2018年天津中考数学模拟试卷
(汇总3份试卷)2018年天津市中考数学第三次阶段模拟试题

中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.已知等边三角形的内切圆半径,外接圆半径和高的比是( ) A .1:2:3 B .2:3:4C .1:3:2D .1:2:3【答案】D【解析】试题分析:图中内切圆半径是OD ,外接圆的半径是OC ,高是AD ,因而AD=OC+OD ; 在直角△OCD 中,∠DOC=60°,则OD :OC=1:2,因而OD :OC :AD=1:2:1, 所以内切圆半径,外接圆半径和高的比是1:2:1.故选D .考点:正多边形和圆.2.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ). A .3229x x -=+ B .3(2)29x x -=+ C .2932x x +=- D .3(2)2(9)x x -=+【答案】B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9. 故选B. 【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.3.一个布袋内只装有1个黑球和2个白球,这些球除颜色不同外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .19【答案】D【解析】试题分析:列表如下黑白1 白2黑(黑,黑)(白1,黑)(白2,黑)白1 (黑,白1)(白1,白1)(白2,白1)白2 (黑,白2)(白1,白2)(白2,白2)由表格可知,随机摸出一个球后放回搅匀,再随机摸出一个球所以的结果有9种,两次摸出的球都是黑球的结果有1种,所以两次摸出的球都是黑球的概率是19.故答案选D.考点:用列表法求概率.4.如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个【答案】C【解析】分为三种情况:①AP=OP,②AP=OA,③OA=OP,分别画出即可.【详解】如图,分OP=AP(1点),OA=AP(1点),OA=OP(2点)三种情况讨论.∴以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有4个.故选C.【点睛】本题考查了等腰三角形的判定和坐标与图形的性质,主要考查学生的动手操作能力和理解能力,注意不要漏解.5.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.6.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°【答案】C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.∵51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.7.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处【答案】D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.8.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)【答案】D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.9.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:第一个图是轴对称图形,又是中心对称图形;第二个图是轴对称图形,不是中心对称图形;第三个图是轴对称图形,又是中心对称图形;第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B.10.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P 截得的弦AB的长为42,则a的值是()A.4 B.32C.2D.33【答案】B【解析】试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=12AB=12×42=22,在Rt△PBE中,PB=3,∴PE=223-22=1(),∴PD=2PE=2,∴a=3+2.故选B.考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.二、填空题(本题包括8个小题)11.如图,点A是双曲线y=﹣9x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx上运动,则k的值为_____.【答案】1【解析】根据题意得出△AOD ∽△OCE ,进而得出AD OD OAEO CE OC==,即可得出k=EC×EO=1. 【详解】解:连接CO ,过点A 作AD ⊥x 轴于点D ,过点C 作CE ⊥x 轴于点E , ∵连接AO 并延长交另一分支于点B ,以AB 为底作等腰△ABC ,且∠ACB=120°, ∴CO ⊥AB ,∠CAB=10°, 则∠AOD+∠COE=90°, ∵∠DAO+∠AOD=90°, ∴∠DAO=∠COE , 又∵∠ADO=∠CEO=90°, ∴△AOD ∽△OCE , ∴AD OD OAEO CE OC== =tan60°=3 , ∴AOD EOCS S ∆∆=()23 =1,∵点A 是双曲线y=-9x在第二象限分支上的一个动点, ∴S △AOD =12×|xy|=92, ∴S △EOC =32 ,即12×OE×CE=32, ∴k=OE×CE=1, 故答案为1.【点睛】本题主要考查了反比例函数与一次函数的交点以及相似三角形的判定与性质,正确添加辅助线,得出△AOD ∽△OCE 是解题关键.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____. 【答案】20【解析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13.若a+b=5,ab=3,则a2+b2=_____.【答案】1【解析】试题分析:首先把等式a+b=5的等号两边分别平方,即得a2+2ab+b2=25,然后根据题意即可得解.解:∵a+b=5,∴a2+2ab+b2=25,∵ab=3,∴a2+b2=1.故答案为1.考点:完全平方公式.14.函数21yx=-中,自变量x的取值范围是_____.【答案】x≠1【解析】根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为______【答案】4 yx =【解析】根据反比例函数图象上点的横、纵坐标之积不变可得关于m的方程,解方程即可求得m的值,再由待定系数法即可求得反比例函数的解析式.【详解】设反比例函数解析式为y=kx,由题意得:m2=2m×(-1),解得:m=-2或m=0(不符题意,舍去),所以点A(-2,-2),点B(-4,1),所以k=4,所以反比例函数解析式为:y=4x,故答案为y=4 x .【点睛】本题考查了反比例函数,熟知反比例函数图象上点的横、纵坐标之积等于比例系数k是解题的关键.16.如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x厘米和y厘米,则列出的方程组为_____.【答案】2753x yx y+=⎧⎨=⎩【解析】根据图示可得:长方形的长可以表示为x+2y,长又是75厘米,故x+2y=75,长方形的宽可以表示为2x,或x+3y,故2x=3y+x,整理得x=3y,联立两个方程即可.【详解】根据图示可得2753x yx y+=⎧⎨=⎩,故答案是:2753x yx y+=⎧⎨=⎩.【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.17.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=15米,那么该古城墙的高度CD是_____米.