有趣的数字黑洞

合集下载

数字黑洞

数字黑洞

数字黑洞——1(角谷游戏)
任取一个正整数,如果它是偶数,就除以2, 如果它是奇数,就用它乘3再加1。将所得到的结 果不断地重复上述运算,最后的结果总是1。
如:正整数10。 10÷2=5 5×3+1=16 16÷2=8 8÷2=4 4÷2=2 2÷2=1
看来,最简单的 数字1也蕴含着 不简单。
Байду номын сангаас
知识链接
这个问题大约是在二十世纪五十年代被提出来的。在西方 它常被称为西拉古斯 (Syracuse) 猜想,因为据说这个问题首先 是在美国的西拉古斯大学被研究的;而在东方,这个问题由将 它带到日本的日本数学家角谷静夫的名字命名,被称作角谷猜 想。除此之外它还有着一大堆其他各种各样的名字,大概都和 研究和传播它的数学家或者地点有关的:克拉兹 (Collatz)问题, 哈斯(Hasse)算法问题,乌拉姆(Ulam)问题等等。在数学文献里, 大家就简单地把它称作“ 3x+1 问题”。角谷静夫在谈到这个猜 想的历史时讲:“一个月里,耶鲁大学的所有人都着力于解决 这个问题,毫无结果。同样的事情好象也在芝加哥大学发生了。 有人猜想,这个问题是苏联克格勃的阴谋,目的是要阻碍美国 数学的发展。” 这是一个至今未能解决的问题。
数学与比喻
社会上流行这样一道算式:8-1>8。这在数 学上是不成立的,但在生活中却饱含哲理。它告 诉人们:在每天八小时中拿出一小时锻炼身体, 其效果要比八个小时全用来学习、工作还好。
美哉,数学! 数学,美哉!
1955年,卡普耶卡发现,无论多大的 四位数,只要四个数字不全相同,最多 进行7次上述变换,就会出现四位数 6174.
知识链接
1、数字黑洞153 2、数字黑洞123 3、角谷猜想
任取一个自然数,对它作一个变换:如 果是偶数,就除以2;如果是奇数,就乘 3再加1。反复进行如上变换,最后都能 得到1

黑洞数495的证明

黑洞数495的证明

黑洞数495的证明黑洞数495是一个有趣而神秘的数字,它引发了许多数学家和科学家的兴趣和探索。

本文将从几个方面来介绍495这个黑洞数的证明。

我们需要了解什么是黑洞数。

黑洞数是指一个有限的自然数,在每一次迭代操作下,将其各个位上的数字按升序排列得到一个新的数字,然后再将其各个位上的数字按降序排列得到另一个新的数字,将这两个数字相减,得到一个新的数字,重复这个过程,最终将会得到一个稳定的数字,这个数字就被称为黑洞数。

在495这个数字上,我们将通过数学推理来证明它是一个黑洞数。

我们将495分解为其各个位上的数字,即4、9和5。

按照黑洞数的定义,我们将这些数字按升序排列得到一个新的数字,即459。

然后,将这些数字按降序排列得到954。

接下来,我们将954减去459,得到495。

正如我们所预期的一样,495是一个稳定的数字,没有进一步的变化。

接下来,我们将对495这个黑洞数进行数学推理,来证明它是一个黑洞数。

我们可以将495表示为:495 = 4 * 100 + 9 * 10 + 5。

根据黑洞数的定义,我们将459和954表示为:459 = 4 * 100 + 5 * 10 + 9,954 = 9 * 100 + 5 * 10 + 4。

将459和954相减得到495,即 (4 * 100 + 5 * 10 + 9) - (9 * 100 + 5 * 10 + 4) = 495。

从这个推理过程中,我们可以看到495是由4、9和5这三个数字构成的,通过按升序排列、降序排列和相减这样的操作,最终得到495。

进一步地,我们可以推广这个证明过程。

对于任何一个三位数abc,其中a、b和c分别代表百位、十位和个位上的数字,我们可以通过按升序排列得到abc1,再按降序排列得到1cba,然后将1cba减去abc1,得到一个新的数字,继续进行这样的操作,最终得到一个稳定的数字。

