v=20m/s,因物块加速和减速过程的平均速度都为 = = ,全程的平均速度也为 ,则物块的总位移x= t= ×8m=80m,选项C、D错误.

高考物理一轮复习课件基础课动量守恒定律及其应用


$frac{1}{2}m_1v_{10}^2 + frac{1}{2}m_2v_{20}^2 = frac{1}{2}m_1v_{1}^2 + frac{1}{2}m_2v_{2}^2$
完全非弹性碰撞特点及公式推导
01
特点
在完全非弹性碰撞中,两物体碰撞后粘在一起,具有相同的速度。
02 03
公式推导
恢复系数在碰撞中应用
恢复系数可以用来描述各种碰撞的情况,包括完全弹性碰撞、完全非弹性碰撞和部分弹性碰撞。恢复系数与碰撞 前后的速度关系有关,可以用来求解碰撞问题。例如,在部分弹性碰撞中,可以根据恢复系数和动量守恒、能量 守恒等条件建立方程组求解。
03 二维碰撞问题求 解策略
矢量分解法处理二维碰撞问题
利用动量守恒定律列方程求解
对于变质量系统,可以根据动量守恒定律列出方程,并结合已知条件进行求解。需要注 意的是,在列方程时要考虑质量的变化对动量的影响。
临界和极值问题在复杂系统中应用
01
分析临界状态和极值问题的特点
在复杂系统中,临界状态和极值问题往往涉及到系统动量 的最大值、最小值或临界值等特殊情况。这些问题通常需 要结合动量守恒定律和其他物理规律进行分析和求解。
数据处理方法和误差来源分析
数据处理方法
误差来源分析
测量误差
系统误差
随机误差
对于实验数据,可以采 用列表法、图像法等方 法进行处理。通过计算 碰撞前后的总动量,并 比较其差异,可以判断 动量是否守恒。
在实验过程中,误差来 源主要包括以下几个方 面
由于测量仪器精度限制 或人为因素导致的测量 误差。
由于实验装置或实验方 法本身引起的误差,如 气垫导轨不水平、滑块 与导轨之间存在摩擦等 。

高中物理动量守恒定律的应用解题技巧及经典题型及练习题(含答案)及解析

8.如图所示,质量为m=0.5kg的小球用长为r=0.4m的细绳悬挂于O点,在O点的正下方有一个质量为m1=1.0kg的小滑块,小滑块放在一块静止在光滑水平面上、质量为m2=1.0kg的木板左端.现将小球向左上方拉至细绳与竖直方向夹角θ=60°的位置由静止释放,小球摆到最低点与小滑块发生正碰并被反弹,碰撞时间极短,碰后瞬间细绳对小球的拉力比碰前瞬间的减小了△T=4.8N,而小滑块恰好不会从木板上掉下.已知小滑块与木板之间的动摩擦因数为μ=0.12,不计空气阻力,重力加速度g取10m/s2.求:
4.在游乐场中,父子两人各自乘坐的碰碰车沿同一直线相向而行,在碰前瞬间双方都关闭了动力,此时父亲的速度大小为v,儿子的速度大小为2v.两车瞬间碰撞后儿子沿反方向滑行,父亲运动的方向不变且经过时间t停止运动.已知父亲和车的总质量为3m,儿子和车的总质量为m,两车与地面之间的动摩擦因数均为μ,重力加速度大小为g,求:
(2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R;
(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q.
【详解】
(1)设弹簧恢复到自然长度时A、B的速度分别为vA、vB,由动量守恒定律: 由能量关系:
解得vA=2m/s;vB=4m/s
(2)设B经过d点时速度为vd,在d点:
v′= 0.4m/s
(2)小球与小滑块碰撞过程,动量守恒
mv= -mv′+m1v1
v1= (v+v′) = 1.2m/s
小滑块在木板上滑动过程中,动量守恒
m1v1=(m1+m2)v2
v2= v1= 0.6m/s
由能量守恒可得
μm1gL= m1v12- (m1+m2)v22

