2019-2020年中考数学压轴题精选(九)及答案资料

合集下载

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川中学2019-2020学年中考九年级数学典型压轴题专练:统计初步(含答案解析)

重庆市合川区第一中学2020年中考九年级数学典型压轴题专练:统计初步1、根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如下统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天5路公共汽车平均每班的载客量;(3)如果一个月按30天计算,请估计5路公共汽车一个月的总载客量,并把结果用科学记数法表示出来.2、为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.3、为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?4、某校八年级学生在学习《数据的分析》后,进行了检测.现将该校八年级(1)班学生的成绩统计如下表,并绘制成条形统计图(不完整).(1)补全条形统计图;(2)该班学生成绩的平均数为86.85分,写出该班学生成绩的中位数和众数;(3)该校八年级共有学生500名,估计有多少学生的成绩在96分以上(含96分)?(4)小明的成绩为88分,他的成绩如何,为什么?【逐步提示】(1)在表格中查到得96的人数是6,据此不全条形图;(2)根据众数、中位数的定义求解;(3)用500乘以96分以上(含96分)的人数所占的百分比即可得解;(4)把小明的成绩和平均数、中位数、众数作对比,即可对小明的成绩做出判断.5、秋季新学期开学时,红城中学对七年级新生掌握“中学生日常行为规范”的情况进行了知识测试,测试成绩全部合格,现学校随机选取了部分学生的成绩,整理并制作成了如下不完整的图表:分数段频数频率60≤x<70 9 a70≤x<80 36 0.480≤x<90 27 b90≤x≤100 c 0.2请根据上述统计图表,解答下列问题:(1)在表中,a= ,b= ,c= ;(2)补全频数直方图;(3)根据以上选取的数据,计算七年级学生的平均成绩.(4)如果测试成绩不低于80分者为“优秀”等次,请你估计全校七年级的800名学生中,“优秀”等次的学生约有多少人?6、某校为了进一步改变本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?7、某校为了解该校九年级学生适应性考试数学成绩,现从九年级学生中随机抽取部分学生的适应性考试数学成绩,按A,B,C,D四个等级进行统计,并将统计结果绘制成如图所示不完整的统计图,请根据统计图中的信息解答下列问题:(说明:A等级:135分﹣150分 B等级:120分﹣135分,C等级:90分﹣120分,D等级:0分﹣90分)(1)此次抽查的学生人数为;(2)把条形统计图和扇形统计图补充完整;(3)若该校九年级有学生1200人,请估计在这次适应性考试中数学成绩达到120分(包含120分)以上的学生人数.8、中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表组别海选成绩xA组50≤x<60B组60≤x<70C组70≤x<80D组80≤x<90E组90≤x<100请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?9、海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?10、为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)节目类型新闻体育动画娱乐戏曲人数36 90 a b 27根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?11、在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a 的值为 ;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.12、某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;在扇形统计图中,最喜爱30%8%6%动画新闻体育娱乐戏曲体育的对应扇形的圆心角大小是______;(2) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.13、某中学为了了解九年级学生体能状况,从九年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽样调查的样本容量是,并补全条形图;(2)D等级学生人数占被调查人数的百分比为8% ,在扇形统计图中C等级所对应的圆心角为°;(3)该校九年级学生有1500人,请你估计其中A等级的学生人数.14、为了解七年级学生上学期参加社会实践活动的情况,随机抽查A市七年级部分学生参加社会实践活动天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A市七年级部分学生参加社会实践活动天数的频数分布表天数频数频率3 20 0.104 30 0.155 60 0.306 a 0.257 40 0.20A市七年级部分学生参加社会实践活动天数的条形统计图根据以上信息,解答下列问题;(1)求出频数分布表中a的值,并补全条形统计图.(2)A市有七年级学生20000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.15、为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.分组频数4.0≤x<4.2 24.2≤x<4.4 34.4≤x<4.6 54.6≤x<4.8 84.8≤x<5.0 175.0≤x<5.2 5(1)求所抽取的学生人数;(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.16、某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?17、为了解某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该市场6月上半月共销售这三种荔枝多少吨?(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?18、某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),并按测试成绩(单位:分)分成四类:A类(12≤m≤15),B类(9≤m≤11),C类(6≤m≤8),D类(m≤5)绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次抽取样本容量为,扇形统计图中A类所对的圆心角是度;(2)请补全统计图;(3)若该校九年级男生有300名,请估计该校九年级男生“引体向上”项目成绩为C类的有多少名?19、为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2015年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2015年全年阅读中外名著的总本数.20、某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.答案:1、、【解答】解:(1)A组对应扇形圆心角度数为:360°×=72°;这天载客量的中位数在B组;(2)各组组中值为:A: =10,B: =30;C: =50;D: =70;==38(人),答:这天5路公共汽车平均每班的载客量是38人;(3)可以估计,一个月的总载客量约为38×50×30=57000=5.7×104(人),答:5路公共汽车一个月的总载客量约为5.7×104人.2、【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).3、【解答】解:(1)由题意可得,“非常了解”的人数的百分比为:,即“非常了解”的人数的百分比为20%;(2)由题意可得,对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有:1200×=600(人),即对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有600人.4、解:(1)补全条形统计图如下:(2)该班学生成绩的中位数为90分,众数为90分;(3)∵6+540×500≈138.∴估计有138名学生的成绩在96分以上(含96分).(4)小明的成绩为88分,他的成绩处于中偏下水平,因为小明的成绩比班级平均成绩高,但比班级学生成绩的中位数和众数低.5、【解答】解:(1)抽查的学生数:36÷0.4=90,a=9÷90=0.1,b=27÷90=0.3,c=90×0.2=18,故答案为:0.1,0.3,18;(2)补全的频数分布直方图如右图所示,(3)∵=81,即七年级学生的平均成绩是81分;(4)∵800×(0.3+0.2)=800×0.5=400,即“优秀”等次的学生约有400人.6、【解答】解:(1)由题意可得,调查的学生有:30÷25%=120(人),选B的学生有:120﹣18﹣30﹣6=66(人),B所占的百分比是:66÷120×100%=55%,D所占的百分比是:6÷120×100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)由(1)中补全的条形统计图可知,所抽取学生对数学学习喜欢程度的众数是:比较喜欢,故答案为:比较喜欢;(3)由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:960×25%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人.7、【解答】解:(1)由题意可得,此次抽查的学生有:36÷24%=150(人),故答案为:150;(2)A等级的学生数是:150×20%=30,B等级占的百分比是:69÷150×100%=46%,D等级占的百分比是:15÷150×100%=10%,故补全的条形统计图和扇形统计图如右图所示,(3)1200×(46%+20%)=792(人),即这次适应性考试中数学成绩达到120分(包含120分)以上的学生有792人.11118、【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.9、【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.10、【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴a=450×36%=162(人),∴b=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.11、【解答】解:(Ⅰ)根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%;则a的值是25;故答案为:25;(Ⅱ)观察条形统计图得:==1.61;∵在这组数据中,1.65出现了6次,出现的次数最多,∴这组数据的众数是1.65;将这组数据从小到大排列为,其中处于中间的两个数都是1.60,则这组数据的中位数是1.60.(Ⅲ)能;∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m>1.60m,∴能进入复赛.12、【答案】(1)50,3,72°;(2)160人【解析】(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人),∵“娱乐”类人数占被调查人数的百分比为:18100%36% 50⨯=,∴“体育”类人数占被调查人数的百分比为:1-8%-30%-36%-6%=20%,在扇形统计图中,最喜爱体育的对应扇形圆心角大小事360°×20%=72°;(2)2000×8%=160(人).13、【解答】解:(1)由条形统计图和扇形统计图可知总人数=16÷32%=50人,所以B等级的人数=50﹣16﹣10﹣4=20人,故答案为:50;补全条形图如图所示:(2)D等级学生人数占被调查人数的百分比=×100%=8%;在扇形统计图中C等级所对应的圆心角=8%×360°=28.8°,故答案为:8%,28.8;(3)该校九年级学生有1500人,估计其中A等级的学生人数=1500×32%=480人.14、【解答】解:(1)由题意可得:a=20÷01×0.25=50(人),如图所示:;(2)由题意可得:20000×(0.30+0.25+0.20)=15000(人),答:该市七年级学生参加社会实践活动不少于5天的人数约为15000人.15、【解答】解:(1)∵频数之和=40,∴所抽取的学生人数40人.(2)活动前该校学生的视力达标率==37.5%.(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.②活动前合格率37.5%,活动后合格率55%,视力保健活动的效果比较好.16、【解答】解:(1)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:乙组的平均成绩是:丙组的平均成绩是:由上可得,甲组的成绩最高.17、【解答】解:(1)120÷30%=400(吨).[来源:学§科§网Z§X§X§K] 答:该市场6月上半月共销售这三种荔枝400吨;(2)500×=300(千克).答:该商场应购进C品种荔枝300千克比较合理.18、【解答】解:(1)由题意可得,抽取的学生数为:10÷20%=50,扇形统计图中A类所对的圆心角是:360°×20%=72°,故答案为:50,72;(2)C类学生数为:50﹣10﹣22﹣3=15,C类占抽取样本的百分比为:15÷50×100%=30%,D类占抽取样本的百分比为:3÷50×100%=6%,补全的统计图如图所示,(3)300×30%=90(名)即该校九年级男生“引体向上”项目成绩为C类的有90名.19、【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为: =6.45(本),∴估计该校七年级全体学生在2015年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2015年全年阅读中外名著的总本数约为5160本.20、【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.。

2020年九年级数学典型中考压轴题专练:圆有关题型(含答案)

2020年九年级数学典型中考压轴题专练:圆有关题型(含答案)