通过这个推广,我们可以证明495不仅仅是一个黑洞数,而是一个通用的规律。

生命数字中黑洞数字解读

生命数字中黑洞数字解读

生命数字中黑洞数字解读
生命数字中的黑洞数字是指一个数字,如果你将其各个数字按升序排列,然后再以降序排列,然后用后者减去前者,得到的结果仍然是这个数字。

例如,我们以数字123为例,按升序排列得到123,按降序排列得到321,两者相减得到198,并且198并不等于123,因此123不是一个黑洞数字。

但是,以数字495为例,按升序排列得到459,按降序排列得到954,两者相减得到495,依然是495,因此495是一个黑洞数字。

黑洞数字在数学上具有一些特殊的性质,它们在进行特定的运算时会呈现出一些有趣的现象。

例如,对任意的三位数,经过几次按照黑洞数字的规则进行运算,最终都会收敛到某一个黑洞数字。

这种性质使得黑洞数字成为了数学上一个有趣的研究对象。

在现实生活中,黑洞数字也被用于一些密码学和加密技术中,因为它们具有一定的隐蔽性和不可逆性,能够用于信息安全领域。

另外,黑洞数字也常常被用于一些谜题和游戏中,因为它们具有一定的趣味性和挑战性。

总的来说,黑洞数字是一种有趣且具有特殊性质的数字,它们
在数学研究和实际应用中都具有一定的价值和意义。

希望这个回答能够从多个角度为你解读生命数字中的黑洞数字。

数学黑洞123原理

数学黑洞123原理

数学黑洞123原理宝子们!今天咱们来唠唠数学里超级有趣的一个玩意儿——数学黑洞123。

这可不是什么神秘的宇宙黑洞哦,但是它在数学的小天地里也有着超级迷人的魅力呢!你随便想一个自然数,什么数都行哦。

比如说35吧。

然后按照这个规则来操作,要是这个数是偶数呢,就把它除以2;要是这个数是奇数呢,就把它乘以3再加1。

35是奇数,那按照规则就是35×3 + 1 = 106。

这106是偶数啦,那就要除以2,106÷2 = 53。

53又是奇数,就又要乘以3再加1,53×3+1 = 160。

160是偶数,160÷2 = 80。

80÷2 = 40,40÷2 = 20,20÷2 = 10,10÷2 = 5。

5是奇数,5×3+1 = 16,16÷2 = 8,8÷2 = 4,4÷2 = 2,2÷2 = 1。

你看,从35这个数开始,经过这么一系列的操作,最后就得到了1。

那这和123有啥关系呢?别急嘛。

当得到1之后,如果我们再按照这个规则继续操作。

1是奇数,1×3+1 = 4,4÷2 = 2,2÷2 = 1。

你会发现,这就开始循环啦。

不过呢,要是我们把每次得到的数按照一定的顺序排列起来,就会发现一个有趣的现象。

比如说从21这个数开始操作。

21是奇数,21×3+1 = 64,64÷2 = 32,32÷2 = 16,16÷2 = 8,8÷2 = 4,4÷2 = 2,2÷2 = 1。

把这些数按照顺序写出来,你就会发现,在这个过程中会出现一些数字的组合趋势。

在很多数的操作过程中,你会发现会不断地出现一些数字,而且最后总是会掉进1 - 2 - 4这个小循环里。

那为啥说是123黑洞呢?其实啊,是因为在这个不断计算的过程中,数字的变化就像是被一股神秘的力量拉扯着,最后总是会呈现出一种类似向123相关的规律靠近的感觉。

数学黑洞例子

数学黑洞例子

数学黑洞例子
1. 嘿,你知道不,卡布列克常数就是个超有趣的数学黑洞例子呀!就像495 这个数,把它随意拆分,比如拆成 4 和 95,或者 49 和 5,然后大数
减小数,再反复这样操作,最后总会得到 495 呢!神奇吧!
2. 哇塞,还有 123 数字黑洞啊!比如随便一个三位数,像 321,把它的数
字按从大到小排是 321,从小到大排是 123,用大的减小的,一直这样下去,最后就会陷进去,总是得到 495 这个结果呢,你说奇妙不奇妙!
3. 嘿呀,153 也是个特别的数学黑洞例子哟!像它不管怎么折腾,最后都能回到它本身呢,这多有意思呀,就像一个怎么也逃不出去的小圈圈!