高考物理动量守恒定律的应用解题技巧讲解及练习题(含答案)及解析

高考物理动量守恒定律的应用解题技巧讲解及练习题(含答案)及解析一、高考物理精讲专题动量守恒定律的应用1.如图所示,有两足够长倾角皆为037θ=的粗糙斜面AB 和CD 通过一小段平滑的园弧与光滑的水平面BC 连接,两质量相等的可视为质点的小滑块a 和b 与斜面AB ,CD 的动摩擦因数因数分别为10.5μ=,20.25μ=。

开始时小滑块a 在斜面AB 上距水平面高为1.2h m =处的P 点由静止下滑,物块b 静止在水平面BC 上。

已知小滑块a 与b 的碰撞为弹性碰撞,重力加速度210/g m s =,sin37°=0.6,cos=37°=0.8。

求:(1)小滑块a 第一次与小滑块b 碰撞前的速度1v ; (2)小滑块b 第一次碰撞后,沿CD 斜面上滑的距离1s ; (3)小滑块a 、b 在斜面上运动的总路程a s 与b s 。

【答案】(1)22/m s (2)0.5m (3)229m , 109m 【解析】 【详解】(1)小滑块a 第一次与小滑块b 碰撞前,由动能定理:2111cos sin 2h mgh mg mv μθθ-⋅= 解得:122/v m s =(2)因ab 质量相等,则ab 发生弹性碰撞时满足动量守恒和能量守恒:'112mv mv mv =+2'22112111222mv mv mv =+ 解得'10v =,2122/v v m s ==物块b 滑上最高点的过程中由动能定理:212121-sin cos 0-2mgs mg s mv θμθ-⋅= 解得s 1=0.5m(3)b 滑到斜面底端时的速度:222132112cos -22mg s mv mv μθ-⋅= 解得32/=v m sb 与a 碰后再次交换速度,则此时b 的速度为零,a 的速度为v 4=2m/s ,则a 沿斜面上升速度减为零时:212241cos sin 0-2mg s mgs mv μθθ-⋅-=解得:s 2=0.2m返回到底端时:212251cos sin 2mg s mgs mv μθθ-⋅+=, 解得50.8/v m s =在底部a 与b 碰撞后再次交换速度,则b 的速度:60.8/v m s =, 上升到顶端时:232351-sin cos 0-2mgs mg s mv θμθ-⋅=; 解得s 3=0.05m ;因每次滑块上升到顶端再回到底端时的路程成等比关系,其中公比q =0.1, 由数学知识可知:222222110.19a s s s m q ⨯=-=-=--;(2sin 37hs m ==o) 1220.510110.19b s s m q ⨯===--2.如图所示,一质量M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉挡住.小车上表面由光滑圆弧轨道BC 和水平粗糙轨道CD 组成,BC 与CD 相切于C , BC 所对圆心角θ=37°,CD 长L =3m .质量m =1kg 的小物块从某一高度处的A 点以v 0=4m/s 的速度水平抛出,恰好沿切线方向自B 点进入圆弧轨道,滑到D 点时刚好与小车达到共同速度v =1.2m/s .取g =10m/s 2,sin37°=0.6,忽略空气阻力.(1)求A 、B 间的水平距离x ; (2)求小物块从C 滑到D 所用时间t 0;(3)若在小物块抛出时拔掉销钉,求小车向左运动到最大位移年时滑块离小车左端的水平距离.