2020年九年级数学典型中考压轴题专练:圆有关题型1、如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC 交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.2、如图,AB为⊙O的直径,弦CD⊥AB,垂足为点P,直线BF与AD的延长线交于点F,且∠AFB=∠ABC.(1)求证:直线BF是⊙O的切线.(2)若CD=2,OP=1,求线段BF的长.3、如图,已知AB为⊙O的直径,AC为⊙O的切线,OC交⊙O于点D,BD的延长线交AC于点E.(1)求证:∠1=∠CAD;(2)若AE=EC=2,求⊙O的半径.4、如图,在四边形ABCD 中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD 为直径作圆O ,过点D 作DE ∥AB 交圆O 于点E(1)证明点C 在圆O 上;(2)求tan ∠CDE 的值;(3)求圆心O 到弦ED 的距离.5、如图,AB 是半圆O 的直径,点P 是BA 延长线上一点,PC 是⊙O 的切线,切点为C. 过点B 作BD ⊥PC 交PC 的延长线于点D ,连接BC. 求证:(1)∠PBC =∠CBD;(2)BC 2=AB ·BD6、如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E ,弧AC 射线EP 交于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;7、如图,在△ABC 中,∠C=90°,D 是BC 边上一点,以DB 为直径的⊙O 经过AB 的中点E ,交AD 的延长线于点F ,连结EF .AC(1)求证:∠1=∠F.(2)若sinB=,EF=2,求CD的长.8、如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.9、如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.10、如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,且BD=BC,延长AD 到E,且有∠EBD=∠CAB.(1)求证:BE是⊙O的切线;(2)若BC=,AC=5,求圆的直径AD及切线BE的长.11、已知:如图,⊙O是△ABC的外接圆, =,点D在边BC上,AE∥BC,AE=BD.(1)求证:AD=CE;(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.12、如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x 的取值范围.(2)当BP=2时,试说明射线CA与⊙P是否相切.(3)连接PA,若S△APE=S△ABC,求BP的长.13、如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.14、如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与⊙O交于点F,连接DF、DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.15、如图1是一个用铁丝围成的篮框,我们来仿制一个类似的柱体形篮框.如图2,它是由一个半径为r、圆心角90°的扇形A2OB2,矩形A2C2EO、B2D2EO,及若干个缺一边的矩形状框A1C1D1B1、A2C2D2B2、…、A n B n C n D n,OEFG围成,其中A1、G、B1在上,A2、A3…、A n与B2、B3、…B n分别在半径OA2和OB2上,C2、C3、…、C n和D2、D3…D n分别在EC2和ED2上,EF⊥C2D2于H2,C1D1⊥EF于H1,FH1=H1H2=d,C1D1、C2D2、C3D3、C n D n依次等距离平行排放(最后一个矩形状框的边C n D n与点E间的距离应不超过d),A1C1∥A2C2∥A3C3∥…∥A n C n(1)求d的值;(2)问:C n D n与点E间的距离能否等于d?如果能,求出这样的n的值,如果不能,那么它们之间的距离是多少?16、在平面直角坐标中,△ABC三个顶点坐标为A(﹣,0)、B(,0)、C(0,3).(1)求△ABC内切圆⊙D的半径.(2)过点E(0,﹣1)的直线与⊙D相切于点F(点F在第一象限),求直线EF的解析式.(3)以(2)为条件,P为直线EF上一点,以P为圆心,以2为半径作⊙P.若⊙P上存在一点到△ABC三个顶点的距离相等,求此时圆心P的坐标.答案:1、【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.2、【解答】(1)证明:∵∠AFB=∠ABC,∠ABC=∠ADC,∴∠AFB=∠ADC,∴CD∥BF,∴∠AFD=∠ABF,∵CD⊥AB,∴AB⊥BF,∴直线BF是⊙O的切线.(2)解:连接OD,∵CD⊥AB,∴PD=CD=,∵OP=1,∴OD=2,∵∠PAD=∠BAF,∠APO=∠ABF,∴△APD∽△ABF,∴=,∴=,∴BF=.3、【解答】(1)证明:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠BDO=90°,∵AC为⊙O的切线,∴OA⊥AC,∴∠OAD+∠CAD=90°,∵OA=OD,∴∠OAD=∠ODA,∵∠1=∠BDO,∴∠1=∠CAD;(2)解:∵∠1=∠CAD,∠C=∠C,∴△CAD∽△CDE,∴CD:CA=CE:CD,∴CD2=CA•CE,∵AE=EC=2,∴AC=AE+EC=4,∴CD=2,设⊙O的半径为x,则OA=OD=x,则Rt△AOC中,OA2+AC2=OC2,∴x2+42=(2+x)2,解得:x=.∴⊙O的半径为.4、【解答】(1)证明:如图1,连结CO.∵AB=6,BC=8,∠B=90°,∴AC=10.又∵CD=24,AD=26,102+242=262,∴△ACD是直角三角形,∠C=90°.∵AD为⊙O的直径,∴AO=OD,OC为Rt△ACD斜边上的中线,∴OC=AD=r,∴点C在圆O上;(2)解:如图2,延长BC、DE交于点F,∠BFD=90°.∵∠BFD=90°,∴∠CDE+∠FCD=90°,又∵∠ACD=90°,∴∠ACB+∠FCD=90°,∴∠CDE=∠ACB.在Rt△ABC中,tan∠ACB==,∴tan∠CDE=tan∠ACB=;(3)解:如图3,连结AE,作OG⊥ED于点G,则OG∥AE,且OG=AE.易证△ABC∽△CFD,∴=,即=,∴CF=,∴BF=BC+CF=8+=.∵∠B=∠F=∠AE D=90°,∴四边形ABFE是矩形,∴AE=BF=,∴OG=AE=,即圆心O到弦ED的距离为.5、【解答】证明:(1)连接OC,∵PC是⊙O的切线,∴∠OCD=90°.又∵BD⊥PC∴∠BDP=90°∴OC∥BD.∴∠CBD=∠OCB.∴OB=OC .∴∠OCB=∠PBC.∴∠PBC=∠CBD.(2)连接AC∵AB 是直径,∴∠BDP=90°.又∵∠BDC=90°,∴∠ACB=∠BDC.∵∠PBC=∠CBD,∴△ABC ∽△CBD. ∴BC AB =BD BC .∴BC 2=AB ·BD6、【解析】 (1) 如图连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE⊥AB ,点D在EP的延长线上,∴∠DEA=90º,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图四边形AOCF是菱形.连接CF、AF,∵F是弧AC的中点,∴弧AF=弧CF ∴ AF=FC .∵∠BAC=30º,∴弧BC =60º,又AB是⊙O的直径,∴弧ACB =120º,∴弧AF=弧CF= 60º,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,∴⊿OAC≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF是菱形.7、【解答】解:(1)证明:连接DE,∵BD是⊙O的直径,∴∠DEB=90°,∵E是AB的中点,∴DA=DB,∴∠1=∠B,∵∠B=∠F,∴∠1=∠F;(2)∵∠1=∠F,∴AE=EF=2,∴AB=2AE=4,在Rt△ABC中,AC=AB•sinB=4,∴BC==8,设CD=x,则AD=BD=8﹣x,∵AC2+CD2=AD2,即42+x2=(8﹣x)2,∴x=3,即CD=3.8、【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.9、【解答】(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB==5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.10、【解答】解:如图,连接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直径,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,[来源:学科网]∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵点B在⊙O上,∴BE是⊙O的切线,(2)如图2,设圆的半径为R,连接CD,∵AD为⊙O的直径,∴∠ACCD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四边形ACBD是圆内接四边形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴,∴,∵R>0,∴R=3,∵BE是⊙O的切线,∴BE===.11、【解答】证明:(1)在⊙O中,∵=,∴AB=AC,∴∠B=∠ACB,∵AE∥BC,∴∠EAC=∠ACB,∴∠B=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(SAS),∴AD=CE;(2)连接AO并延长,交边BC于点H,∵=,OA为半径,∴AH⊥BC,∴BH=CH,∵AD=AG,∴DH=HG,∴BH﹣DH=CH﹣GH,即BD=CG,∵BD=AE,∴CG=AE,∵CG∥AE,∴四边形AGCE是平行四边形.12、【解答】解:(1)过A作AF⊥BC于F,过P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=AC•cos30°=6×=3,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC==,∵BC=6,∴PB+CP=x+=6,∴y=﹣x+3,∵BD=2BH=x<6,∴x<2,∴x的取值范围是0<x<2;(2)∵BP=2,∴CP=4,∴PE=PC=2=PB,∴射线CA与⊙P相切;(3)当D点在线段BA上时,连接AP,∵S△ABC=BC•AF=××3=9,∵S△APE=AE•PE=y•×(6+y)=S△ABC=,解得:y=,代入y=﹣x+3得x=4﹣.当D点BA延长线上时,PC=EC=(6﹣y),∴PB+CP=x+(6﹣y)=6,∴y=x﹣3,∵∠PEC=90°,∴PE===(6﹣y),∴S△APE=AE•PE=x•=y•(6﹣y)=S△ABC=,解得y=或,代入y=x﹣3得x=3或5.综上可得,BP的长为4﹣或3或5.13、【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AD=.4、【解答】(1)①证明:连接OC.∵OA=OB,AC=CB,∴OC⊥AB,∵点C在⊙O上,∴AB是⊙O切线.②证明:∵OA=OB,AC=CB,∴∠AOC=∠BOC,∵OD=OF,∴∠ODF=∠OFD,∵∠AOB=∠ODF+∠OFD=∠AOC+∠BOC,∴∠BOC=∠OFD,∴OC∥DF,∴∠CDF=∠OCD,∵OD=OC,∴∠ODC=∠OCD,∴∠ADC=∠CDF.(2)作ON⊥DF于N,延长DF交AB于M.∵ON⊥DF,∴DN=NF=3,在RT△ODN中,∵∠OND=90°,OD=5,DN=3,∴ON==4,∵∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,在RT△CDM中,∵∠DMC=90°,CM=4,DM=DN+MN=8,∴CD===4.15、【解答】解:(1)在RT△D2EC2中,∵∠D2EC2=90°,EC2=ED2=r,EF⊥C2D2,∴EH1=r,FH1=r﹣r,∴d=(r﹣r)=r,(2)假设C n D n与点E间的距离能等于d,由题意•r=r,这个方程n没有整数解,所以假设不成立.∵r÷r=2+2≈4.8,∴n=6,此时C n D n与点E间的距离=r﹣4×r=r.16、【解答】解:(1)连接BD,∵B(,0),C(0,3),∴OB=,OC=3,∴tan∠CBO==,∴∠CBO=60°∵点D是△ABC的内心,∴BD平分∠CBO,∴∠DBO=30°,∴tan∠DBO=,∴OD=1,∴△ABC内切圆⊙D的半径为1;(2)连接DF,过点F作FG⊥y轴于点G,∵E(0,﹣1)∴OE=1,DE=2,∵直线EF与⊙D相切,∴∠DFE=90°,DF=1,∴sin∠DEF=,∴∠DEF=30°,∴∠GDF=60°,∴在Rt△DGF中,∠DFG=30°,∴DG=,由勾股定理可求得:GF=,∴F(,),设直线EF的解析式为:y=kx+b,∴,∴直线EF的解析式为:y=x﹣1;(3)∵⊙P上存在一点到△ABC三个顶点的距离相等,∴该点必为△ABC外接圆的圆心,由(1)可知:△ABC是等边三角形,∴△ABC外接圆的圆心为点D∴DP=2,设直线EF与x轴交于点H,∴令y=0代入y=x﹣1,∴x=,∴H(,0),∴FH=,当P在x轴上方时,过点P1作P1M⊥x轴于M,由勾股定理可求得:P1F=3,∴P1H=P1F+FH=,∵∠DEF=∠HP1M=30°,∴HM=P1H=,P1M=5,∴OM=2,∴P1(2,5),当P在x轴下方时,过点P2作P2N⊥x轴于点N,由勾股定理可求得:P2F=3,∴P2H=P2F﹣FH=,∴∠DEF=30°∴∠OHE=60°∴sin∠OHE=,∴P2N=4,令y=﹣4代入y=x﹣1,∴x=﹣,∴P2(﹣,﹣4),综上所述,若⊙P上存在一点到△ABC三个顶点的距离相等,此时圆心P的坐标为(2,5)或(﹣,﹣4).。

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》(含答案)