【答案】10【解析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP =CD PD,∵AB=2米,BP=3米,PD=15米,∴23=15 CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.18.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.【答案】3【解析】先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD2268=+=1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.三、解答题(本题包括8个小题)19.如图,已知A ,B 两点在数轴上,点A 表示的数为-10,OB=3OA ,点M 以每秒3个单位长度的速度从点A 向右运动.点N 以每秒2个单位长度的速度从点O 向右运动(点M 、点N 同时出发)数轴上点B 对应的数是______.经过几秒,点M 、点N 分别到原点O 的距离相等?【答案】(1)1;(2)经过2秒或2秒,点M 、点N 分别到原点O 的距离相等【解析】试题分析:(1)根据OB=3OA ,结合点B 的位置即可得出点B 对应的数;(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,找出点M 、N 对应的数,再分点M 、点N 在点O 两侧和点M 、点N 重合两种情况考虑,根据M 、N 的关系列出关于x 的一元一次方程,解之即可得出结论.试题解析:(1)∵OB=3OA=1,∴B 对应的数是1.(2)设经过x 秒,点M 、点N 分别到原点O 的距离相等,此时点M 对应的数为3x-2,点N 对应的数为2x .①点M 、点N 在点O 两侧,则2-3x=2x ,解得x=2;②点M 、点N 重合,则,3x-2=2x ,解得x=2.所以经过2秒或2秒,点M 、点N 分别到原点O 的距离相等.20.用你发现的规律解答下列问题.111122=-⨯ 1112323=-⨯ 1113434=-⨯┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 【答案】解:(1)56;(2)n n 1+;(3)n=17. 【解析】(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n 的一元一次方程,从而得出n 的值.【详解】(1)原式=1−12+12−13+13−14+14−15+15−16=1−16=56. 故答案为56; (2)原式=1−12+12−13+13−14+…+1n −1n 1+=1−1n 1+=n n 1+ 故答案为n n 1+; (3)113⨯ +135⨯+157⨯+…+1n n (2-1)(2+1)=12 (1−13+13−15+15−17+…+12n 1-−12n 1+) =12(1−12n 1+) =n 2n 1+ =1735解得:n=17.考点:规律题.21.已知:正方形ABCD 绕点A 顺时针旋转至正方形AEFG ,连接CE DF 、.如图,求证:CE DF =;如图,延长CB 交EF 于M ,延长FG 交CD 于N ,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.【答案】(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,由此即可解答.【详解】(1)证明:连接,AF AC ,∵正方形ABCD 旋转至正方形AEFG∴DAG BAE ∠∠=,45BAC GAF ∠=∠=︒∴BAE BAC DAG GAF ∠+∠=∠+∠∴EAC DAF ∠=∠在EAC ∆和DAF ∆中,AE AD EAC FAD AC AF =⎧⎪∠=∠⎨⎪=⎩, ∴EAC DAF ∆≅∆∴CE DF =(2).∠DAG 、∠BAE 、∠FMC 、∠CNF ;由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC ≅ΔDAF 是解决问题的关键. 22.从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.【答案】4小时.【解析】本题依据题意先得出等量关系即客车由高速公路从A 地道B 的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.【详解】解:设客车由高速公路从甲地到乙地需x 小时,则走普通公路需2x 小时,根据题意得: 60048045,2x x+=解得x=4经检验,x=4原方程的根,答:客车由高速公路从甲地到乙地需4时.【点睛】本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.23.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.求证:AB=DC;试判断△OEF的形状,并说明理由.【答案】(1)证明略(2)等腰三角形,理由略【解析】证明:(1)∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.24.如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.【答案】见解析【解析】根据CE∥DF,可得∠ECA=∠FDB,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【详解】解:∵CE∥DF∴∠ECA=∠FDB,在△ECA和△FDB中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【点睛】 本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.25.国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?【答案】 (1) 每次下调10% (2) 第一种方案更优惠.【解析】(1)设出平均每次下调的百分率为x ,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x ,根据题意得5000×(1-x )2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键. 26.如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,•景区管委会又开发了风景优美的景点D ,经测量,景点D 位于景点A 的北偏东30′方向8km 处,•位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D 向公路a 修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km ).求景点C 与景点D 之间的距离.(结果精确到1km ).【答案】(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km .【解析】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB ,交DB 的延长线于点F ,在Rt △DAF 中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF -=-=, 在Rt △ABF 中BF=2222AB AF 54-=-=3, ∴BD=DF ﹣BF=43﹣3,sin ∠ABF=45AF AB =, 在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45, ∴DE=BD•sin ∠DBE=45×(43﹣3)=16312-≈3.1(km ),∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB=75°,由(1)可知sin ∠DBE=45=0.8,所以∠DBE=53°, ∴∠DCB=180°﹣75°﹣53°=52°, 在Rt △DCE 中,sin ∠DCE=DB DC ,∴DC= 3.1sin 520.79DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km .