【答案】(1)1.2m (2)1s (3)3.73m 【解析】 【分析】 【详解】(1)由平抛运动的规律得:tan θ=0gtvx = v 0t 得:x =1.2m(2)物块在小车上CD 段滑动过程中,由动量守恒定律得:mv 1=(M +m ) v由功能关系得:fL=12mv12-12(M+m)v2对物块,由动量定理得:-ft0=m v-m v1得:t0=1s(3)有销钉时:mgH+12mv02=12mv12由几何关系得:H-12gt2=R(1-cosθ)B、C间的水平距离:x BC=R sinθμmgL=12mv12-12(M+m)v2若拔掉销钉,小车向左运动达最大位移时,速度为0,此时物块速度为4m/s由能量守恒:mgH=μmg(Δx-x BC)得:Δx=3.73m3.如图所示,两个滑块A、B静置于同一光滑水平直轨道上.A的质量为m,现给滑块A向右的初速度v0,一段时间后A与B发生碰撞,碰后A、B分别以的速度向右运动.求:① B的质量;②碰撞过程中A对B的冲量的大小.【答案】(1)(2)【解析】【详解】① 根据动量守恒定律可得:,② 根据动量定理可得:,4.如图所示,倾角 的足够长的斜面上,放着两个相距L0、质量均为m的滑块A和B,滑块A 的下表面光滑,滑块B 与斜面间的动摩擦因数tan μθ=.由静止同时释放A 和B ,此后若A 、B 发生碰撞,碰撞时间极短且为弹性碰撞.已知重力加速度为g ,求:(1)A 与B 开始释放时,A 、B 的加速度A a 和B a ; (2)A 与B 第一次相碰后,B 的速率B v ;(3)从A 开始运动到两滑块第二次碰撞所经历的时间t . 【答案】(1)sin A a g θ=;0B a =(202sin gL θ3)023sin L g θ【解析】 【详解】解:(1)对B 分析:sin cos B mg mg ma θμθ-=0B a =,B 仍处于静止状态对A 分析,底面光滑,则有:mg sin A ma θ= 解得:sin A a g θ=(2) 与B 第一次碰撞前的速度,则有:202A A v a L =解得:02sin A v gL θ=所用时间由:1v A at =,解得:012sin L g t θ=对AB ,由动量守恒定律得:1A B mv mv mv =+ 由机械能守恒得:2221111222A B mv mv mv =+ 解得:100,2sin B v v gL θ==(3)碰后,A 做初速度为0的匀加速运动,B 做速度为2v 的匀速直线运动,设再经时间2t 发生第二次碰撞,则有:2212A A x a t =22B x v t =第二次相碰:A B x x = 解得:0222sin L t g θ=从A 开始运动到两滑块第二次碰撞所经历的的时间:12t t t =+ 解得:023sin L t g θ=5.如图所示,质量均为m 的A 、B 两球套在悬挂的细绳上,A 球吊在绳的下端刚好不滑动,稍有扰动A 就与绳分离A 球离地高度为h ,A 、B 两球开始时在绳上的间距也为h ,B 球释放后由静止沿绳匀加速下滑,与A 球相碰后粘在一起(碰撞时间极短),并滑离绳子.若B 球沿绳下滑的时间是A 、B 一起下落到地面时间的2倍,重力加速度为g ,不计两球大小及空气阻力,求:(1)A 、B 两球碰撞后粘在一起瞬间速度大小;(2)从B 球开始释放到两球粘在一起下落,A 、B 两球组成的系统损失的机械能为多少? 【答案】12gh (2) 34mgh【解析】 【详解】(1)设B 球与A 球相碰前的速度大小为1v ,则1112h v t =碰撞过程动量守恒,设两球碰撞后的瞬间共同速度为2v ,根据动量守恒定律有122mv mv =两球一起下落过程中,222212h v t gt =+122t t =解得:212v gh =(2)B 球下滑到碰撞前,损失的机械能21112E mgh mv ∆== 由(1)问知,1v gh = 因此112E mgh ∆=磁撞过程损失的机械能为222121112224E mv mv mgh ∆=-⨯=因此整个过程损失的机械能为1234E E E mgh ∆=∆+∆=6.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