2020年九年级数学典型中考压轴题训练:《圆的综合》1.如图,在等边△ABC中,已知AB=8cm,线段AM为BC边上的中线.点N在线段AM上,且MN=3cm,动点D在直线AM上运动,连接CD,△CBE是由△CAD旋转得到的.以点C 圆心,以CN为半径作⊙C与直线BE相交于点P、Q两点.(1)填空:∠DCE=60 度,CN= 5 cm,AM=4cm.(2)如图1当点D在线段AM上运动时,求出PQ的长.(3)当点D在MA的延长线上时,请在图2中画出示意图,并直接写出PQ= 6 cm.当点D在AM的延长线上时,请在图3中画出示意图,并直接写出PQ= 6 cm.解:(1)∵△CBE是由△CAD旋转得到,∴∠ACD=∠BCE,∴∠DCE=∠BCD+∠BCE=∠BCD+∠CAD=∠ACB,∵△ABC是等边三角形,∴∠ACB=60°,∴∠DCE=60°;∵△ABC是等边三角形,AM为BC边上的中线,∴BC=AB=8cm,CM=BC=×8=4cm,在Rt△CMN中,CN===5cm;在Rt△ACM中,AM===4cm;(2)过点C作CF⊥PQ于F,∵△ABC是等边三角形,AM为BC边上的中线,∴∠CAD=∠BAC=×60°=30°,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,∴CF=BC=×8=4cm,连接CP,则PC=CN=5cm,在Rt△PCF中,PF===3cm,由垂径定理得,PQ=2PF=2×3=6cm;(3)①如图,点D在MA的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD,∴∠CBQ=∠CAM=30°,与(2)同理可求PQ=6cm,②如图,点D在AM的延长线上时,∵△CBE是由△CAD旋转得到,∴∠CBE=∠CAD=30°,与(2)同理可求PQ=6cm,综上所述,PQ的长度不变都是6cm.故答案为:(1)60,5,4;(3)6,6.2.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BD于点F,交⊙O于点D,AC 与BD交于点G,点E为OC的延长线上一点,且∠OEB=∠ACD.(1)求证:BE是⊙O的切线;(2)求证:CD2=CG•CA;(3)若⊙O的半径为,BG的长为,求tan∠CAB.解:(1)∵∠OEB=∠ACD,∠ACD=∠ABD,∴∠OEB=∠ABD,∵OF⊥BD,∴∠BFE=90°,∴∠OEB+∠EBF=90°,∴∠ABD+∠EBF=90°,即∠OBE=90°,∴BE⊥OB,∴BE是⊙O的切线;(2)连接AD,∵OF⊥BD,∴=,∴∠DAC=∠CDB,∵∠DCG=∠ACD,∴△DCG∽△ACD,∴=,∴CD2=AC•CG;(3)∵OA=OB,∴∠CAO=∠ACO,∵∠CDB=∠CAO,∴∠ACO=∠CDB,而∠CFD=∠GFC,∴△CDF∽△GCF,∴=,又∵∠CDB=∠CAB,∠DCA=∠DBA,∴△DCG∽△ABG,∴=,∴=,∵r=,BG=,∴AB=2r=5,∴tan∠CAB=tan∠ACO===.3.如图,△ABC内接于⊙O,AB是直径,过点A作直线MN,且∠MAC=∠ABC.(1)求证:MN是⊙O的切线.(2)设D是弧AC的中点,连结BD交AC于点G,过点D作DE⊥AB于点E,交AC于点F.①求证:FD=FG.②若BC=3,AB=5,试求AE的长.(1)证明:∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°;∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即MA⊥AB,∴MN是⊙O的切线;(2)①证明:∵D是弧AC的中点,∴∠DBC=∠ABD,∵AB是直径,∴∠CBG+∠CGB=90°,∵DE⊥AB,∴∠FDG+∠ABD=90°,∵∠DBC=∠ABD,∴∠FDG=∠CGB=∠FGD,∴FD=FG;②解:连接AD、CD,作DH⊥BC,交BC的延长线于H点.∵∠DBC=∠ABD,DH⊥BC,DE⊥AB,∴DE=DH,在Rt△BDE与Rt△BDH中,,∴Rt△BDE≌Rt△BDH(HL),∴BE=BH,∵D是弧AC的中点,∴AD=DC,在Rt△ADE与Rt△CDH中,,∴Rt△ADE≌Rt△CDH(HL).∴AE=CH.∴BE=AB﹣AE=BC+CH=BH,即5﹣AE=3+AE,∴AE=1.4.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△ABC的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OG=,∴CG===,∴CF=2CG=.5.如图1,已知AB是⊙O的直径,点D是弧AB上一点,AD的延长线交⊙O的切线BM于点C,点E为BC的中点,(1)求证:DE是⊙O的切线;(2)如图2,若DC=4,tan∠A=,延长OD交切线BM于点H,求DH的值;(3)如图3,若AB=8,点F是弧AB的中点,当点D在弧AB上运动时,过F作FG⊥AD 于G,连接BG,求BG的最小值.(1)证明:如图,连接OD,BD,∵AB是⊙O的直径,∴∠ADB=∠CDB=90°,∵BM是⊙O的切线,∴∠ABC=90°,∵点E是BC的中点,∴DE=BC=BE=CE,∴∠EDB=∠EBD,又∵OD=OB,∴∠ODB=∠OBD,∴∠ODB+∠EDB=∠OBD+∠EBD=90°,即∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线;(2)解:如图2,连接BD,∵∠A+∠ABD=∠ABD+∠CBD=90°,∴∠A=∠CBD,∵DC=4,tan∠A=,∴tan∠CBD=tan∠A=,∴BD=8,∴BC==4,∴DE=,∴AB=,∴BO=OD=4,又∵DE是⊙O的切线,∴∠HDE=90°,∴tan∠DHE==,设DH=x,则,∴BH=2x,在Rt△BOH中,OB2+BH2=OH2,即,解得:x=或x=0(舍去),∴DH=;(3)解:如图3,连接BF,取AF中点N,构造圆N,连接NG,∵FG⊥AD于点G,∴当点D在弧AB上运动时,点G在圆N上运动,∴当点N、G、B三点共线时,BG有最小值,∵AB=8,点F是弧AB的中点,∴∠AFB=90°,AF=BF=,∴NG=NF=,BN===2,∴BG=BN﹣NG=2.6.如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB =6,BC=,(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.(1)证明:由折叠的性质可知,AF=AB=6,在Rt△ADF中,DF===3,∴CF=DC﹣DF=3,∴DF=FC,即F是CD的中点;(2)证明:在Rt△ADF中,DF=3,AF=6,∴∠DAF=30◦,∴∠BAF=60◦,由折叠的性质可知,∠EAF=∠EAB,∠AFE=∠B=90°,∴∠EAF=∠EAB=30°,∴AE=2EF,∠EFC=180°﹣∠AFD﹣∠AFE=30◦,∴EF=2CE,∴AE=4CE;(3)解:连接OP、OH、PH,∵⊙O与AD相切于点P,∴OP⊥AD,∴OP∥DF,∵∠DAF=30°,∴∠AOP=90°﹣∠DAF=60°,OF=OP=OA,∴∠OFH=∠AOP=60°,OP=OF=2,∴AP==2,∴DP=AD﹣AP=,∵∠OFH=60°,OH=OF,∴△OHF为等边三角形,∴∠FOH=∠OHF=60°,HF=OF=2,∴DH=DF﹣HF=1,∵OP∥DF,∴∠POH=∠OHF=60°,∴∠POH=∠HOF,∴=,∴阴影部分的面积=△PDH的面积=×DH×DP=.7.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=9 .证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.8.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是的中点,求DF的长为4﹣2;②取的中点H,当∠EAB的度数为30°时,求证:四边形OBEH为菱形.解:(1)证明:如图1,∵BA=BC,∠ABC=90°,∴∠BAC=45°∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠ADF=∠BDG=90°∴∠DAF+∠BGD=∠DBG+∠BGD=90°∴∠DAF=∠DBG∵∠ABD+∠BAC=90°∴∠ABD=∠BAC=45°∴AD=BD∴△ADF≌△BDG(ASA);(2)①如图2,过F作FH⊥AB于H,∵点E是的中点,∴∠BAE=∠DAE∵FD⊥AD,FH⊥AB∴FH=DF,∵sin∠ABD==sin45°=,∴,即BF=FD,∵AB=4,∴BD=4cos45°=2,即BF+FD=2,∴,∴=4﹣2.故答案为:4﹣2.②证明:如图3,连接OH,EH,OE,∵∠AEB=90°,∠EAB=30°,∴∠ABE=60°,∵点H是的中点,∴∠AOH=∠HOE=60°,∴△OEH和△OBE都是等边三角形,∴OB=OH=HE=BE,∴四边形OBEH为菱形.9.已知:AB为⊙O的直径,,D为AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=1,求AD的长;(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA,∵∠CED=∠CBD+∠BCE,∠CDE=∠ABD+∠BAC,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴AD=2OG,OG∥AD,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴OG=OE=1,∴AD=2OG=2;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵∠CBA=∠BAC=45°,∴BC=AC,∴CP=CD,∴∠CPD=45°,∴∠BPD=135°.,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DFA≌△BDP(SAS),∴∠FAD=∠DBO=135°,∴∠FAB=∠FAD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,∴AF为⊙O的切线.10.若边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,记旋转角为a.(I)如图1,当a=60°时,求点C经过的弧的长度和线段AC扫过的扇形面积;(Ⅱ)如图2,当a=45°时,BC与D′C′的交点为E,求线段D′E的长度;(Ⅲ)如图3,在旋转过程中,若F为线段CB′的中点,求线段DF长度的取值范围.解:(Ⅰ)∵四边形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵边长为6的正方形ABCD绕点A顺时针旋转,得正方形AB′C′D′,∴∠CAC′=60°,∴的长度==2π,线段AC扫过的扇形面积==12π;(Ⅱ)解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=6,在Rt△AB′C′中,AC′==6,∴BC′=6﹣6,∵∠C′BE=180°﹣∠ABC=90°,∠BC′E=90°﹣45°=45°,∴△BC′E是等腰直角三角形,∴C′E=BC′=12﹣6,∴D′E=C′D′﹣EC′=6﹣(12﹣6)=6﹣6;(Ⅲ)如图3,连接DB,AC相交于点O,则O是DB的中点,∵F为线段BC′的中点,∴FO=AB′=3,∴F在以O为圆心,3为半径的圆上运动,∵DO=3,∴DF最大值为3+3,DF的最小值为3﹣3,∴DF长的取值范围为3﹣3≤DF≤3+3.11.如图所示,A是线段BF延长线上的点,矩形BCDF的外接圆⊙O过AC的中点E.(1)求证:BD=AF;(2)若BC=4,DC=3,求tan∠BAC的值;(3)若AD是⊙O的切线,求的值.解:(1)在矩形BCDF中,BD=FC,BF=DC,∠FDC=90°,∴FC为圆O的直径,∴∠FEC=∠FDC=90°,即FE⊥AC,∵E是AC的中点,∴AF=FC,∴BD=AF;(2)在Rt△BCD中,BC=4,DC=3,根据勾股定理得:BD===5=AF,BF=DC=3,∴AB=AF+BF=5+3=8,∴在Rt△ABC中,tan∠BAC===;(3)∵∠BCD=90°,∴BD是⊙O的直径,∵AD是⊙O的切线,∴∠ADB=90°=∠BCD,∵∠ABD=∠BDC,∴△ABD∽△BDC,设DC=BF=a,AF=FC=c,∵=,∴a2+ac﹣c2=0,解得:a=c,(负值舍去),∴=.12.如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.(1)求证:AM=MD;(2)填空:①若DN=,则△ABC的面积为;②当四边形COMD为平行四边形时,∠C的度数为45°.(1)证明:连接OD,∵DN为⊙O的切线,∴∠ODM=∠ABC=90°,在Rt△BOM与Rt△DOM中,,∴Rt△BOM≌Rt△DOM(HL),∴BM=DM,∠DOM=∠BOM=,∵∠C=,∴∠BOM=∠C,∴OM∥AC,∵BO=OC,∴BM=AM,∴AM=DM;(2)解:①∵OD=OC=1,DN=,∴tan∠DON==,∴∠DON=60°,∴∠C=30°,∵BC=2OC=2,∴AB=BC=,∴△ABC的面积为AB•BC=×2=;②当四边形COMD为平行四边形时,∠C的度数为45°,理由:∵四边形COMD为平行四边形,∴DN∥BC,∴∠DON=∠NDO=90°,∴∠C=DON=45°,故答案为:,45°.13.如图1和2,▱ABCD中,AB=3,BC=15,tan∠DAB=.点P为AB延长线上一点,过点A 作⊙O 切CP 于点P ,设BP =x .(1)如图1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接指出PE 与BC 的位置关系;(2)当x =4时,如图2,⊙O 与AC 交于点Q ,求∠CAP 的度数,并通过计算比较弦AP 与劣弧长度的大小;(3)当⊙O 与线段AD 只有一个公共点时,直接写出x 的取值范围.解:(1)如图1,AP 经过圆心O ,∵CP 与⊙O 相切于P ,∴∠APC =90°,∵▱ABCD ,∴AD ∥BC ,∴∠PBC =∠DAB ∴=tan ∠PBC =tan ∠DAB =,设CP =4k ,BP =3k ,由CP 2+BP 2=BC 2,得(4k )2+(3k )2=152,解得k 1=﹣3(舍去),k 2=3,∴x =BP =3×3=9,故当x =9时,圆心O 落在AP 上;∵AP 是⊙O 的直径,∴∠AEP =90°,∴PE ⊥AD ,∵▱ABCD ,∴BC ∥AD∴PE ⊥BC(2)如图2,过点C 作CG ⊥AP 于G ,∵▱ABCD ,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1814.如图1,已知⊙O外一点P向⊙O作切线PA,点A为切点,连接PO并延长交⊙O于点B,连接AO并延长交⊙O于点C,过点C作CD⊥PB,分别交PB于点E,交⊙O于点D,连接AD.(1)求证:△APO~△DCA;(2)如图2,当AD=AO时①求∠P的度数;②连接AB,在⊙O上是否存在点Q使得四边形APQB是菱形.若存在,请直接写出的值;若不存在,请说明理由.解:(1)证明:如图1,∵PA切⊙O于点A,AC是⊙O的直径,∴∠PAO=∠CDA=90°∵CD⊥PB∴∠CEP=90°∴∠CEP=∠CDA∴PB∥AD∴∠POA=∠CAO∴△APO~△DCA(2)如图2,连接OD,①∵AD=AO,OD=AO∴△OAD是等边三角形∴∠OAD=60°∵PB∥AD∴∠POA=∠OAD=60°∵∠PAO=90°∴∠P=90°﹣∠POA=90°﹣60°=30°②存在.如图2,过点B作BQ⊥AC交⊙O于Q,连接PQ,BC,CQ,由①得:∠POA=60°,∠PAO=90°∴∠BOC=∠POA=60°∵OB=OC∴∠ACB=60°∴∠BQC=∠BAC=30°∵BQ⊥AC,∴CQ=BC∵BC=OB=OA∴△CBQ≌△OBA(AAS)∴BQ=AB∵∠OBA=∠OPA=30°∴AB=AP∴BQ=AP∵PA⊥AC∴BQ∥AP∴四边形ABQP是平行四边形∵AB=AP∴四边形ABQP是菱形∴PQ=AB∴==tan∠ACB=tan60°=15.如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD 的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.(1)求证:EF是⊙O的切线;(2)连接DG,若AC∥EF时.①求证:△KGD∽△KEG;②若cos C=,AK=,求BF的长.解:(1)如图,连接OG.∵EG=EK,∴∠KGE=∠GKE=∠AKH,又OA=OG,∴∠OGA=∠OAG,∵CD⊥AB,∴∠AKH+∠OAG=90°,∴∠KGE+∠OGA=90°,∴EF是⊙O的切线.(2)①∵AC∥EF,∴∠E=∠C,又∠C=∠AGD,∴∠E=∠AGD,又∠DKG=∠GKE,∴△KGD∽△KEG;②连接OG,∵,AK=,设,∴CH=4k,AC=5k,则AH=3k∵KE=GE,AC∥EF,∴CK=AC=5k,∴HK=CK﹣CH=k.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即,解得k=1,∴CH=4,AC=5,则AH=3,设⊙O半径为R,在Rt△OCH中,OC=R,OH=R﹣3k,CH=4k,由勾股定理得:OH2+CH2=OC2,即(R﹣3)2+42=R2,∴,在Rt△OGF中,,∴,∴.16.如图,AB是⊙O的直径,AB=4,M为弧AB的中点,正方形OCGD绕点O旋转与△AMB 的两边分别交于E、F(点E、F与点A、B、M均不重合),与⊙O分别交于P、Q两点.(1)求证:△AMB为等腰直角三角形:(2)求证:OE=OF;(3)连接EF,试探究:在正方形OCGD绕点O旋转的过程中,△EMF的周长是否存在最小值?若存在,求出其最小值;若不存在,请说明理由.解(1)证明:∵AB是⊙O的直径,∴∠AMB=90°,∵M是弧AB的中点,∴=,∴MA=MB,∴△AMB为等腰直角三角形.(2)连接OM,由(1)得:∠ABM=∠BAM=45°,∠OMA=∠OMB=45°,∴,∴∠MOE+∠BOE=90°,∵∠COD=90°,∴∠MOE+∠MOF=90°,∴∠BOE=∠MOF,在△OBE和△OMF中,,△OBE≌△OMF(ASA),∴OE=OF(3)解:△EFM的周长有最小值.∵OE=OF,∴△OEF为等腰直角三角形,∴,∵△OBE≌△OMF,∴BE=MF,∴△EFM的周长=EF+MF+ME=EF+BE+ME=EF+MB=当OE⊥BM时,OE最小,此时,∴△EFM的周长的最小值为.。

