北京八一中学届初一分班考试数学真题
北京八一中学小升初分班考试真题

北京八一中学小升初分班考试题一、填空题(每小题5分,共80分)1.八百八十万零八十写作 。
2.计算:3.45×6.8+65.5×0.68= 。
3.方程0631=-x 的解为 。
4.按规律填数:2,5,9,14,20, ,35,…5.甲、乙、丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍,那么甲、乙、丙三个数分别是 。
6.有13个自然数,小红计算它们的平均数精确到百分位是12.56,老师说最后一个数字写错了,那么正确答案应该是 。
7.小明以每分钟50米的速度从学校步行到家,12分钟后,小强从学校出发,骑自行车以每分钟125米的速度去追小明,那么小强 分钟可以追上小明。
8.一个两位数除321,余数是48,那么这个两位数是 。
9.把1表示成5个不同的单位分数的和的形式:()()()()()111111++++=10.平面上5条直线最多能把圆的内部分成 部分。
11.如图,边长为6厘米和8厘米的两个正方形拼在一起,则图中阴影部分面积是 平方厘米。
12规定:5▲2=5+55=60,2▲5=2+22+222+2222+22222=24690,1▲4=1+11+111+1111=1234,那么,4▲3= 。
13.如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路线。
14.甲、乙两人同时从B A 、两地相向而行,第一次在离A 地40千米处相遇,之后两人仍以原速度前进,各自到达目的地后,立即返回,又在离A 地20千米处相遇,则AB 两地距离为 千米。
15.如图,是一块在电脑屏幕上出现的长方形色块,由F E D C B A 、、、、、六个正方形组成,已知中间最小的正方形A 的边长为1,那么这个长方形色块图的面积是 。
16.设自然数n m y x ,,,满足条件85===n m m y y x ,则n m y x +++的最小值是 。
二、解答题(每题10分,共20分)17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若A、两地的距离为10千米,求BA、两地的距离。
八一中学往年小升初分班考试真题汇总

北京八一中学小升初分班考试题一、填空题(每小题5分,共80分) 1.八百八十万零八十写作 。
2.计算:3.45×6.8+65.5×0.68= 。
3.方程0631=−x 的解为 。
4.按规律填数:2,5,9,14,20, ,35,…5.甲、乙、丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍,那么甲、乙、丙三个数分别是 。
6.有13个自然数,小红计算它们的平均数精确到百分位是12.56,老师说最后一个数字写错了,那么正确答案应该是 。
7.小明以每分钟50米的速度从学校步行到家,12分钟后,小强从学校出发,骑自行车以每分钟125米的速度去追小明,那么小强 分钟可以追上小明。
8.一个两位数除321,余数是48,那么这个两位数是 。
9.把1表示成5个不同的单位分数的和的形式:()()()()()111111++++=10.平面上5条直线最多能把圆的内部分成 部分。
11.如图,边长为6厘米和8厘米的两个正方形拼在一起,则图中阴影部分面积是 平方厘米。
12规定:5▲2=5+55=60,2▲5=2+22+222+2222+22222=24690, 1▲4=1+11+111+1111=1234, 那么,4▲3= 。
13.如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路线。
14.甲、乙两人同时从B A 、两地相向而行,第一次在离A 地40千米处相遇,之后两人仍以原速度前进,各自到达目的地后,立即返回,又在离A 地20千米处相遇,则AB 两地距离为 千米。
15.如图,是一块在电脑屏幕上出现的长方形色块,由F E D C B A 、、、、、六个正方形组成,已知中间最小的正方形A 的边长为1,那么这个长方形色块图的面积是 。
16.设自然数n m y x ,,,满足条件85===n m m y y x ,则n m y x +++的最小值是 。
二、解答题(每题10分,共20分)17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,已知船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,若C A 、两地的距离为10千米,求B A 、两地的距离。
八一中学分班考试模拟卷二

一、填空题
1、有一堆苹果,三个三个地数、四个四个地数、五个五个地数都余 2 个,这堆苹果最少有 个。
2、三个质数的和是 52,它们的积的最大是
。
1
3、把 化为小数后,小数点后面第 1993 位上的数字是
。
7
4、有甲、乙两堆煤,如果从甲堆运 12 吨给乙堆,那么两堆煤就一样重。如果从乙堆运 12 吨给甲堆,
13 26 3 35 3
(2)
2
1 3
+(5.4
−
2
2)×1 3
2 (1 2 +3 1 )+ 1 ÷1.6 − 5
36 6
8
(4)51 2 × 3 + 71 3 × 4 + 91 4 × 5 35 47 59
五、看图计算 1、在右上图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形, 求中间这个小正方形(阴影部分)的面积?