动量守恒定律及其应用高三一轮复习PPT课件

m11m 2m2第) 1(1v页10/共2v92页0 )2
2. 一般非弹性碰撞
在非弹性碰撞过程中,物体发生的 形变不能完全恢复,有一部分动能 转化为内能,碰撞前后系统的动能 减少。 动力学特征:动量守恒,机械能不守 恒且减少。
m1v10+m2v20=m1v1+m2v2 ;
Ek损
fs
(
(2)运动特点:人动船动,人停船停,人快船快,人慢船慢,
人左船右;人船位移比等于它们质量的反比;人船平均速度
(瞬时速度)比等于它们质量的反比,即
xx12=
v v
12=mm21.
第25页/共29页
例6 如图所示,长为L、质量为M的小船停在静水中,质量 为m的人从静止开始从船头走到船尾,不计水的阻力,求船 和人相对地面的位移各为多少? 解:设任一时刻人与船速度大小分别为v1、v2,作用前都静 止.因整个过程中动量守恒,所以有mv1=Mv2
第18页/共29页
• [例4] 以与水平方向成60°角斜向上的初速度v0
射出的炮弹,到达最高点时因爆炸分成质量分别
为m和2m的两块,其中质量为2m的一块沿着原 来的方向以2v0的速度飞行。求:
• (1)质量较小的那一块弹片速度的大小和方向; • (2)爆炸过程中有多少化学能转化为炮弹的动能?
第19页/共29页
第10页/共29页
2、分类
(1) 、 完全非弹性碰撞:
运动学特征:碰后两物体粘在一起;典型问题如子弹打 木块。
动力学特征:动量守恒,机械能不守恒,动能损失最多。
m
1v
10
+m
v
2mv12v010=(mm21v+20
m
2)
v
m1 m2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题59 动量守恒定律及其应用(讲)命题规律(1)动量和动量守恒等基本概念、规律的理解,一般结合碰撞等实际过程考查;(2)综合运用动量和机械能的知识分析较复杂的运动过程;(3)光电效应、波粒二象性的考查;(4)氢原子光谱、能级的考查;(5)放射性元素的衰变、核反应的考查;(6)质能方程、核反应方程的计算;(7)与动量守恒定律相结合的计算复习策略(1)深刻理解动量守恒定律,注意动量的矢量性、瞬时性、同一性和同时性;(2)培养建模能力,将物理问题经过分析、推理转化为动力学问题;(3)深刻理解基本概念和基本规律;(4)关注科技热点和科技进步;(5)体会微观领域的研究方法,从实际出发,经分析总结、提出假设、建立模型,再经过实验验证,发现新的问题,从而对假设进行修正动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点.1、弹性碰撞和非弹性碰撞(1)碰撞碰撞是指物体间的相互作用持续时间很短,而物体间的相互作用力很大的现象。

(2)特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒。

(3)分类动量是否守恒机械能是否守恒弹性碰撞守恒守恒非弹性碰撞守恒有损失完全非弹性碰撞守恒损失最大2、反冲运动定义:当物体的一部分以一定的速度离开物体时,剩余部分将做相反方向的运动,这种现象叫反冲运动。

考点一碰撞模型的规律及应用1.碰撞的特点和种类(1)碰撞的特点①作用时间极短,内力远大于外力,满足动量守恒;②满足能量不增加原理;③必须符合一定的物理情境。

(2)碰撞的种类①完全弹性碰撞:动量守恒,动能守恒,质量相等的两物体发生完全弹性碰撞时交换速度;②非完全弹性碰撞:动量守恒、动能不守恒;③完全非弹性碰撞:动量守恒,动能不守恒,碰后两物体共速,系统机械能损失最大。

2.碰撞现象满足的规律(1)动量守恒定律。

(2)机械能不增加。

(3)速度要合理。

①若碰前两物体同向运动,则应有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。

②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变。

★重点归纳★1、碰撞问题解题策略(1)抓住碰撞的特点和不同种类碰撞满足的条件,列出相应方程求解。

(2)可熟记一些公式,例如“一动一静”模型中,两物体发生弹性正碰后的速度满足:021211v m m m m v +-=;021122v m m m v +=(3)熟记弹性正碰的一些结论,例如,当两球质量相等时,两球碰撞后交换速度;当m 1≫m 2,且v 20=0时,碰后质量大的速率不变,质量小的速率为2v 。