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

九年级数学中考复习二次函数压轴题代数推理题中考真题含答案解析

代数推理题11.B(2019·温州改编)已知抛物线y=-x2+2x+6与x轴交于A,B两点(点A在点B的左侧).把点B向上2平移m(m>0)个单位得点B1,若点B1向左平移n(n>0)个单位,将与该抛物线上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数上的点B3重合.求m,n的值.2.B(2019·如皋)已知二次函数y=-x2+bx-c的图象与x轴的交点坐标为(m-2,0)和(2m+1,0).(1)若x<0时,y随x的增大而增大,求m的取值范围;(2)若y=1时,自变量x有唯一的值,求二次函数的解析式.3.B(2018·南通)在平面直角坐标系xOy中,将抛物线y=x2-2(k-1)x+k2-5k(k为常数)向右平移12个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值3,求k的值.2-3)和B(3,0).4.B(2019·海淀一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,(1)若抛物线在A,B两点间,从左到右上升,求a的取值范围;(2)结合函数图象判断:抛物线能否同时经过点M(-1+m,n),N(4-m,n)?若能,写出一个符合要求的抛物线的表达式和n的值;若不能,请说明理由.5.B(2019·南通)已知在同一直角坐标系中,若该二次函数=x2-4x+3a+2(a为常数)的图象在x≤4的部分与一次函数y=2x-1的图象有两个交点,求a的取值范围.6.B如图,平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1═关于点O对称,一次函数y2=k(x>0)的图象上,点A′与点Ax1x+n的图象经过点A′.过点A作AD⊥x轴,与函数y2的图象相交于点D,2以AD为一边向右侧作正方形ADEF,试说明函数y2的图象与线段EF的交点P一定在函数y1的图象上.7.B(2020·顺义区期末)在平面直角坐标系xOy中,抛物线y=1x2+nx-m与y轴交于点A,将点A向左m平移3个单位长度,得到点B,点B在抛物线上.(1)求抛物线的对称轴;(2)已知点P(-1,-m),Q(-3,1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.8.C(2019·通州区期中)已知二次函数y=ax2+bx+c(a<0)的图象经过(m+1,a),(m,b)两点.(1)求证:am+b=0;(2)若该二次函数的最大值为-1,当x=1时,y≥3a,求a的取值范围.4。

2020年中考九年级数学旋转压轴题专题复习(WORD版,包含答案)

2020年中考九年级数学旋转压轴题专题复习(WORD版,包含答案)