5
7
5、两港相距 560 千米,甲船往返两港需 105 小时,逆流航行比顺流航行多用了 35 小时。乙船的静 水速度是甲船的静水速度的 2 倍,那么乙船往返两港需要多少小时
5
3
2、图中的长方形的长与宽的比为 8:5,求阴影部分的面积.
六、解决问题:
1、甲、乙二人同时从 A 地出发到 B 地去,甲到 B 地后,立即按原路返回,在距 B 地 32 千米处与乙 相遇,已知甲每小时行 20 千米,乙每小时行 12 千米,求 AB 两地间的距离?
1
1
1
2、一堆西瓜,第一次卖出总个数的 又 6 个,第二次又卖出余下的 又 4 个,第三次卖出余下的
是
,最大数是
。
八一中学分班考试

2D I5年八一中f分班者试真A一、填空题1.八百八十万零八十写作_______________。
2.计算:3_45 x6.8 +65.5 x 0.68 = ________。
3.方程^'X _ 6 = 0的解为_______。
4.按规律填数:2,5,9,14,20,__,35,......5.甲、乙,丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍.那么甲、乙、丙三个数分别是______________。
6.有13个自然数.小红计算它们的平均数精确到百分位是12.56.老师说最后一个数字写错了,那么正确答案应该是______________。
7.小明以每分钟50米的速度从学校步行到家。
12分钟后,小强从学校出发.骑自行车以每分钟125米的速度去追小明。
那么小强__________分钟可以追上小明。
8.—个两位数除321,余数48。
那么这个两位数是____________。
9.把1表示成5个不同单位分数和的形式:10. 平面上5条直线最多能把圆分成__________部分。
11. 如图,边长为6厘米和8厘米的两个正方形拼在一起,则图中阴影部分面积是_______平方厘米。
12. 规定:5 ◎2=5+55=60.2 ◎5=2+22+222+2222+22222=246901©4=1+11+111+1111=1234那么,40)3=__________。
13. 如图是小伟家到学校的路线,小伟上学沿最短路线走,共有_________条不同的路线。
14. 甲、乙两人同时从A、B两地相向而行,第一次在距离A地40千米处相遇。
之后两人仍以原速度前进。
各自到达目的地后.立即返回,又在离A地20千米处相遇.则A B两地距离为_______千米.15. 如图,是一块在电脑屏幕上出现的长方形色块,由A、B、C、D、E、F六个正方形组成,己知最中间的小正方形A的边长为1,那么这个长方 形色块图的面积是___________。
八一中学分班考试模拟卷一

4、一项工程单独做,甲队要 10 天完成,乙队要 6 天完成,现在先由甲队单独做 2 天,余下的由甲 乙两队合作,还要多少天才能完成?
5、新华书店运到一批图书,第一天卖出这批图书的 32%,第二天卖出这批图书的 45%,已知第一天 卖出 640 本,两天一共卖出多少本?