当m 1≪m 2,且v 20=0时,碰后质量小的球原速率反弹。

2、人船模型(1)“人船模型”不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.利用“人船模型”及其典型变形,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。

选人前进的方向为正方向,根据动量守恒定律有:mv 人-Mv 船=0 …………………………①即:v 人∶v 船=M ∶m由于每一时刻均满足人、船速度之比等于人、船质量的反比,因而人、船平均速度之比也等于人、船质量的反比,即:故位移大小之比应满足:x 人∶x 船=M ∶m ……②(2)“人船模型”的适用条件与实质——对一个原来处于静止状态的系统,且在系统发生相对运动的过程中,动量守恒或有一个方向动量守恒,其实质就是初速为零的系统中物体所做的反冲运动,系统满足某方向上的平均动量守恒。

★典型案例★甲、乙两球在光滑水平地面上同向运动,动量分别为P 1=5 kg·m/s,P 2=7 kg·m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s,则二球质量关系可能是: ( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2 【答案】C【名师点睛】对于碰撞过程,往往根据三大规律,分析两个质量的范围:1、动量守恒;2、总动能不增加;3、碰撞后两物体同向运动时,后面物体的速度不大于前面物体的速度 ★针对练习1★光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】【名师点睛】分析物理过程,把握每个过程所遵循的物理规律是应培养的能力.此题中涉及碰撞,关键要掌握碰撞的基本规律动量守恒。

★针对练习2★如图所示,ABC 是光滑轨道,BC 段水平,C 端固定一重锤线,重锤正下方为O 点,在轨道上固定一挡板D ,从贴紧挡板D 处由静止释放质量为m 1小球1,小球1落在M 点,测得M 点与O 点距离2l 。

在C 的末端放置一个大小与小球1相同的小球2,其质量为m 2;现仍从D 处静止释放小球1,小球1与小球2发生正碰,小球2落在N 点,小球1落在P点,测得OP 为l ,ON 为3l ;求 (i )小球1与小球2的质量之比21m m ; (ii )试通过计算判断两球的碰撞是否完全弹性碰撞。

【答案】(i )1321 m m ; (ii ) 是弹性碰撞(ii )以两球为系统,碰前系统初动能:21121v m E k =初⑦ 碰后系统末动能:2'222'112121v m v m E k +=末⑧ 由②③④⑤⑥⑦⑧式联立得:末初k k E E = 则两球碰撞是弹性碰撞【名师点睛】本题考查了求两球的质量之比、判断碰撞的类型,分析清楚物体运动过程、知道完全弹性碰撞的条件是解题的前提与关键;应用平抛运动规律、动量守恒定律、动能的计算公式可以解题。

考点二 动量观点和能量观点的综合应用 1.动量的观点和能量的观点动量的观点:动量定理和动量守恒定律 能量的观点:动能定理和能量守恒定律 2.动量守恒定律与机械能守恒定律的比较定律名称 比较项目 动量守恒定律机械能守恒定律相同点研究对象 相互作用的物体组成的系统 研究过程 某一运动过程 不 同 点守恒条件系统不受外力或所受外力的矢量和为零系统只有重力或弹力做功表达式 p 1+p 2=p 1′+p 2′E k1+E p1=E k2+E p2表达式的 矢标性 矢量式标量式 某一方向上可在某一方向上独立不能在某一方向应用情况 使用 独立使用 运算法则矢量运算代数运算★重点归纳★1.动量的观点和能量的观点: (1)动量的观点:动量守恒定律。

(2)能量的观点:动能定理、机械能守恒定律和能量守恒定律。

2.动量的观点和能量的观点的优点:只要知道过程的始末状态动量式、动能式和力在过程中所做的功,即可对问题求解,不需要对过程变化的细节做深入研究。

3.利用动量的观点和能量的观点解题时应注意下列问题:(1)动量守恒定律是矢量表达式,故可写出分量表达式;而动能定理、机械能守恒定律和能量守恒定律是标量表达式,无分量表达式。