四川省渠县三中 2020 年中考九年级数学旋转压轴题专题复习练习1、填空或解答:点 B、C、E 在同一直线上,点 A、D 在直线 CE 的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线 AE、BD 交于点 F.(1)如图①,若∠BAC=60°,则∠AFB=;如图②,若∠BAC=90°,则∠ AFB= ;(2)如图③,若∠BAC=α,则∠AFB=(用含α的式子表示);(3)将图③中的△ABC绕点 C 旋转(点 F 不与点 A、B 重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠ α的数量关系是.请你任选其中一个结论证明.2、如图,等腰直角△ABC中,∠ABC=90°,点P 在AC 上,将△ABP绕顶点 B 沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3 时,求 PQ 的大小;(3)当点 P 在线段 AC 上运动时(P 不与 A 重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.3、如图 1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板 DEF 的直角顶点 D 放在AC 的中点上(直角三角板的短直角边为 DE,长直角边为 DF),将直角三角板 DEF 绕D 点按逆时针方向旋转.(1)在图 1 中,DE 交AB 于M,DF 交BC 于N.①证明 DM=DN;②在这一过程中,直角三角板 DEF 与△ABC的重叠部分为四边形 DMBN,请说明四边形 DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图 2 的位置,延长 AB 交DE 于M,延长 BC 交DF 于N,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图 3 的位置,延长 FD 交BC 于N,延长 ED 交AB 于M,DM=DN 是否仍然成立?若成立,请给出写出结论,不用证明.4、已知△ABC中,∠ACB=135°,将△ABC绕点A 顺时针旋转90°,得到△AED,连接 CD,CE.(1)求证:△A CD 为等腰直角三角形;(2)若BC=1,AC=2,求四边形 ACED 的面积.5、如图,在Rt△ABC中,∠A=90°,AB=3,tan∠B=,点P 在BC 边上,且BP=3.以点 P 为中心,将△ABC中按逆时针方向旋转90°至△A′B′C′,A′C′与 AC、BC 分别交于点 R、Q,B′C′与AC、BC 分别交于点 S、P.求:(1)线段PC′的长;(2)线段 RS 的长.6、如图,把一块含60°的三角尺 ACB 与边长为 2 的正方形 ACFG 按如图所示重叠在一起,∠B=30°.若把三角尺绕直角顶点 C 按顺时针方向旋转,使斜边 AB 恰好经过正方形 ACFG 的顶点 F,得△PCN,PC,PN 交AB 于D、E.(1)求∠BAC的度数;(2)△ACB至少旋转多少度才能得到△PCN?请通过计算说明理由;(3)试求出△ACB与△PCN的重叠部分(即四边形 CDEF)的面积(精确到 0.01).7、如图 1,△ABC与△DEF中,AB=AC,D 为BC 的中点,∠EDF+∠BAC=180°,直线DF 、 DE 分别交直线AB 、AC 于点P 、Q.(1)如图 2,∠BAC=60°,猜想 BP+QC 与BC 的关系,并说明理由;(2)当∠BAC=120°,BP+QC 与BC 的关系为;(3)当∠BAC=α,探究 BP+QC 与BC 的关系,并说明理由;(4)如图 3,当△DEF绕点 D 旋转时,其他条件不变,(3)中的结论是否一定成立?若成立,请你写出一个真命题;若不成立,请你画图说明.8、把两个全等的等腰直角三角形 ABC 和 EFG(其直角边长均为 4)叠放在一起(如图①),且使三角板 EFG 的直角顶点 G 与三角板 ABC 的斜边中点 O 重合.现将三角板 EFG 绕 O 点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形 CHGK 是旋转过程中两三角板的重叠部分(如图②).(1) 在上述旋转过程中,BH 与 CK 有怎样的数量关系四边形 CHGK 的面积有何变化?证明你发现的结论;(2) 连接 HK ,在上述旋转过程中,设 BH=x ,△GKH 的面积为 y ,求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;(3) 在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的?若存在,求出此时 x 的值;若不存在,说明理由.9、将两块含 30°角且大小相同的直角三角板如图 1 摆放.(1) 将图 1 中△A 1B 1C 绕点 C 顺时针旋转 45°得图 2,点 P 1 是 A 1C 与 AB 的交点,求证:CP 1=AP 1;(2) 将图 2 中△A 1B 1C 绕点 C 顺时针旋转 30°到△A 2B 2C (如图 3),点 P 2 是 A 2C与 AB 的交点.线段 CP 1 与 P 1P 2 之间存在一个确定的等量关系,请你写出这个关系式并说明理由; (3) 将图 3 中线段 CP 1 绕点 C 顺时针旋转 60°到 CP 3(如图 4),连接 P 3P 2,求证: P 3P 2⊥AB.10、如图,平面直角坐标系中,△ABC 为等边三角形,其中点 A 、B 、C 的坐标分别为(﹣3,﹣1)、(﹣3,﹣3)、(﹣3+,﹣2).现以 y 轴为对称轴作△ABC 的对称图形,得△A 1B 1C 1,再以 x 轴为对称轴作△A 1B 1C 1 的对称图形,得△A 2B 2C 2. (1) 直接写出点 C 1、C 2 的坐标; (2) 能否通过一次旋转将△ABC 旋转到△A 2B 2C 2 的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由); (3) 设当△ABC 的位置发生变化时,△A 2B 2C 2、△A 1B 1C 1 与△ABC 之间的对称关系始终保持不变.①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C 的坐标;②将△ABC绕点A 顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点 C 的坐标又是什么?11、如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点 C,连接 AF 和BE.(1)线段 AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图 a 中的△CEF绕点 C 旋转一定的角度,得到图 b,这时(1)中的结论还成立吗?作出判断并说明理由;(3)若将图 a 中的△ABC绕点C 旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.12、如图,已知△A BC 是等腰直角三角形,CD 是斜边AB 的中线,△ADC绕点D 旋转一定角度得到△A'DC',A'D 交AC 于点E,DC'交BC 于点F,连接EF,若,则的值?13、如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D 在线段 AC 上,点E 在线段 BC 的延长线上.将△DCE绕点C 旋转60°得到△D′CE′(点D 的对应点为点D′,点E 的对应点为点E′),连接AD′、BE′,过点 C 作CN⊥BE′,垂足为 N,直线 CN 交线段AD′于点 M,求MN 的长?14、如图,在等腰Rt△ABC中,P 是斜边 BC 的中点,以 P 为顶点的直角的两边分别与边 AB,AC 交于点 E,F,连接 EF.当∠EPF绕顶点 P 旋转时(点E 不与A, B 重合),△PEF也始终是等腰直角三角形,请你说明理由.答案:1、【解答】解:(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,∴△ABC∽△EDC,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD=180°﹣∠BAC﹣∠ABC=∠ACB,∴∠AFB=60°,同理可得:∠AFB=45°;(2)∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD,=180°﹣∠BAC﹣∠ABC=∠ACB,∵AB=AC,∠BAC=α,∴∠ACB=90°﹣,∴∠AFB=90°﹣.故答案为:∠AFB=90°.(3)图4 中:∠AFB=90°;图5 中:∠AFB=90°+.∠AFB=90°的证明如下:∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD,=180°﹣∠BAC﹣∠ABC=∠ACB,∵AB=AC,∠BAC=α,∴∠ACB=90°﹣,∴∠AFB=90°﹣.∠AFB=90°+的证明如下:∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠BDC=∠AEC,∴∠AFB=∠BDC+∠CDE+∠DEF,=∠CDE+∠CED=180°﹣∠DCE,∵AB=AC,EC=ED,∠BAC=∠DEC=α,∴∠DCE=90°﹣,∴∠AFB=180°﹣(90°﹣)=90°+.2、【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CPQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ 是等腰直角三角形,△PCQ 是直角三角形.(2)当AB=4,AP:PC=1:3 时,有AC=4,AP=,PC=3,∴PQ==2 .(3)存在 2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=PB,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有 2PB2=PA2+PC2.3、【解答】解:(1)①如图 1,连接 DB,在Rt△ABC中,AB=BC,AD=DC,∴DB=DC=AD,∠BDC=90°,∴∠ABD=∠C=45°,∵∠MDB+∠BDN=∠CDN+∠BDN=90°,∴∠MDB=∠NDC,∴△BMD≌△CND(ASA),∴DM=DN;②四边形 DMBN 的面积不发生变化;由①知△BMD≌△CND,∴S△BMD =S△CND,∴S四边形DMBN =S△DBN+S△DMB=S△DBN+S△DNC=S△DBC=S△ABC=×=;(2)DM=DN 仍然成立;证明:如图 2,连接 DB,在Rt△ABC 中,AB=BC,AD=DC,∴DB=DC,∠BDC=90°,∴∠DCB=∠DBC=45°,∴∠DBM=∠DCN=135°,∵∠NDC+∠CDM=∠BDM+∠CDM=90°,∴∠CDN=∠BDM,则在△BMD和△CND中,,∴△BMD≌△CND(ASA),∴DM=DN.(3)DM=DN.4、【解答】证明:(1)∵△AED是△ABC旋转90°得到的,∴△ABC≌△AED,∴∠CAD=90°,AC=AD,∠ADE=∠ACB=135°,∴△ACD 是等腰直角三角形;解:(2)∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,∴CD==2 ,由(1)知,∠ADE=135°,∴∠CDE=∠ADE﹣∠ADC=90°,∵D E=BC=1,∴S四边形ADEC =S△ACD+S△CDE=AC•AD+ CD•DE= ×2×2+×2×1=2+.5、【解答】解:(1)在Rt△ABC中,∠A=90°,AB=3,tan∠B=,∴AC=3× =4,BC===5,∵BP=3,∴PC=BC﹣BP=5﹣3=2,∵△ABC 按逆时针方向旋转90°得到△A′B′C′,∴PC′=PC=2;(2)由题意可知∠SPC=90°,∴∠PSC=∠B,在Rt△SPC中,∠SPC=90°,tan∠PSC=,PC=2∴SP=2÷= ,∴SC===,∴SC′=PC′﹣SP=,∵∠RSC′=∠PSC,∠C′=∠C,∴△RSC′∽△PSC,∴= ,即= ,解得RS=.6、【解答】解:(1)∠BAC=90°﹣30°=60°.(2)∵AC=CP=CF,又∠CPN=∠CAB=60°,∴△PCF 是等边三角形.∴∠PCF=60°.∴∠ACP=90°﹣∠PCF=30°,即△ABC 旋转30°时,得到△PCN.(3)在△ACD 中,∠ACD=30°,∠BAC=60°,∴∠ADC=90°,AD=AC=1,CD=AC•Sin60°=,∴PD=2﹣,DE=PD•tan60°=2﹣3.∴△PDE的面积为: PD•DE==CF•CP•sin60°=.又∵S△PCF,∴四边形DCFE 的面积为:﹣()≈1.67. 7、【解答】解:(1)BP+QC=BC;理由如下:过 D 作DM⊥AB 于 M,DN⊥AC 于 N,则∠MDN=∠PDQ=180°﹣∠BAC.∵∠B=∠C,BD=DC,∠DMB=∠DNC,∴△BDM≌△CDN,得 DM=DN,BM=NC.∵∠MDP=∠MDN﹣∠PDN,∠NDQ=∠PDQ﹣∠PDN,且∠MDN=∠PDQ,∴∠MDP=∠NDQ.又∵∠DMP=∠DNQ=90°,DM=DN,∴△DMP≌△DNQ,得 MP=NQ.∴BP+QC=BM+MP+NC﹣NQ=2BM.Rt△BDM中,∠B=60°,则BM=BD•cos∠B=BD,∴BP+QC=2BM=×2BD=BC.(2)BP+QC=BC.(证法可参照(1)(3))(3)BP+QC=BC•cos(90°﹣α).解法同(1),过 D 作DM⊥AB于M,DN⊥AC于N,则∠MDN=∠PDQ=180°﹣∠BAC.∵∠B=∠C,BD=DC,∠DMB=∠DNC,∴△BDM≌△CDN,得 DM=DN,BM=NC.∵∠MDP=∠MDN﹣∠PDN,∠NDQ=∠PDQ﹣∠PDN,且∠MDN=∠PDQ,∴∠MDP=∠NDQ,又∵∠DMP=∠DNQ=90°,DM=DN,∴△DMP≌△DNQ,得 MP=NQ.∴BP+QC=BM+MP+NC﹣NQ=2BM.Rt△BDM中,∠B=(180°﹣α)=90°﹣α,则BM=BD•cos∠B=BD•cos(90°﹣α);∴BP+QC=2BM=2BD•cos(90°﹣α)=BC•cos(90°﹣α).(4)当P、Q 分别在线段 BA、AC 上时,(3)的结论依然成立,即BP+QC 与BC 的关系为:BP+QC=BC•cos(90°﹣α).(证法同(3))当P、Q 在BA、AC 的延长线上时,(3)的结论不成立.如图 3,同(3)可得:BM=NC,MP=NQ.∴BP+CQ=BM+MP+NQ﹣NC=BM+MP+BM﹣MP=2BM=2NQ.因此(3)的结论不成立.8、【解答】解:(1)在上述旋转过程中,BH=CK,四边形 CHGK 的面积不变.证明:连接 CG,KH,∵△ABC 为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH 与∠CGK 均为旋转角,∴∠BGH=∠CGK,在△BGH 与△CGK 中,∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH =S△CGK.∴S四边形CHGK =S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4,即:S四边形CHGK的面积为 4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x,∴CH=4﹣x,CK=x.由S△GHK =S四边形CHGK﹣S△CHK,得y=4﹣x(4﹣x),∴y=x2﹣2x+4.由0°<α<90°,得到 BH 最大=BC=4,∴0<x<4;(3)存在.根据题意,得x2﹣2x+4= ×8,解这个方程,得 x1=1,x2=3,即:当x=1 或x=3 时,△GHK的面积均等于△ABC的面积的.9、【解答】(1)证明:过点 P1作CA 的垂线,垂足为D.易知:△CDP1为等腰直角三角形,△P1DA 是直角三角形,且∠A=30°,所以CP1=P1D,P1D= AP1,故CP1=AP1.(2)解:过点 P1 作CA2 的垂线,垂足为 E,易知:△P1EP2是等腰直角三角形,(其中∠2=∠A+∠P2CA=45°),因为△P1CE 是直角三角形,且∠1=30°,所以CP1=2P1E,P1E=P1P2,故CP1=P1P2.(3)证明:将图 3 中线段 CP1 绕点 C 顺时针旋转60°到CP3,易证:△CP1P2≌△CP3P2,于是∠CP3P2=∠CP1P2=105°,∴∠P1P2P3=360°﹣105°×2﹣60°=90°,故 P2P3⊥AB.10、解:(1)点C1、C2的坐标分别为(3﹣,﹣2)、(3﹣,2).(2)能通过一次旋转将△ABC旋转到△A2B2C2 的位置,所旋转的度数为180°;(3)①当△ABC向上平移 2 个单位时,△A1B1C1 与△A2B2C2 完全重合,此时点 C 的坐标为(﹣3+,0)(如图1);②当α=180时,△A1B1C1与△A2B2C2完全重合,此时点C 的坐标为(﹣3﹣,0)(如图 2).11、【解答】解:(1)AF=BE.证明:在△AFC和△BEC中,∵△ABC 和△CEF 是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°,∴△AFC≌△BEC.∴AF=BE.(2)成立.理由:在△AFC 和△BEC 中,∵△ABC 和△CEF 是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°,∴∠ACB﹣∠FCB=∠FCE﹣∠FCB,即∠ACF=∠BCE.∴△AFC≌△BEC,∴AF=BE.(3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.12、【解答】解:∵△ABC 是等腰直角三角形,CD 是斜边 AB 的中线,∴CD⊥AB,CD=AD,∠A=∠BCD=45°.又∵∠ADE=90°﹣∠CDE=∠CDF,∴△ADE≌△CDF (ASA)∴DE=DF.∵DA=DA′,DC=DC′,∴DE:DA′=DF:DC′,∴EF∥A′C′.∴△DEF∽△DA′C′,∴.∵,则,∴.13、【解答】解:①若将△DCE 绕点 C 顺时针旋转60°得到△D′CE′,如图中左边所示,过点 B 作E′C的垂线交其延长线于 F 点,过点D′作CM 的垂线交 CM 于H 点,过 A 点作CM 的垂线交其延长线于 G 点.∵∠ACD′=60°,∠ACB=∠D′CE′=90°,∴∠BCE′=360°﹣∠ACD′﹣∠ACB﹣∠D′CE′=120°.∴∠BCF=180°﹣∠BCE′=60°,BF=sin∠BCF•BC= ×10=,=BF•CE′=.∴S△BCE′∵∠ACG+∠BCN=90°,∠BCN+∠CBN=90°,∴∠ACG=∠CBN,又∵AC=BC,∴Rt△ACG≌Rt△CBN,∴AG=CN,CG=BN.同理△CD′H≌△E′CN,D′H=CN,CH=NE′.∴AG=D′H,在△AMG 和△D′MH 中,∴△AMG≌△D′MH,∴HM=MG,∴M为GH 中点,CM=(CG+CH)= (NB+NE′)=BE′.又∵BF=,∠BCF=60°,∴CF=5,FE′=CF+CE′=11,∴BE′== =14,∴CM=BE′=7.又∵SCN•BE′,△BCE′=÷BE′=,∴CN=2S△BCE′∴MN=CM+CN=7.②同理,当△CDE逆时针旋转60°时,MN 如图中右边所示,MN=7﹣.故答案为:7+或7﹣.14、【解答】解:理由如下:连接 PA,∵PA 是等腰△ABC 底边上的中线,∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).又AB⊥AC,∴∠1=90°﹣∠PAC,∠C=90°﹣∠PAC,∴∠1=∠C(等量代换).同理可得PA⊥PC,PE⊥PF,∴∠2=90°﹣∠APF,∠3=90°﹣∠APF,∴∠2=∠3.由 PA 是Rt△ABC 斜边上的中线,得:PA=BC=PC(直角三角形斜边上的中线等于斜边的一半).在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,∴△PAE≌△PCF(ASA).∴PE=PF(全等三角形对应边相等),则△PEF始终是等腰直角三角形.。

2020届天津市南开区九年级数学中考压轴题练习(有答案)(加精)