5、右图是某几何体的三视图,则这个几何体是(
)
A. 圆柱
B. 正方体
C. 球
D. 圆锥
2
四、选择合适的方法计算
1、 37 × 13 36
2、 5.6 ×16.5 ÷ 0.7 ÷1.1
3、 7.46 × 36 + 74.6 × 6.4
4、1234+2341+3412+4123
五、看图计算 1、求左图中阴影部分的面积
是
,乙数是
。
5、用四张数字卡片①、⑨、⑨、⑦,可以组成不同的四位数,其中最大的四位数,它们的最大公约数是 4,这两个数分别是
和
。(或 4 和 24)
7、小红今年 a 岁,妈妈比她大 b 岁,再过五年妈妈比小红大
岁。
8、一个三角形的三个内角度数的比是 2:3:4,这个三角形中最大内角的度数是
3、两数相除商是 3.5。如果被除数扩大到原来的 100 倍,除数除以 0.01,商是(
)
A、3.5
B、35
C、35000 D、0.035
4、小明步行 3 小时走了 20 千米的路程,骑自行车沿原路返回刚好用一小时,小明往返的平均速度
是每小时(
)
A、5 千米
B、10 千米
C、13 1 千米 3
北京市名校初一分班数学考试真题及答案

北京市名校初一分班数学考试真题及答案名校初一分班考试真题及答案一、计算题1.计算:(此处无需修改)2.计算:1994 × 1993 - 1994 × 1993 ÷ 10² ÷ 2 + 11 ÷ 7 + 22 ÷ 345 ≈ 3989.7633.计算:(5 + 1.5) × (1 + 1.5) ÷ 3³ × (5 + 1.5 + 2 - 1) ÷ (3 + 4 + 5) ≈ 0.0374.计算:(1 - 1/3) × (2 - 1/5) × (3 - 1/7) ×。
× (2001 - 1/3999) ≈ 1.3335.计算:(此处无需修改)6.计算:8.01 × 1.25 + 8.02 × 1.24 + 8.03 × 1.23 + 8.04 ×1.22 + 8.05 × 1.21 ≈ 41.363,整数部分为41.二、填空题7.___计算的这些数中,最大的一个为14.8.假设这个数为n,那么剩下的数的平均数为(n+1)/2.9.这个四位数为9324.10.这个等差数列至少有6项。
11.如果D=9,那么A+B+C的值为22.12.所有方框内数的和为45.13.自然数n的最小值为6.14.自然数n的最小值为23.注:以上答案仅供参考,可能存在一定误差。
)15.求15到9的和,即1+2+3+。
+9,结果为45.45除以3的余数为0,所以15到9的和除以3的余数也是0.16.是11的倍数,因此这50个数的和也是11的倍数。
又因为它们互不相同且非零,所以它们的最大公约数一定是1.因此最大值为1.17.48的因数有1、2、3、4、6、8、12、16、24和48,共10个。
因为n有48个因数,所以n必须是某个数的平方,即n=4^2×3^2=144×9=1296.1296是48的27倍但不是28的倍数,因此满足条件。
北京八一中学小升初分班考试真题
北京八一中学小升初分班考试题一、填空题〔每题5分,共80分〕1.八百八十万零八十写作 。
2.计算:3.45×6.8+65.5×0.68= 。
3.方程0631=-x 的解为 。
4.按规律填数:2,5,9,14,20, ,35,…5.甲、乙、丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍,那么甲、乙、丙三个数分别是 。
6.有13个自然数,小红计算它们的平均数精确到百分位是12.56,老师说最后一个数字写错了,那么正确答案应该是 。
7.小明以每分钟50米的速度从学校步行到家,12分钟后,小强从学校出发,骑自行车以每分钟125米的速度去追小明,那么小强 分钟可以追上小明。
8.一个两位数除321,余数是48,那么这个两位数是 。
9.把1表示成5个不同的单位分数的和的形式:()()()()()111111++++=10.平面上5条直线最多能把圆的内局部成 局部。
11.如图,边长为6厘米和8厘米的两个正方形拼在一起,那么图中阴影局部面积是 平方厘米。
12规定:5▲2=5+55=60,2▲5=2+22+222+2222+22222=24690,1▲4=1+11+111+1111=1234,那么,4▲3= 。