(2)应用这两个规律时,先确定研究对象及运动状态的变化过程,再根据问题的已知条件和要求解的未知量,选择研究的两个状态列方程求解 (3)利用动量和能量的观点解题的技巧①若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律)。

②若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理。

★典型案例★如图所示,同一光滑水平轨道上静止放置A 、B 、C 三个物块,A 、B 两物块质量均为m ,C 物块质量为2m,B 物块的右端装有一轻弹簧,现让A 物块以水平速度v 0向右运动,与B 碰后粘在一起,再向右运动推动C (弹簧与C 不粘连),弹簧没有超过弹性限度.求:(i )整个运动过程中,弹簧的最大弹性势能;(ii )整个运动过程中,弹簧对C 所做的功。

【答案】(i )208122212121=42=mv mv -mv E P (ii )202410221mv mv W c =-=【解析】(i )A 与B 碰撞,由动量守恒定律:102mv mv = 当A 、B 、C 有共同速度时,弹簧弹性势能最大, 由动量守恒定律:()21222v m m mv +=由能量转化守恒定律得,最大弹性势能为208122212121=42=mv mv -mv E P【名师点睛】此题考查了动量守恒定律及能量守恒定律的应用;解题的关键是能找到物体运动的几个特殊的状态,要注意分析清楚物体运动过程,应用动量守恒定律与能量守恒定律即可正确解题,解题时注意正方向的选择。

★针对练习1★如图所示,质量为m 2=2kg 和m 3=3kg 的物体静止放在光滑水平面上,两者之间有压缩着的轻弹簧(与m 2、m 3不拴接).质量为m 1=1kg 的物体以速度v 0=9m/s 向右冲来,为了防止冲撞,释放弹簧将m 3物体发射出去,m 3与m 1碰撞后粘合在一起.试求:(1)m 3的速度至少多大,才能使以后m 3和m 2不发生碰撞? (2)为保证m 3和m 2恰好不发生碰撞,弹簧的弹性势能至少多大? 【答案】(1);(2)【解析】 (1)设m 3发射出去的速度为v 1,m 2的速度为v 2以向右的方向为正方向, 对m 2、m 3,由动量守恒定律得:01322=-v m v m 。

只要m 1和m 3碰后速度不大于v 2,则m 3和m 2就不会再发生碰撞,m 3与m 2恰好不相撞时,两者速度相等。

对m 1、m 3,由动量守恒定律得:()2311301v m m v m v m +=- 解得:s m v /11=即弹簧将m 3发射出去的速度至少为s m /1(2)对m 2、m 3及弹簧,由机械能守恒定律得:J v m v m E P 75.32121222213=+=。

【名师点睛】应用动量守恒定律即可正确解题,应用动量守恒定律解题时,要注意过程的分析与研究对象的选择。

★针对练习2★如图所示,一质量m=2kg 的铁块放在质量M=2kg 的小车左端,二者一起以v 0=4m/s 的速度沿光滑水平面向竖直墙运动,车与墙碰撞的时间t=0.01s ,碰撞时间极短,不计车与墙碰撞时机械能的损失,最终小车与铁块相对静止.已知铁块不会到达车的右端,铁块与小车之间的动摩擦因数μ=0.4,g=10m/s2求:①车与墙碰撞时受到的平均作用力F的大小(由于碰撞时间极短可认为在车与墙碰撞时铁块速度没变):②小车车长的最小值【答案】①1600N;②4m【名师点睛】本题涉及到两个物体的相互作用,应优先考虑动量守恒定律.运用动量守恒定律研究物体的速度,比牛顿第二定律和运动学公式结合简单,因为动量守恒定律不涉及运动的细节和过程.涉及时间问题,可优先考虑动量定理。

相关文档
最新文档