九年级数学中考综合题练习1.今年“五一”小黄金周期间,我市旅游公司组织50名游客分散到A、B、C三个景点游玩.三个景点的门所购买的y.(1)写出y与x之间的函数关系式;(2)设购买门票总费用为w(元),求出w与x之间的函数关系式;(3)若每种票至少购买1张,且A种票不少于10张,则共有几种购票方案?并求出购票总费用最少时,购买A、B、C三种票的张数.2.A、B两个水果市场各有荔枝13吨,现从A、B向甲、乙两地运送荔枝,其中甲地需要荔枝14吨,乙地需要荔枝12吨,从A到甲地的运费为50元/吨,到乙地的运费为30元/吨,从B到甲地的运费为60元/吨,到乙地的运费为45元/吨.(1)设A地到甲地运送荔枝x吨,请完成下表:(2)设总运费为W(3)怎样调送荔枝才能使运费最少?3.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y (单位:m3)(14.某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?5.某市某楼盘准备以每平方米6 000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4 860元的均价开盘销售.(1)求平均每次下调的百分率.6.如图,要设计一个宽20cm,长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为2:3,如果要使彩条所占面积是图案面积9/25,应如何设计彩条的宽度?7.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价x(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价﹣进价)×售出件数)8.如图是一种窗框的设计示意图,矩形ABCD被分成上下两部分,上部的矩形CDFE由两个正方形组成,制作窗框的材料总长为6m.(1)若AB为1m,直接写出此时窗户的透光面积 m2;(2)设AB=x,求窗户透光面积S关于x的函数表达式,并求出S的最大值.9.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.(1)判断直线BC与⊙O的位置关系并证明;(2)若⊙O的半径为2,AC=3,求BD的长度.10.已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.11.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.12.如图,DC是⊙O的直径,点B在圆上,直线AB交CD延长线于点A,且∠ABD=∠C.(1)求证:AB是⊙O的切线;(2)若AB=4cm,AD=2cm,求tanA的值和DB的长.13.如图,⊙O是△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求证:BE是⊙O的切线;(3)求DE的长.14.如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点F,过点D作⊙O的切线交AC于E.(1)求证:AD2=AB•AE;(2)若AD=2,AF=3,求⊙O的半径.15.如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使CD=AC,连接AD交⊙O于点E,连接BE与AC交于点F.(1)判断BE是否平分∠ABC,并说明理由;(2)若AE=6,BE=8,求EF的长.16.已知抛物线y=x2﹣2mx+m2+m﹣1(m是常数)的顶点为P,直线l:y=x﹣1(1)求证:点P在直线l上;(2)当m=﹣3时,抛物线与x轴交于A,B两点,与y轴交于点C,与直线l的另一个交点为Q,M是x轴下方抛物线上的一点,∠ACM=∠PAQ(如图),求点M的坐标;(3)若以抛物线和直线l的两个交点及坐标原点为顶点的三角形是等腰三角形,请直接写出所有符合条件的m的值.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.18.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.19.如图,已知矩形OABC在坐标系中,A(0,4),C(2,0),等腰Rt△OAD,D(-4,0),∠E=90°.(1)直接写出点B、E坐标:B(,),E(,)(2)将△ODE从O点出发,沿x轴正方形平移,速度为1个单位/秒,当D与C重合时停止运动,设△ODE 与矩形OABC重叠面积为S.①当t为几秒时,AE+BE值最小?当AE+BE最小时,此时重叠面积S为多少?②找出S与t之间的函数关系式.20.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.(1)求直线AC的解析式.(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE 折叠后点O落在边AB上O/处?参考答案1.略2.解:(1)如下表:故答案为:13﹣x,14﹣x,x﹣1.(2)根据题意得,W=50x+30(13﹣x)+60(14﹣x)+45(x﹣1)=5x+1185,由,解得:1≤x≤13.(3)在函数W=5x+1185中,k=5>0,∴W随x的增大而增大,当x=1时,W取得最小值,最小值为5×1+1185=1190.此时A调往甲地1吨,调往乙地12吨,B调往甲地13吨.3.解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).4.解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英说法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,此时x≠72﹣2x,∴面积最大的不是正方形.5.解:(1)设平均每次下调的百分率为x,则6000(1-x)2=4860,解得:x1=0.1,x2=1.9(舍去).∴平均每次下调的百分率为10%.(2)方案①可优惠:4860×100×(1-0.98)=9720(元),方案②可优惠:100×80=8000(元),∴方案①更优惠.6.解:设横彩条宽为2x cm,则竖彩条宽为3x cm,由题意得(20-4x)(30-6x)=×600,解得x1=1,x2=9 当x=9时,宽为18∵18×2>20(舍去)∴x=1 答:使横彩条宽为7 cm,竖彩条宽为3 cm7.解:(1)设售价定为x元时,每天的利润为140元,根据题意得:(x﹣5)[32﹣0.5×8(x﹣9)]=140,解得:x1=12,x2=10,答:售价定为12元或10元时,每天的利润为140元;(2)根据题意得;y=(x﹣5)[32﹣0.5×8(x﹣9)],即y=﹣4x2+88x﹣340;y=﹣4(x﹣11)2+144,故当x=11时,y最大=144元,答:售价为11元时,利润最大,最大利润是144元.8.解:(1)∵AB=1,∴AD=(6﹣3﹣0.5)×=,∴窗户的透光面积=AB•AD=×1=.故答案为:.(2)∵AB=x,∴AD==3﹣x.∴S=x(3﹣x)=﹣x2+3x.∵S=﹣x2+3x=﹣(x﹣)2+,∴当x=时,S的最大值=.9.解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC的平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD的外端点D,∴BC与⊙O相切.(2)由(1)知OD∥AC.∴△BDO∽△BCA.∴OB:AB=OD:AC.∵⊙O的半径为2,∴DO=OE=2,AE=4.∴(BE+2):(BE+4)=2:3.∴BE=2.∴BO=4,∴在Rt△BDO中,BD=2.10.解:(1)如图①,连接OQ.∵线段PQ所在的直线与⊙O相切,点Q在⊙O上,∴OQ⊥OP.又∵BP=OB=OQ=2,∴PQ=2,即PQ=2;(2)OQ⊥AC.理由如下:如图②,连接BC.∵BP=OB,∴点B是OP的中点,又∵PC=CQ,∴点C是PQ的中点,∴BC是△PQO的中位线,∴BC∥OQ.又∵AB是直径,∴∠ACB=90°,即BC⊥AC,∴OQ⊥AC.(3)如图②,PC•PQ=PB•PA,即0.5PQ2=2×6,解得PQ=2.11.12.13.(1)证明:∵BD=BA,∴∠BDA=∠BAD.∵∠BCA=∠BDA,∴∠BCA=∠BAD.(2)证明:连结OB,如图,∵∠BCA=∠BDA,又∵∠BCE=∠BAD,∴∠BCA=∠BCE,∵OB=OC,∴∠BCO=∠CBO,∴∠BCE=∠CBO,∴OB∥ED.∵BE⊥ED,∴EB⊥BO.∴BE是⊙O的切线.(3)解:∵AC是⊙O的直径,∴∠ABC=90°,∴AC===13.∵∠BDE=∠CAB,∠BED=∠CBA=90°,∴△BED∽△CBA,∴,即,∴DE=.14.解:(1)如图,连接OD,DF.∵AB是直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=DC,∵AO=OB,∴OD∥AC,DO=AC,∵DE是切线,∴OD⊥DE,∵OD∥AC,∴DE⊥AC,∴∠AED=90°,∵∠DAE=∠DAC,∠AED=∠ADC=90°,∴△ADE∽△ACD,∴=,∴AD2=AE•AC=AB•AE.(2)∵AB=AC,∴∠B=∠C,∵∠DFC=∠B,∴∠C=∠DFC,∴DF=DC,∵DE⊥CF,∴EF=EC,设FE=EC=x,∵DE是切线∴DE2=EF•EA=AD2﹣AE2,∴x(x+3)=(2)2﹣(x+3)2,∴x=,∴AC=AF+FC=3+=,由(1)可知OD=AC=,∴⊙O的半径为.15.解:(1)BE平分∠ABC. 理由:∵CD=AC,∴∠D=∠CAD.∵AB=AC,∴∠ABC=∠ACB ∵∠EBC=∠CAD,∴∠EBC=∠D=∠CAD.∵∠ABC=∠ABE+∠EBC,∠ACB=∠D+∠CAD,∴∠ABE=∠EBC,即BE平分∠ABC.(2)由(1)知∠CAD=∠EBC =∠ABE. ∵∠AEF=∠AEB,∴△AEF∽△BEA.∴,∵AE=6, BE=8.∴EF=.16.17.18.19.略20.略。