13.如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路线。
14.甲、乙两人同时从B A 、两地相向而行,第一次在离A 地40千米处相遇,之后两人仍以原速度前进,各自到达目的地后,立即返回,又在离A 地20千米处相遇,那么AB 两地距离为 千米。
15.如图,是一块在电脑屏幕上出现的长方形色块,由F E D C B A 、、、、、六个正方形组成,中间最小的正方形A 的边长为1,那么这个长方形色块图的面积是 。
16.设自然数n m y x ,,,满足条件85===n m m y y x ,那么n m y x +++的最小值是 。
二、解答题〔每题10分,共20分〕17.某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船4小时,船在静水中的速度为每小时7.5千米,水流速度为每小时2.5千米,假设A、两地的距离为10千米,求BA、两地的距离。
2018-2019学年北京八中新初一分班考试数学试题-含详细解析
2018-2019学年北京八中新初一入学分班考试数学试卷一、选择题(共10小题,共30分).1.某数的100倍是7,则该数的十四分之一是()A.0.002B.0.003C.0.004D.0.0052.有两人分别从甲、乙两地同时相向而行,在A处相遇.如果两人各自提速20%,仍从甲、乙两地同时相向而行,在B处相遇,则()A.A在甲与B之间.B.B在甲与A之间.C.A与B重合.D.A,B的位置关系不确定.3.图1是由48个棱长为1的小立方体堆成的长方体,它放于桌面上,不移动它,将它的表面刷上漆,那么,6个面都未刷漆的小立方体有()图1A.12个B.8个C.6个D.4个4.下面四个图形,由左向右依次是:长方形、三角形、梯形、圆,它们相关的数据如图中所示,其中面积最小的是()A B C D5.甲、乙、丙三位长跑运动员同时同地出发跑步,甲平均每秒钟跑5米,乙平均每分钟跑288米,丙一小时跑了18.3千米.他们三人按平均速度由大到小的顺序排列是()A.丙甲乙B.乙甲丙C.甲乙丙D.甲丙乙6.甲、乙、丙、丁四个杯子中都盛有糖水,甲杯中含糖1.2%,乙杯中的糖和水分别为3克和297克,丙杯中含水98.7%,丁杯中原含糖3克水240克,后来又加了70克水.则四杯糖水含糖百分比最低的是()A.甲. B.乙. C.丙. D.丁.7.甲、乙二人外出旅行,甲带了35 000港元,乙所带的钱的15比甲所带钱的14少150港元,则乙所带的钱( )A.比甲所带的钱少.B.和甲所带的钱同样多.C.比甲所带的钱多8 000港元.D.是甲所带钱的1.2倍.8.甲、乙、丙、丁四人围方桌而坐玩扑克牌游戏.甲说:我不坐南边,乙说:我与丙坐对面,丙说,我面向西而坐,那么方桌东南西北四个方向上依次坐着( ) A.甲乙丙丁B.乙丁丙甲C.丙丁甲乙D.丙丁乙甲9.小强和小刚经常向王爷爷借书来读.已知王爷爷有100本书,其中小强读过的书有60本,小刚读过的书有50本,两人都读过的书有20本,那么( )A.两人都没读过的书有20本.B.小强读过但小刚没读过的书有30本.C.小刚读过但小强没读过的书有40本.D.只有一人读过的书有70本.10.将一圆形纸片双折后再对折,得到图2,然后沿着图中的虚线剪开.得到两部分,其中一部分展开后的平面图形是( )图2ABCD二、填空题(共18小题,共54分).1.11200620082006200720072008⎛⎫⨯⨯+= ⎪⨯⨯⎝⎭________2.90009-=________999⨯.3.如果20052006a =,20062007b =,20072008c =,那么a ,b ,c 中最大的是________,最小的是________. 4.将某商品涨价25%,如果涨价后的销售金额与涨价前的销售金额相同,则销售量减少了________%.5.1111110111219⎛⎫++++ ⎪⎝⎭…+的整数部分是________.6.2008年,第29届奥运会将在我国首都北京举办.则20082008的个位数字是________.7.若两个四位数的差为2 008,我们把这样的两个四位数称为一个数对,如3 210和1 202,6 158和4 150等.像这样的四位数“数对”共有________对.8.