4. 哎呀,回文数也是呢!比如 121,正反都一样,这就像一个调皮的小精灵,在数学世界里蹦来蹦去的,真好玩!
5. 你想想,6174 这个数呀,也是个数学黑洞!把它弄来弄去,最后还是会
被它吸进去,这难道不比魔术还神奇吗?
6. 还有还有,3 这个数字,在很多地方都很特别哦,就好像一个小小的主角在数学舞台上表演呢,这算不算一种特殊的数学黑洞例子呢?
7. 哇哦,圆周率也是相当神奇的呀!那无穷无尽的数字,就像一个巨大的宝藏库,里面说不定也藏着数学黑洞呢,是不是很让人期待呀!
8. 嘿嘿,其实生活中到处都有数学黑洞的影子呢,只要我们细心去发现!它们就像一个个神秘的小盒子,等待我们去打开,去探索其中的奇妙!我觉得数学黑洞真的是太神奇啦,让人忍不住一直去研究呢!。

数学黑洞123的计算方法

数学黑洞123的计算方法

数学黑洞123是一种数学现象,它指的是输入任何数字经过一系列计算最终都会指向数字123。

下面是一种计算方法:
假设我们要计算的数字是N,将N乘以7,然后将结果加上N再减去3,最后再除以4即可得到123。

具体步骤如下:
1. 将要计算的数字N乘以7,得到N乘以7的结果M。

2. 将M加上N再减去3,得到(M+N-3)的结果K。

3. 将K除以4即可得到123。

经过一系列的运算,无论输入任何数字,最终都将会得到数字123。

这一现象引起了人们对数学结构和无限思维的关注和思考。

这种现象不仅体现了数学的神奇和美丽,也反映了数学在处理无限和有限问题时的深刻思想和精妙思维。

在实际应用中,数学黑洞123可以用于一些简单的密码学和数学游戏,也可以用于解决一些简单的数学问题。

同时,它也提醒人们在数学领域中要时刻关注无限和有限问题,以及数学结构之间的关系,才能更好地理解和应用数学。

总之,数学黑洞123是一种有趣的数学现象,它通过一系列运算最终指向数字123,体现了数学的神奇和美丽,也反映了数学在处理问题时的深刻思想和精妙思维。

在未来的学习和探索中,人们将继续发现更多有趣的数学现象和问题,进一步拓展数学的应用领域和深度。

黑洞数的特点

黑洞数的特点

黑洞数的特点嘿,同学们!你们听说过黑洞数吗?这可太神奇啦!就像我们在学校里有各种有趣的课程一样,数学世界里也藏着好多超级奇妙的东西,黑洞数就是其中之一哟!我先给你们讲讲啥是黑洞数。

比如说,咱们随便选一个三位数,就321 吧。

然后把这三个数字从大到小排列,得到321;再从小到大排列,变成123。

用大的减小的,321 - 123 = 198。

接着再把198 这三个数字重新排列,从大到小是981,从小到大是189,然后981 - 189 = 792。

再这样操作下去,792 从大到小972,从小到大279,972 - 279 = 693。

然后693 从大到小963,从小到大369,963 - 369 = 594。

再接着594 从大到小954,从小到大459,954 - 459 = 495。

嘿,神奇不?到495 就一直循环啦!这495 就像个黑洞一样,不管你开始选的啥数,最后都会被它“吸”进去,这就是黑洞数!你们想想,这黑洞数是不是特别像一个调皮的小精灵?不管你怎么逗它,它都有自己的小脾气,就认准了自己的规则。

我有一次跟同桌一起研究黑洞数,我兴奋地说:“咱们多试几个数,看看是不是都这样!”同桌也来了劲:“好呀好呀,说不定能发现新的秘密!”我们试了好多数,结果都一样,我俩都惊讶得瞪大了眼睛,你说神奇不神奇?还有啊,这黑洞数是不是跟我们玩捉迷藏,不管我们怎么找,最后它都在那里等着我们!就好像我们在森林里迷路了,怎么绕最后都会回到那个熟悉的地方。

所以说呀,数学世界真的是充满了惊喜和神秘!这黑洞数不就是个很好的例子吗?我觉得黑洞数就像是一个神秘的宝藏,等着我们去不断探索,去发现更多它的奇妙之处!你们难道不觉得它超级有趣吗?。