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。

2019-2020年九年级下学期中考数学压轴题汇总

2019-2020年九年级下学期中考数学压轴题汇总如图1,在平面直角坐标系xOy 中,顶点为M 的抛物线y =ax 2+bx (a >0)经过点A 和x 轴正半轴上的点B ,AO =BO =2,∠AOB =120°.(1)求这条抛物线的表达式;(2)连结OM ,求∠AOM 的大小;(3)如果点C 在x 轴上,且△ABC 与△AOM 相似,求点C 的坐标.例2 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.例3 2012年黄冈市中考模拟第25题如图1,已知抛物线的方程C 1:1(2)()y x x m m=-+- (m >0)与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线C 1过点M (2, 2),求实数m 的值;(2)在(1)的条件下,求△BCE 的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H ,使得BH +EH 最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.图1例4 2010年义乌市中考第24题如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q 两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2例5 2009年临沂市中考第26题如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点.(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PM⊥x轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得△DCA的面积最大,求出点D的坐标.,图1例6 2008年苏州市中考第29题图1因动点产生的梯形问题例1 2012年上海市松江区中考模拟第24题已知直线y=3x-3分别与x轴、y轴交于点A,B,抛物线y=ax2+2x+c经过点A,B.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)记该抛物线的对称轴为直线l ,点B 关于直线l 的对称点为C ,若点D 在y 轴的正半轴上,且四边形ABCD 为梯形.①求点D 的坐标;②将此抛物线向右平移,平移后抛物线的顶点为P ,其对称轴与直线y =3x -3交于点E ,若73t a n =∠D P E ,求四边形BDEP 的面积.图1例2 2012年衢州市中考第24题如图1,把两个全等的Rt △AOB 和Rt △COD 方别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线y=ax 2+bx +c 经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点P 为线段OC 上的一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.图1例 3 2011年义乌市中考第24题已知二次函数的图象经过A (2,0)、C (0,12) 两点,且对称轴为直线x =4,设顶点为点P ,与x 轴的另一交点为点B .(1)求二次函数的解析式及顶点P 的坐标;(2)如图1,在直线 y =2x 上是否存在点D ,使四边形OPBD 为等腰梯形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)如图2,点M 是线段OP 上的一个动点(O 、P 两点除外),以每秒2个单位长度的速度由点P 向点O 运动,过点M 作直线MN //x 轴,交PB 于点N . 将△PMN 沿直线MN 对折,得到△P 1MN . 在动点M 的运动过程中,设△P 1MN 与梯形OMNB 的重叠部分的面积为S ,运动时间为t 秒,求S 关于t 的函数关系式.图1 图2例4 2010年杭州市中考第24题如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114x +,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上.(1) 写出点M 的坐标;(2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时.① 求t 关于x 的函数解析式和自变量x 的取值范围;② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值.图1例5 2009年广州市中考第25题如图1,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),△ABC 的面积为45. (1)求该二次函数的关系式;(2)过y 轴上的一点M (0,m )作y 轴的垂线,若该垂线与△ABC 的外接圆有公共点,求m 的取值范围;(3)在该二次函数的图象上是否存在点D ,使以A 、B 、C 、D 为顶点的四边形为直角梯形?若存在,求出点D 的坐标;若不存在,请说明理由.图1因动点产生的直角三角形问题例1 2013年山西省中考第26题如图1,抛物线213442y x x =--与x 轴交于A 、B 两点(点B 在点A 的右侧),与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q .(1)求点A 、B 、C 的坐标;(2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由;(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.图1例2 2012年广州市中考第24题如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图1例3 2012年杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数y =k (x 2+x -1)的图象交于点A (1,k )和点B(-1,-k ).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y 随x 增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值. 例4 2011年浙江省中考第23题设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.图1例5 2010年北京市中考第24题在平面直角坐标系xOy 中,抛物线22153244m m y x x m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上.(1)求点B 的坐标;(2)点P 在线段OA 上,从点O 出发向点A 运动,过点P 作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当点P 运动时,点C 、D 也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若点P 从点O 出发向点A 作匀速运动,速度为每秒1个单位,同时线段OA 上另一个点Q 从点A 出发向点O 作匀速运动,速度为每秒2个单位(当点Q 到达点O 时停止运动,点P 也停止运动).过Q 作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当点Q 运动时,点M 、N 也随之运动).若点P 运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.图1例6 2009年嘉兴市中考第24题如图1,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =.(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值;(3)探究:△ABC 的最大面积?图1例 7 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1例8 2008年河南省中考第23题如图1,直线434+-=x y 和x 轴、y 轴的交点分别为B 、C ,点A 的坐标是(-2,0). (1)试说明△ABC 是等腰三角形;(2)动点M 从A 出发沿x 轴向点B 运动,同时动点N 从点B 出发沿线段BC 向点C 运动,运动的速度均为每秒1个单位长度.当其中一个动点到达终点时,他们都停止运动.设M运动t 秒时,△MON 的面积为S .① 求S 与t 的函数关系式;② 设点M 在线段OB 上运动时,是否存在S =4的情形?若存在,求出对应的t 值;若不存在请说明理由;③在运动过程中,当△MON 为直角三角形时,求t 的值.图1因动点产生的相切问题例 1 2013年上海市杨浦区中考模拟第25题如图1,已知⊙O的半径长为3,点A是⊙O上一定点,点P为⊙O上不同于点A的动点.(1)当1A=时,求AP的长;tan2(2)如果⊙Q过点P、O,且点Q在直线AP上(如图2),设AP=x,QP=y,求y关于x的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4A=时(如图3),存在⊙M与⊙O相内切,同时与⊙Qtan3相外切,且OM⊥OQ,试求⊙M的半径的长.图1 图2 图3例2 2012年河北省中考第25题如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA =90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t 秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.例3 2012年无锡市中考模拟第28题如图1,菱形ABCD的边长为2厘米,∠DAB=60°.点P从AAC向C作匀速运动;与此同时,点Q也从点A出发,以每秒1厘米的速度沿射线作匀速运动.当点P到达点C时,P、Q都停止运动.设点P运动的时间为t秒.(1)当P异于A、C时,请说明PQ//BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?图一因动点产生的等腰三角形问题例1 2013年上海市虹口区中考模拟第25题如图1,在Rt △ABC 中,∠A =90°,AB =6,AC =8,点D 为边BC 的中点,DE ⊥BC 交边AC 于点E ,点P 为射线AB 上的一动点,点Q 为边AC 上的一动点,且∠PDQ =90°.(1)求ED 、EC 的长;(2)若BP =2,求CQ 的长;(3)记线段PQ 与线段DE 的交点为F ,若△PDF 为等腰三角形,求BP 的长.图1 备用图(1)求点B 的坐标;(2)求经过A 、O 、B 的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P ,使得以点P 、O 、B 为顶点的三角形是等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.图1例4 2011年盐城市中考第28题如图1,已知一次函数y =-x +7与正比例函数43y x的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1例5 2010年南通市中考第27题如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1例 6 2009年江西省中考第25题如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1 图2 图3几何证明及通过几何计算进行说理问题例1 2013年上海市黄浦区中考模拟第24题已知二次函数y=-x2+bx+c的图像经过点P(0, 1)与Q(2, -3).(1)求此二次函数的解析式;(2)若点A是第一象限内该二次函数图像上一点,过点A作x轴的平行线交二次函数图像于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,且所得四边形ABCD恰为正方形.①求正方形的ABCD的面积;②联结PA、PD,PD交AB于点E,求证:△PAD∽△PEA.例2 2013年江西省中考第24题某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:(1)操作发现:在等腰△ABC中,AB=AC,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连结MD和ME,则下列结论正确的是__________(填序号即可).①AF=AG=12AB;②MD=ME;③整个图形是轴对称图形;④MD⊥ME.(2)数学思考:在任意△ABC中,分别以AB、AC为斜边,向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连结MD和ME,则MD与ME有怎样的数量关系?请给出证明过程;(3)类比探究:在任意△ABC中,仍分别以AB、AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连结MD和ME,试判断△MDE的形状.答:_________.图1代数计算及通过代数计算进行说理问题例1 2013年南京市中考第26题已知二次函数y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图像与x轴总有两个公共点;(2)设该函数的图像的顶点为C,与x轴相交于A、B两点,与y轴交于点D.①当△ABC的面积等于1时,求a的值②当△ABC的面积与△ABD的面积相等时,求m的值.例2 2013年南昌市中考第25题已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0).当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推(1)求a、b的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(_____,_____);依此类推第n条抛物线y n的顶点坐标为(_____,_____)(用含n的式子表示);所有抛物线的顶点坐标满足的函数关系式是________________;(3)探究下列结论:①若用A n-1 A n表示第n条抛物线被x轴截得的线段的长,直接写出A0A1的值,并求出A n-1 A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.备用图(仅供草稿使用)因动点产生的平行四边形问题例1 2013年上海市松江区中考模拟第24题如图1,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.图1例2 2012年福州市中考第21题如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C 以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2例3 2012年烟台市中考第26题如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1, 0)、C(3, 0)、D(3, 4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P、Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G ,当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1例4 2011年上海市中考第24题已知平面直角坐标系xOy (如图1),一次函数334y x =+的图象与y 轴交于点A ,点M 在正比例函数32y x =的图象上,且MO =MA .二次函数 y =x 2+bx +c 的图象经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图象上,点D 在一次函数334y x =+的图象上,且四边形ABCD 是菱形,求点C 的坐标.图1例5 2011年江西省中考第24题将抛物线c 1:2y =x 轴翻折,得到抛物线c 2,如图1所示.(1)请直接写出抛物线c 2的表达式;(2)现将抛物线c 1向左平移m 个单位长度,平移后得到新抛物线的顶点为M ,与x 轴的交点从左到右依次为A 、B ;将抛物线c 2向右也平移m 个单位长度,平移后得到新抛物线的顶点为N ,与x 轴的交点从左到右依次为D 、E .①当B 、D 是线段AE 的三等分点时,求m 的值;②在平移过程中,是否存在以点A 、N 、E 、M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.图1例6 2010年山西省中考第26题在直角梯形OABC 中,CB //OA ,∠COA =90°,CB =3,OA =6,BA =.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系.(1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2EB ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一点N ,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.图1 图2 例7 2009年江西省中考第24题如图1,抛物线322++-=x x y 与x 轴相交于A 、B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;(2)连结BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF //DE 交抛物线于点F ,设点P 的横坐标为m .①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设△BCF 的面积为S ,求S 与m 的函数关系.图1因动点产生的线段和差问题例1 2013年天津市中考第25题在平面直角坐标系中,已知点A(-2,0),B(0,4),点E在OB上,且∠OAE=∠OBA.(1)如图1,求点E的坐标;(2)如图2,将△AEO沿x轴向右平移得到△AE′O′,连结A′B、BE′.①设AA′=m,其中0<m<2,使用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).图1 图2例2 2012年滨州市中考第24题如图1,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2, -4 )、O(0, 0)、B(2, 0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.图1例3 2012年山西省中考第26题如图1,在平面直角坐标系中,抛物线y =-x 2+2x +3与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求直线AC 的解析式及B 、D 两点的坐标;(2)点P 是x 轴上的一个动点,过P 作直线l //AC 交抛物线于点Q .试探究:随着点P 的运动,在抛物线上是否存在点Q ,使以A 、P 、Q 、C 为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q 的坐标;若不存在,请说明理由;(3)请在直线AC 上找一点M ,使△BDM 的周长最小,求出点M 的坐标.因动点产生的面积问题例1 2013年苏州市中考第29题如图1,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.图1图1例 2 2012年菏泽市中考第21题如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.图1例 3 2012年河南省中考第23题如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.图1例 4 2011年南通市中考第28题如图1,直线l 经过点A (1,0),且与双曲线m y x=(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和m y x=-(x <0)于M 、N 两点. (1)求m 的值及直线l 的解析式;(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.例5 2010年广州市中考第25题如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =-+交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.图1图1例 6 2010年扬州市中考第28题如图1,在△ABC中,∠C=90°,A C=3,BC=4,CD是斜边AB上的高,点E在斜边AB 上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.(1)求线段AD的长;(2)若EF⊥AB,当点E在斜边AB上移动时,①求y与x的函数关系式(写出自变量x的取值范围);②当x取何值时,y有最大值?并求出最大值.(3)若点F在直角边AC上(点F与A、C不重合),点E在斜边AB上移动,试问,是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.图1 备用图例7 2009年兰州市中考第29题如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ 能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1 图2 由比例线段产生的函数关系问题例1 2013年宁波市中考第26题如图1,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(-4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P 、D 、B 三点作⊙Q ,与y 轴的另一个交点为E ,延长DQ交⊙Q 于F ,连结EF 、BF .(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A 、B 两点)上时.①求证:∠BDE =∠ADP ;②设DE =x ,DF =y ,请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B 、D 、F 为顶点的直角三角形,满足两条直角边之比为2∶1?如果存在,求出此时点P 的坐标;如果不存在,请说明理由. 图1例2 2012年上海市徐汇区中考模拟第25题在Rt △ABC 中,∠C =90°,AC =6,53sin B ,⊙B 的半径长为1,⊙B 交边CB 于点P ,点O 是边AB 上的动点.(1)如图1,将⊙B 绕点P 旋转180°得到⊙M ,请判断⊙M 与直线AB 的位置关系;(2)如图2,在(1)的条件下,当△OMP 是等腰三角形时,求OA 的长;(3)如图3,点N 是边BC 上的动点,如果以NB 为半径的⊙N 和以OA 为半径的⊙O 外切,设NB =y ,OA =x ,求y 关于x 的函数关系式及定义域.。

2019-2020年九年级数学中考 二次函数压轴题专题复习(含答案)