观察下面序号和等式,在( )中填数.9.用10根火柴棒首尾顺次连接成一个三角形,能接成不同的三角形有________个. 10.图3是小华五次数学测验成绩的统计图.小华五次测验的平均分是________分.11.一个小数,如果把它的小数部分扩大了5倍,它就变成17.92;如果把它的小数都扩大了8倍,它就变成20.38.则这个小数是________.12.如图4,AOB ∠的顶点O 在直线l 上,已知图中所有小于平角的角之和是400度,则AOB ∠=________度.13.图中有________个三角形.14.有两根绳子,长的是短的3倍,两根各剪掉10厘米,长的是短的5倍,请问短绳子原来长________厘米. 15.如果[]a 表示不超过a 的最大整数,如[]2.12=,[]3.93=,[]5.05=,那么[]0.1234100100⨯-=________ 16.根据图A 和图B ,可以判断图C 中的天平________端将下沉.(填“左”或“右”)A.B.C.17.三个分数的和是1210,它们的分母相同,分子比为1:2:3,其中最小的分数是________. 18.如图,三个图形的周长相等,则::a b c =________.三、解答题(共16分).1.国际标准书号ISBN 由分成四段的10位数字组成,前面9位数字分成3组;分别用来表示组号、出版社和书序号,最后一位数字则作为校验.校验码可以根据前9位数字按照一定的顺序算得. 如:某书的书号是ISBN7-107-17543-2,它的校验码的计算顺序是: ①7101908771675544332207⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=; ②20711189÷=……;③1192-=.这里的2就是该书号的核检码.依照上面的顺序,求书号ISBN7-303-07618-________的核检码. 2.计算:12334454014401540154016÷÷÷÷÷÷÷÷÷÷÷()()()…()()(2分)200820072008200720082007⨯-⨯(3分)3.口、△分别代表两个数,并且10-=□△,=-□□-△△□△-2,那么口=?4.甲有桌子若干张,乙有椅子若干把.如果乙用全部椅子换回相同数量的桌子.那么需要补给甲320元;如果乙不补钱,就会少换回5张桌子.已知3张桌子比5把椅子的价钱少48元.求乙原有椅子多少把?5.小明家有两个旧钟,一个每小时快12分钟,另一个每小时慢20分钟.在标准时间早上6点,两钟与标准时间对准.当快钟显示的时间是下午3点时让它停摆,等到慢钟显示的时间是下午3点时,才让快钟继续走动.问快钟停摆了多长时间(标准时间)?2018-2019学年北京八中新初一入学分班考试参考答案一、 1.【答案】D【解析】某数是0.07,它的十四分之一是0.005. 2.【答案】C【解析】甲乙各自提速20%,相遇点重合. 3.【答案】B【解析】6个面都未刷漆的是第二层和第三层正中间的八块. 4.【答案】A【解析】通过计算可知A 的面积是最小的. 5.【答案】A【解析】甲每分钟跑560300⨯=米.乙每分钟跑288米.丙每分钟跑1830060305-=米. 6.【答案】D【解析】含糖的百分比用糖重÷糖水重,通过计算可知丁中含糖百分比最低. 7.【答案】C【解析】通过计算得出乙所带的钱是43000港元,比甲所带的钱多8000港元. 8.【答案】D【解析】丙面向西而坐,可知丙坐东;乙与丙坐对面,可知乙坐西;甲不坐南,可知甲坐北;剩下丁坐南. 9.【答案】D【解析】小强读的60本中有20本小刚读过,小强自己读过的有40本;小刚读的50本中有20本小强读过,小刚自己读过的有30本.所以,只有一个人读过的书有403070+=本. 10.【答案】D 二、 1.【答案】2 2.【答案】9 3.【答案】c a 4.【答案】20 5.【答案】16.【答案】67.【答案】69928.【答案】1899 3797 5696 170889.【答案】210.【答案】9211.【答案】13.8212.【答案】4013.【答案】2114.【答案】2015.【答案】0.1216.【答案】右17.【答案】二十分之七18.【答案】20:25:24三、1.