《有趣的“数字黑洞”》

《有趣的“数字黑洞”》

123黑洞
“123数学黑洞(西西弗斯串)”现象已由中 国回族学者秋屏先生于2010年5月18日作出 严格的数学证明,请看他的论文:《“数学 黑洞(西西弗斯串)”现象与其证明》 (正文网址在“扩展阅读”中)。自此, 这一令人百思不解的数学之谜已被彻底破 解。此前,美国宾夕法尼亚大学数学教授 米歇尔· 埃克先生仅仅对这一现象作过描述 介绍,却未能给出令人满意的解答和证明。
有趣 的 数 字 “黑 洞”
昆阳一小 陈春肖
数学这个神秘的王国里, 也存在着类似天文学上的 黑洞— “数字黑洞”.
123黑洞
设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中 所包含的所有位数的总数, 例如:1234567890, 偶:数出该数数字中的偶数个数,2,4,6,8,0,总共有 5 个。 奇:数出该数数字中的奇数个数,1,3,5,7,9,总共有 5 个。 总:数出该数数字的总个数,本例中为 10 个。 新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510 重复:将新数5510按以上算法重复运算,可得到新数:134。 重复:将新数134按以上算法重复运算,可得到新数:123。 结论:对数1234567890,按上述算法,最后必得出123的结果,我们可 以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。 换言之,任何数的最终结果都无法逃逸123黑洞。
123黑洞——《西西弗斯串》
• 这里有个古老的神话传说 • 西西弗斯是人间最足智多谋又机巧的人,他是科林斯的建城者和国王。 当宙斯掳走河神的女儿,河神曾到科林斯找寻其女,知悉此事的西西 弗斯以一条四季常流的河川做为交换条件告知。由于泄露了宙斯的秘 密,宙斯便派出死神要将他押下地狱。没有想到西西弗斯却用计绑架 了死神,导致人间长久以来都没有人死去,一直到死神被救出为止,西 西弗斯也被打入冥界。 • 在被打入冥界前,西西弗斯嘱咐妻子不要埋葬他的尸体。到了冥界后, 西西弗斯告诉冥后,一个没有被埋葬的人是没有资格待在冥界的,并 请求给予三天告假还阳处理自己的后事。没有想到,西西弗斯一看到 美丽的大地就赖着不走不想回冥府去了… • 西西弗斯触犯了众神,诸神为了惩罚西西弗斯,便要求他把一块巨石 推上山顶,而由于那巨石太重了,每每未上山顶就又滚下山去,前功 尽弃,于是他就不断重复、永无止境地做这件事——诸神认为再也没 有比进行这种无效无望的劳动更为严厉的惩罚了。西西弗斯的生命就 在这样一件无效又无望的劳作当中慢慢消耗殆尽
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有趣的数字黑洞
Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
思维体操《有趣的数字“黑洞”》
教学内容:五上第三单元P38“你知道吗?”
教学目标:
1、了解数学中数字“黑洞”等有趣的现象,探索数学奥秘。

2、通过合作探究,培养协作能力与合作的意识。

3、拓展数学课外知识,宣传数学文化魅力,培养数学学习的兴趣。

教学重点:了解四位数黑洞6174,探究三位数黑洞
教学难点:自觉探究三位数黑洞495
教学准备:计算器课件
教学过程:
一、引入
1、谈话:同学们,你们听说过“黑洞”吗?
2、介绍“宇宙黑洞”:
黑洞是天文学中的一个概念,它是宇宙中一种非常神秘的天体,体积很小,密度却大得惊人,不论什么东西,只要被它吸进去,就再也别想爬出来,就连最强的X光线也妄想逃脱黑洞的引力.(如果要让地球成为一个黑洞,那么需要把地球压缩成一颗豌豆那么大)
3、在数学这个神秘的王国里,也存在着类似天文学上的黑洞—数字黑洞.。

二、了解“西西弗斯串”——123黑洞
数学中的123就跟英语中的ABC一样平凡和简单。

然而,按以下运算顺序,就可以观察到这个最简单的黑洞值:
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有5个。

奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有5个。

总:数出该数数字的总个数,本例中为10个。

新数:将答案按“偶-奇-总”的位序,排出得到新数为:5510。

重复:将新数5510按以上算法重复运算,可得到新数:134。

重复:将新数134按以上算法重复运算,可得到新数:123。

“123数学黑洞(西西弗斯串)”现象已由回族学者秋屏先生于2010年5月18日作出严格的数学证明,请看他的论文:《“数学黑洞(西西弗斯串)”现象与其证明》(正文网址在“扩展阅读”中)。

自此,这一令人百思不解的数学之谜已被彻底破解。

此前,大学数学教授米歇尔·埃克先生仅仅对这一现象作过描述介绍,却未能给出令人满意的解答和证明。

着名的“123黑洞”还有个别名叫做“西西弗斯串”。

这里有个古老的神话传说
西西弗斯是人间最足智多谋又机巧的人,他是科林斯的建城者和国王。

当宙斯掳走河神的女儿,河神曾到科林斯找寻其女,知悉此事的西西弗斯以一条四季常流的河川做为交换条件告知。

由于泄露了宙斯的秘密,宙斯便派出死神要将他押下地狱。

没有想到西西弗斯却用计绑架了死神,导致人间长久以来都没有人死去,一直到死神被救出为止,西西弗斯也被打入冥界。

在被打入冥界前,西西弗斯嘱咐妻子不要埋葬他的尸体。

到了冥界后,西西弗斯告诉冥后,一个没有被埋葬的人是没有资格待在冥界的,并请求给予三天告假还阳处理自己的后事。

没有想到,西西弗斯一看到美丽的大地就赖着不走不想回冥府去了…
西西弗斯触犯了众神,诸神为了惩罚西西弗斯,便要求他把一块巨石推上山顶,而由于那巨石太重了,每每未上山顶就又滚下山去,前功尽弃,于是他就不断重复、永无止境地做这件事——诸神认为再也没有比进行这种无效无望的劳动更为严厉的惩罚了。

西西弗斯的生命就在这样一件无效又无望的劳作当中慢慢消耗殆尽
三、探究“卡普雷卡尔运算”
1、了解“数字黑洞6174”
什么是“数字黑洞”?数学中又有哪些有趣的“黑洞数”?
自学课本第38页。

反馈:黑洞数6174是怎么得来的?
关键词:4个不同的数字排列成的最大的四位数-最小四位数得到一个数。

重复上述运算最后必得6174。

举例试一试!
2、了解了数字黑洞6174,你有别的想法吗?
启发学生去探究类似的黑洞三位数495.两位数的黑洞数9

四、延伸阅读:最有名气的数字黑洞:3x+1-----冰雹猜想
1976年的一天,《华盛顿邮报》于头版头条报道了一条数学新闻。

文中记叙了这样一个故事:70年代中期,美国各所名牌大学校园内,人们都像发疯一般,夜以继日,废寝忘食地玩弄一种数学游戏。

这个游戏十分简单:任意写出一个自然数N,并且按照以下的规律进行变换:如果是个奇数,则下一步变成
3N+1。

如果是个偶数,则下一步变成N/2。

不单单是学生,甚至连教师、研究员、教授与学究都纷纷加入。

为什么这种游戏的魅力经久不衰?因为人们发现,无论N是怎样一个数字,最终都无法逃脱回到谷底1。

准确地说,是无法逃出落入底部的4-2-1循环,永远也逃不出这样的宿命。

这就是着名的“冰雹猜想”。

举个例子,从7开始7×3+1=2222÷2=1111×3+1=3434÷2=1717×3+1=52 52÷2=2626÷2=1313×3+1=4040÷2=2020÷2=1010÷2=55×3+1=16
16÷2=88÷2=44÷2=22÷2=1
经过5次到达峰值,再经过11次,得到谷底1.
冰雹的最大魅力在于不可预知性。

英国剑桥大学教授JohnConway找到了一个自然数27。

虽然27是一个貌不惊人的自然数,但是如果按照上述方法进行运算,则它的上浮下沉异常剧烈…你可以大胆去猜想要经过多少次运算能到达峰值,峰值会是多少,总共又要经过多少次运算才能掉入谷底1.…
五\、情感启迪
这些数学黑洞都是猜想,有的已经被证明,有的还没证明。

很多伟大的发明创造一开始也都是猜想,有了大胆的猜想,再一步一步去证明,去实施,人类才会进步才会更美好。

相关文档
最新文档