2019-2020年九年级数学中考二次函数压轴题专题复习(含答案)1、已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.(1)求的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=0.5x+b(b<k)与此图象有两个公共点时,b的取值范围.2、已知函数y1=x,y2=x2+bx+c,ɑ,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.(1)若,求函数y2的解析式;(2)在(1)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为1/12时,求t的值;(3)若0<ɑ<β<1,当0<t<1时,试确定T,ɑ,β三者之间的大小关系,并说明理由.3.如图,抛物线F:y=ax2+bx+c的顶点为P,抛物线:与y轴交于点A,与直线OP交于点B.过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F′:y=a/x2+b/x+c/,抛物线F′与x轴的另一个交点为C.⑴当a=1,b=-2,c=3时,求点C的坐标(直接写出答案);⑵若a、b、c满足了b2=2ac.①求b:b′的值;②探究四边形OABC的形状,并说明理由.4.已知关于x的二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记△PCD的面积为S1,△PAB的面积为S2,当0<a<1时,求证:S1- S2为常数,并求出该常数.5.已知二次函数y=x2+ax+a-2.(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;(2)设a <0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式;(3)在满足第(2)问的条件下,若此二次函数图象与x轴交于A、B两点,在函数图象上是否存在点P,使得△PAB的面积为,若存在求出P点坐标,若不存在请说明理由.6.已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最大值.7.如图,经过点A(0,-4)的抛物线y=0.5x2+bx+c与x轴相交于点B(-1,0)和C,O为坐标原点.(1)求抛物线的解析式;(2)将抛物线y=0.5x2+bx+c向上平移3.5个单位长度、再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围;(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.8.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO-tan∠CBO=1..(1)求证:n+4m=0;(2)求m,n的值;(3)当p﹥0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.9.已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A (x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想.(3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想.(平面内两点间的距离公式).10.如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A ,k ;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=-0.25x2的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.11.已知:函数y=ax2-(3a+1)x+2a+1(a为常数).(1)若该函数图象与坐标轴只有两个交点,求a的值;(2)若该函数图象是开口向上的抛物线,与x轴相交于点A(x1,0),B(x2,0)两点,与y轴相交于点C,且x2-x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.12.如图①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).(1)当m=﹣1,n=4时,k= ,b= ;当m=﹣2,n=3时,k= ,b= ;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.①当m=﹣3,n>3时,求的值(用含n的代数式表示);②当四边形AOED为菱形时,m与n满足的关系式为;当四边形AOED为正方形时,m= ,n= .13.已知抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).(1)当h=1,k=2时,求抛物线的解析式;(2)若抛物线y=tx2(t≠0)也经过A点,求a与t之间的关系式;(3)当点A在抛物线y=x2﹣x上,且﹣2≤h<1时,求a的取值范围.参考答案1.2.3.4.5.6.7.解:(1)将A(0,-4)、B(-2,0)代入抛物线y=0.5x2+bx+c中,得:0+c=-4 1 2 ×4-2b+c=0,解得: b=-1 c=-4∴抛物线的解析式:y=0.5x2-x-4.(2)由题意,新抛物线的解析式可表示为:y=0.5(x+m)2-(x+m)-4+3.5,即:y=0.5x2+(m-1)x+0.5m2-m-0.5 ;它的顶点坐标P:(1-m,-1);由(1)的抛物线解析式可得:C(4,0);那么直线AB:y=-2x-4;直线AC:y=x-4;当点P在直线AB上时,-2(1-m)-4=-1,解得:m=2.5;当点P在直线AC上时,(1-m)-4=-1,解得:m=-2;∴当点P在△ABC内时,-2<m<2.5;又∵m>0,∴符合条件的m的取值范围:0<m<2.5 .(3)由A(0,-4)、B(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°;∴∠ONB=∠NBA+OAB=∠ACB=∠OMB+∠OAB,即∠ONB=∠OMB;如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,∴△ABN∽△AM1B,得:AB2=AN•AM1;易得:AB2=(-2)2+42=20,AN=OA-ON=4-2=2;∴AM1=20÷2=10,OM1=AM1-OA=10-4=6;而∠BM1A=∠BM2A=∠ABN,∴OM1=OM2=6,AM2=OM2-OA=6-4=2.综上,AM的长为6或2.8.9.(3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下:①当k=0时,则函数的图象为直线y=1,由y=x2,y=1,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;②当k=1时,则一次函数为直线y=x+1,由y=x2,y=x+1,得x2﹣x﹣1=0,∴x1+x2=1,x1x2=﹣1,∴AB=AC=|x2﹣x1|==,∴AB2=10,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(x1+1)2+(x2+1)2=x12+x22+(x12+2x1+1)+(x22+2x2+1)=2(x12+x22)+2(x1+x2)+2=2(1+2)+2×1+2=10,∴AB2=OA2+OB2,∴△AOB是直角三角形;③当k为任意实数,△AOB仍为直角三角形.由y=x2,y=kx+1,得x2﹣kx﹣1=0,∴x1+x2=k,x1x2=﹣1,∴AB2=(x1﹣x2)2+(y1﹣y2)2=(x1﹣x2)2+(kx1﹣kx2)2=(1+k2)(x1﹣x2)2=(1+k2)[(x1+x2)2﹣4x1x2]=(1+k2)(4+k2)=k4+5k2+4,∵OA2+OB2=x12+y12+x22+y22=x12+x22+y12+y22=x12+x22+(kx1+1)2+(kx2+1)2=x12+x22+(k2x12+2kx1+1)+(k2x22+2kx2+1)=(1+k2)(x12+x22)+2k(x1+x2)+2 =(1+k2)(k2+2)+2kk+2=k4+5k2+4,∴AB2=OA2+OB2,∴△AOB为直角三角形.10.11.12.13.-----如有帮助请下载使用,万分感谢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年中考数学压轴题精选(九)及答案资料81.(08广东茂名25题)(本题满分10分)如图,在平面直角坐标系中,抛物线y =-32x 2+b x +c 经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5.(1)求b 、c 的值;(4分)(2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形;(3分)(3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)解:(08广东茂名25题解析)解:(1)解法一: ∵抛物线y =-32x 2+b x +c 经过点A (0,-4), ∴c =-4 ……1分又由题意可知,x 1、x 2是方程-32x 2+b x +c =0的两个根, ∴x 1+x 2=23b , x 1x 2=-23c =6 ·························································· 2分 由已知得(x 2-x 1)2=25 又(x 2-x 1)2=(x 2+x 1)2-4x1x 2=49b 2-24 ∴49b 2-24=25 解得b =±314··························································································· 3分当b =314时,抛物线与x 轴的交点在x 轴的正半轴上,不合题意,舍去.∴b =-314. ·························································································· 4分 解法二:∵x 1、x 2是方程-32x 2+b x +c=0的两个根, 即方程2x 2-3b x +12=0的两个根.(第25题图)x∴x =4969b 32-±b , ································································ 2分∴x 2-x 1=2969b 2-=5,解得 b =±314 ·················································································· 3分 (以下与解法一相同.)(2)∵四边形BDCE 是以BC 为对角线的菱形,根据菱形的性质,点D 必在抛物线的对称轴上,····································································································· 5分又∵y =-32x 2-314x -4=-32(x +27)2+625···························· 6分 ∴抛物线的顶点(-27,625)即为所求的点D . ································· 7分(3)∵四边形BPOH 是以OB 为对角线的菱形,点B 的坐标为(-6,0),根据菱形的性质,点P 必是直线x =-3与抛物线y =-32x 2-314x -4的交点, ··················································· 8分∴当x =-3时,y =-32×(-3)2-314×(-3)-4=4,∴在抛物线上存在一点P (-3,4),使得四边形BPOH 为菱形. ··············· 9分四边形BPOH 不能成为正方形,因为如果四边形BPOH 为正方形,点P 的坐标只能是(-3,3),但这一点不在抛物线上. ································································· 10分82.(08广东肇庆25题)(本小题满分10分)已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.(08广东肇庆25题解析)(本小题满分10分)解:(1)由5x x 122+=0, ··································································· (1分)得01=x ,5122-=x . ······································································ (2分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ································· (3分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81),·························· (4分)分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ············································ (5分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ······························· (6分)=5(个单位面积) ······························································ (7分)(3)如:)(3123y y y -=. ······························································· (8分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a . ·········· (9分) ∴)(3123y y y -=. ········································································ (10分)83.(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.(08辽宁沈阳26题解析)解:(1)点E 在y 轴上 ··········································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ······························································ 3分 (2)过点D 作DM x ⊥轴于点M第26题图1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,OM =点D 在第一象限,∴点D 的坐标为12⎫⎪⎪⎝⎭, ············································································· 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ··············································································· 6分抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得321312422a a ⎧-+=⎪⎨++=⎪⎩解得899a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴所求抛物线表达式为:28299y x x =--+ ··············································· 9分(3)存在符合条件的点P ,点Q . ······························································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ····················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =--+上28229m ∴--+=x解得,10m =,2m=1(02)P ∴,,228P ⎛⎫- ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB == ∴当点1P的坐标为(02),时,点Q的坐标分别为1(2)Q ,2Q ;当点2P 的坐标为2⎛⎫⎪ ⎪⎝⎭时,点Q 的坐标分别为32Q ⎛⎫⎪ ⎪⎝⎭,42Q ⎫⎪⎪⎝⎭. ········································· 14分84.(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线y =-x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =-+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标; (2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.(08辽宁12市26题解析)解:(1)直线y =x 轴交于点A ,与y 轴交于点C.(10)A ∴-,,(0C -, (1)分 点AC ,都在抛物线上,03a c c ⎧=++⎪∴⎨⎪=⎩ 3a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =··············································· 3分 xx∴顶点13F ⎛- ⎝⎭, ················································································· 4分(2)存在································································································ 5分 1(0P ····························································································· 7分 2(2P ····························································································· 9分 (3)存在······························································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ········································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线2y x x =(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =在Rt BB H '△中,12BH BB ''== 6BH H '==,3OH ∴=,(3B '∴--, ········································· 12分设直线BF '的解析式为y kx b=+3k b k b ⎧-=-+⎪∴⎨=+⎪⎩解得2k b ⎧=⎪⎪⎨⎪=-⎪⎩62y x ∴=- ················································································ (1)3分y y ⎧=⎪∴⎨=⎪⎩ 解得377x y ⎧=⎪⎪⎨⎪=-⎪⎩37M ⎛∴ ⎝⎭ ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时37M ⎛ ⎝⎭.··· 14分解法二:过点F 作AC 的垂线交y 轴于点H ,则点H 为点F 关于直线AC 的对称点.连接BH 交AC 于点M ,则点M 即为所求. ············································· 11分 过点F 作FG y ⊥轴于点G ,则OB FG ∥,BC FH ∥.90BOC FGH ∴∠=∠=,BCO FHG ∠=∠HFG CBO ∴∠=∠同方法一可求得(30)B ,.在Rt BOC △中,tan 3OBC ∠=,30OBC ∴∠=,可求得3GH GC ==, GF ∴为线段CH 的垂直平分线,可证得CFH △为等边三角形,AC ∴垂直平分FH .即点H 为点F 关于AC的对称点.03H ⎛⎫∴- ⎪ ⎪⎝⎭, ······································· 12分设直线BH 的解析式为y kx b =+,由题意得03k b b =+⎧⎪⎨=⎪⎩解得k b ⎧=⎪⎪⎨⎪=⎪⎩y ∴=··················································································· 13分y y ⎧=⎪∴⎨⎪=⎩解得37x y ⎧=⎪⎪⎨⎪=⎪⎩37M ⎛∴ ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛- ⎝⎭,.··· 14分85.(08内蒙古赤峰25题)(本题满分14分)在平面直角坐标系中给定以下五个点17(30)(14)(03)(10)24A B C D E ⎛⎫-- ⎪⎝⎭,,,,,,,,,. (1)请从五点中任选三点,求一条以平行于y 轴的直线为对称轴的抛物线的解析式; (2)求该抛物线的顶点坐标和对称轴,并画出草图; (3)已知点1514F ⎛⎫- ⎪⎝⎭,在抛物线的对称轴上,直线174y =x过点1714G ⎛⎫- ⎪⎝⎭,且垂直于对称轴.验证:以(10)E ,为圆心,EF 为半径的圆与直线174y =相切.请你进一步验证,以抛物线上的点1724D ⎛⎫ ⎪⎝⎭,为圆心DF 为半径的圆也与直线174y =相切.由此你能猜想到怎样的结论.(08内蒙古赤峰25题解析)25.解:(1)设抛物线的解析式为2y ax bx c =++, 且过点(30)(03)(10)A C E -,,,,,, 由(03),在2y ax bx c =++H .则3c =. ·························································································· (2分)得方程组93300a b a b c -+=⎧⎨++=⎩,解得12a b =-=-,.∴抛物线的解析式为223y x x =--+ ·············· (4分)(2)由2223(1)4y x x x =--+=-++ ··········· (6分) 得顶点坐标为(14)-,,对称轴为1x =-. ········· (8分) (3)①连结EF ,过点E 作直线174y =的垂线,垂足为N , 则174EN HG ==. 在Rt FHE △中,2HE =,154HF =,174EF ∴==, EF EN ∴=,∴以E 点为圆心,EF 为半径的E 与直线174y =相切. ························· (10分) ②连结DF 过点D 作直线174y =的垂线,垂足为M .过点D 作DQ GH ⊥垂足为Q , 则1771054442DM QG ==-==. 在Rt FQD △中,32QD =,15782444QF =-==.52FD ==.∴以D 点为圆心DF 为半径的D 与直线174y =相切. ··························· (12分)x③以抛物线上任意一点P 为圆心,以PF 为半径的圆与直线174y =相切. ···· (14分)86.(08青海西宁28题)如图14,已知半径为1的1O 与x 轴交于A B ,两点,OM 为1O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2y x bx c =-++的图象经过A B ,两点. (1)求二次函数的解析式;(2)求切线OM 的函数解析式;(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(08青海西宁28题解析)解:(1)圆心1O 的坐标为(20),,1O 半径为1,(10)A ∴,,(30)B ,……1分二次函数2y x bx c =-++的图象经过点A B ,,∴可得方程组10930b c b c -++=⎧⎨-++=⎩···································································· 2分解得:43b c =⎧⎨=-⎩∴二次函数解析式为243y x x =-+- ······································ 3分(2)过点M 作MF x ⊥轴,垂足为F . ······················································ 4分 OM 是1O 的切线,M 为切点,1O M OM ∴⊥(圆的切线垂直于经过切点的半径). 在1Rt OO M △中,1111sin 2O M O OM OO ∠== 1O OM ∠为锐角,130O OM ∴∠= ······················· 5分1cos3022OM OO ∴==⨯=,在Rt MOF △中,3cos30322OF OM ===. 1sin 3032MF OM ===. ∴点M 坐标为32⎛ ⎝⎭············································································ 6分图14设切线OM 的函数解析式为(0)y kx k =≠32k =,k ∴= ···· 7分 ∴切线OM的函数解析式为3y x =·························································· 8分 (3)存在. ···························································································· 9分①过点A 作1AP x ⊥轴,与OM 交于点1P .可得11Rt Rt APO MO O △∽△(两角对应相等两三角形相似)113tan tan 303P A OA AOP =∠==113P ⎛∴ ⎝⎭,······································ 10分 ②过点A 作2AP OM ⊥,垂足为2P ,过2P 点作2P H OA ⊥,垂足为H . 可得21Rt Rt AP O O MO △∽△(两角对应相等两三角开相似) 在2Rt OP A △中,1OA =,23cos302OP OA ∴==在2Rt OPH △中,223cos 4OHOP AOP =∠==, 2221sin 224P H OP AOP =∠=⨯=2344P ⎛⎫∴ ⎪ ⎪⎝⎭, ·································11分∴符合条件的P 点坐标有1⎛⎝⎭,34⎛ ⎝⎭··············································· 12分87.(08青海省卷28题)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x (单位:分钟)与学习收益量y 的关系如图甲所示,用于回顾反思的时间x (单位:分钟)与学习收益量y 的关系如图乙所示(其中OA 是抛物线的一部分,A 为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间. (1)求王亮解题的学习收益量y 与用于解题的时间x 之间的函数关系式,并写出自变量x 的取值范围; (2)求王亮回顾反思的学习收益量y 与用于回顾反思的时间x 之间的函数关系式; (3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大? (学习收益总量=解题的学习收益量+回顾反思的学习收益量)图甲图乙(08青海省卷28题解析)解:(1)设y kx =,把(24),代入,得2k =.2y x ∴=. ······················································································· (1分) 自变量x 的取值范围是:030x ≤≤. ··················································· (2分)(2)当05x ≤≤时,设2(5)25y a x =-+, ········································································ (3分)把(00),代入,得25250a +=,1a =-. 22(5)2510y x x x ∴=--+=-+.························································ (5分)当515x ≤≤时,25y = ····························································································· (6分) 即210(05)25(515)x x x y x ⎧-+=⎨⎩≤≤≤≤.(3)设王亮用于回顾反思的时间为(015)x x ≤≤分钟,学习效益总量为Z ,则他用于解题的时间为(30)x -分钟.当05x ≤≤时,222102(30)860(4)76Z x x x x x x =-++-=-++=--+. ····················· (7分)∴当4x =时,76Z =最大. ································································· (8分)当515x ≤≤时,252(30)285Z x x =+-=-+. ··························································· (9分) Z 随x 的增大而减小,∴当5x =时,75Z =最大.综合所述,当4x =时,76Z =最大,此时3026x -=. ··························· (10分)即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大.······································································································ (11分)。

相关文档
最新文档