【答案】第一步:7103908370675641382702702103524316196⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=++++++++=÷=……第二步:19611179-=,书号的校验码是2.第二步:11922.【答案】(1)2008.⨯-⨯(2)200820072008200720082007()()=⨯+-⨯+200820072007120072007200710000=⨯+-⨯-200820072007200820072007200720070000=+-200720072008200700004015=【解析】(1)先将括号内的除法换成分数,再将括号外的除法变成乘法,然后约分.3.【答案】口=50【解析】用代入法,换元法解此题.4.【答案】答:乙原有椅子20把.÷=元;桌子的价钱,320564椅子的价钱,64348548⨯+÷=()元; 乙有椅子的数量:320644820÷-=()把; 5.【答案】答:快钟停摆了288分钟.【解析】早上6点到下午3点其间是9小时.快钟到达下午3点时比正确时间快了129108⨯=分,也就是再过108分,才是正确时间的下午3点.所以这108分快钟得停摆.慢钟每小慢20分钟,等慢钟走到正确时间下午3点时,还要多等209180⨯=分.这180分,快钟也要停摆.一共停摆108180288+=分钟.。
北京八一中学小升初分班考试真题
北京八一中学小升初分班考试题一、填空题(每小题5分,共80分)1.八百八十万零八十写作 。
2.计算:3.45×6.8+65.5×0.68= 。
3.方程的解为 。
0631=-x 4.按规律填数:2,5,9,14,20, ,35,…5.甲、乙、丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍,那么甲、乙、丙三个数分别是 。
6.有13个自然数,小红计算它们的平均数精确到百分位是12.56,老师说最后一个数字写错了,那么正确答案应该是 。
7.小明以每分钟50米的速度从学校步行到家,12分钟后,小强从学校出发,骑自行车以每分钟125米的速度去追小明,那么小强 分钟可以追上小明。
8.一个两位数除321,余数是48,那么这个两位数是 。
9.把1表示成5个不同的单位分数的和的形式:()()()()()111111++++=10.平面上5条直线最多能把圆的内部分成 部分。
11.如图,边长为6厘米和8厘米的两个正方形拼在一起,则图中阴影部分面积是平方厘米。
12规定:5▲2=5+55=60,2▲5=2+22+222+2222+22222=24690,1▲4=1+11+111+1111=1234,那么,4▲3= 。
13.如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路线。
14.甲、乙两人同时从两地相向而行,第一次在离地40千米处相遇,之后两人仍以原速度前进,B A 、A各自到达目的地后,立即返回,又在离地20千米处相遇,则两地距离为 千米。
A AB 15.如图,是一块在电脑屏幕上出现的长方形色块,由六个正方形组成,已知中间F E DC B A 、、、、、最小的正方形的边长为1,那么这个长方形色块图的面积是 。
A16.设自然数满足条件,则的最小值是 。
n m y x ,,,85===n m m y y x n m y x +++二、解答题(每题10分,共20分)17.某人乘船由地顺流而下到地,然后又逆流而上到地,共乘船4小时,已知船在静水中的速度为每A B C 小时7.5千米,水流速度为每小时2.5千米,若两地的距离为10千米,求两地的距离。
北京八一中学届初一分班考试数学真题试卷及答案
北京八一中学分班考试真题一、填空题(每小题5分,共80 分)1. 八百八十万零八十写作。
2. 计算:3.45×6.8+65.5×0.68= 。
3. 方程13x-6=0的解为。
4. 按规律填数:2,5,9,14,20,,35,…5. 甲、乙、丙三个数之和为180,甲数是乙数的3倍,乙数是丙数的2倍,那么甲、乙、丙三个数分别是。
6. 有 13 个自然数,小红计算它们的平均数精确到百分位是 12.56,老师说最后一个数字写错了,那么正确答案应该是。
7. 小明以每分钟50 米的速度从学校步行到家,12 分钟后,小强从学校出发,骑自行车以每分钟125 米的速度去追小明,那么小强分钟可以追上小明。
8. 一个两位数除321,余数是48,那么这个两位数是。
9.把 1 表示成 5 个不同的单位分数的和的形式:11()=+1()+1()+1()+1()10. 平面上 5 条直线最多能把圆的内部分成 部分。
11. 如图,边长为 6 厘米和 8 厘米的两个正方形拼在一起,则图中阴影部分面积是 平方厘米。
12. 规定:5▲2=5+55=60,2▲5=2+22+222+2222+22222=24690,1▲4=1+11+111+1111=1234,那么,4▲3= 。
13. 如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路线。
14.甲、乙两人同时从A、B 两地相向而行,第一次在离A地40 千米处相遇,之后两人仍以原速度前进,各自到达目的地后,立即返回,又在离A地20 千米处相遇,则A B两地距离为千米。
15. 如图,是一块在电脑屏幕上出现的长方形色块,由A、B、C、D、E、F 六个正方形组成,已知中间最小的正方形A的边长为1,那么这个长方形色块图的面积是。
16. 设自然数x, y, m, n 满足条件58x y my m n===,则x+y+m+n的最小值是。
二、解答题(每题10 分,共20 分)17. 某人乘船由A地顺流而下到B地,然后又逆流而上到C 地,共乘船 4 小时,已知船在静水中的速度为每小时7.5 千米,水流速度为每小时2.5 千米,若A、C 两地的距离为10 千米,求A、B 两地的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京八一中学分班考试真题
一、填空题(每小题5 分,共80 分)
1. 八百八十万零八十写作。
2. 计算:
3.45×6.8+65.5×0.68= 。
3. 方程1
3
x-6=0的解为。
4. 按规律填数:2,5,9,14,20,,35,…
5. 甲、乙、丙三个数之和为180,甲数是乙数的3 倍,乙数是丙数的2 倍,那么甲、乙、丙三个数分别
是。
6. 有 13 个自然数,小红计算它们的平均数精确到百分位是 12.56,老师说最后一个数字写错了,那么
正确答案应该是。
7. 小明以每分钟50 米的速度从学校步行到家,12 分钟后,小强从学校出发,骑自行车以每分钟125 米
的速度去追小明,那么小强分钟可以追上小明。
8. 一个两位数除321,余数是48,那么这个两位数是。
9.把 1 表示成 5 个不同的单位分数的和的形式:
11()=+1()+1()+1()+1()
10. 平面上 5 条直线最多能把圆的内部分成
部分。
11. 如图,边长为 6 厘米和 8 厘米的两个正方形拼在一起,则图中阴影部分面积是 平方厘米。
12. 规定:5▲2=5+55=60,
2▲5=2+22+222+2222+22222=24690,
1▲4=1+11+111+1111=1234,
那么,4▲3= 。
13. 如图是小伟家到学校的路线,小伟上学沿最短路线走,共有 条不同的路
线。
14.甲、乙两人同时从A、B 两地相向而行,第一次在离A 地40 千米处相遇,之后两人仍以原速度前进,
各自到达目的地后,立即返回,又在离A地20 千米处相遇,则AB两地距离为
千米。
15. 如图,是一块在电脑屏幕上出现的长方形色块,由A、B、C、D、E、F 六个正方形组成,已知中
间最小的正方形A 的边长为1,那么这个长方形色块图的面积是。
16. 设自然数x, y, m, n 满足条件
5
8
x y m
y m n
===,则x+y+m+n的最小值
是。
二、解答题(每题10 分,共20 分)
17. 某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船 4 小时,已知
船在静水中的速度为每小时7.5 千米,水流速度为每小时2.5 千米,若A、C 两地的距离为10 千米,求A、B 两地的
距离。
18. 在方格纸中,每个小方格的顶点叫做格点,在2×2方格纸中,以格点连线为边做面
积为2 的多边形,
请尽可能多地找出答案并画出图形。
(如果两种图案可以通过旋转得到,那么认为是同一种;注意必
须为连通图形)。