中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.2.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.3.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .【答案】C 【解析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD 的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP 面积变化情况是解题的关键,属于中考常考题型.4.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .9【答案】A 【解析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解.【详解】∵E 是AC 中点,∵EF ∥BC ,交AB 于点F ,∴EF 是△ABC 的中位线,∴BC=2EF=2×3=6,∴菱形ABCD 的周长是4×6=24,故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 5.我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑堵”某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为1),则该“堑堵”的侧面积为( )A .16+162B .16+82C .24+162D .4+42【答案】A 【解析】分析出此三棱柱的立体图像即可得出答案.【详解】由三视图可知主视图为一个侧面,另外两个侧面全等,是长×高=22×4=82,所以侧面积之和为82×2+4×4= 16+162,所以答案选择A 项.【点睛】本题考查了由三视图求侧面积,画出该图的立体图形是解决本题的关键.6.设点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <时,1y <2y ,则一次函数2y x k =-+的图象不经过的象限是A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【解析】∵点()11A ,x y 和()22B ,x y 是反比例函数k y x =图象上的两个点,当1x <2x <1时,1y <2y ,即y 随x 增大而增大,∴根据反比例函数k y x=图象与系数的关系:当0k >时函数图象的每一支上,y 随x 的增大而减小;当0k <时,函数图象的每一支上,y 随x 的增大而增大.故k <1.∴根据一次函数图象与系数的关系:一次函数1y=k x+b 的图象有四种情况:①当1k 0>,b 0>时,函数1y=k x+b 的图象经过第一、二、三象限;②当1k 0>,b 0<时,函数1y=k x+b 的图象经过第一、三、四象限;③当1k 0<,b 0>时,函数1y=k x+b 的图象经过第一、二、四象限;④当1k 0<,b 0<时,函数1y=k x+b 的图象经过第二、三、四象限.因此,一次函数2y x k =-+的1k 20=-<,b=k 0<,故它的图象经过第二、三、四象限,不经过第一象限.故选A .7.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )A .B .C .D .【答案】B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A .不是轴对称图形,故本选项错误;B .是轴对称图形,故本选项正确;C .不是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项错误.故选B .8.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3【答案】A【解析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a ﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.9.一、单选题如图中的小正方形边长都相等,若△MNP ≌△MEQ ,则点Q 可能是图中的( )A.点A B.点B C.点C D.点D【答案】D【解析】根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.10.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象的形状大致是()A.B.C.D.【答案】C【解析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx 的图象经过第一、三象限,反比例函数y=b x的图象经过第二、四象限.综上所述,符合条件的图象是C 选项.故选C .考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系二、填空题(本题包括8个小题)11.如图,AB 是⊙O 的直径,AC 与⊙O 相切于点A ,连接OC 交⊙O 于D ,连接BD ,若∠C=40°,则∠B=_____度.【答案】25【解析】∵AC 是⊙O 的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD ,∴∠ABD=∠BDO ,∵∠ABD+∠BDO=∠AOC ,∴∠ABD=25°,故答案为:25.12.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________.【答案】3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,10m =0.3,解得m =3.故答案为:3.【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.13.有公共顶点A ,B 的正五边形和正六边形按如图所示位置摆放,连接AC 交正六边形于点D ,则∠ADE 的度数为( )A .144°B .84°C .74°D .54°【答案】B 【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC ,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B . 14.如图,ABC 与ADB △中,90ABC ADB ︒∠=∠=,C ABD ∠=∠,5AC =,4AB =,AD 的长为________.【答案】165【解析】先证明△ABC ∽△ADB ,然后根据相似三角形的判定与性质列式求解即可.【详解】∵90ABC ADB ︒∠=∠=,C ABD ∠=∠,∴△ABC ∽△ADB ,∴AB AD AC AB=, ∵5AC =,4AB =, ∴454AD =,∴AD=165. 故答案为:165. 【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.15.分解因式:a 3-a=【答案】(1)(1)a a a -+【解析】a 3-a=a(a 2-1)=(1)(1)a a a -+16.二次函数2y ax bx =+的图象如图,若一元二次方程20ax bx m ++=有实数根,则m 的最大值为___【答案】3【解析】试题解析::∵抛物线的开口向上,顶点纵坐标为-3,∴a >1.-24b a=-3,即b 2=12a , ∵一元二次方程ax 2+bx+m=1有实数根,∴△=b 2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m 的最大值为3,17.如图,△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于F ,AB=10,AC=6,则DF 的长为__.【答案】1【解析】试题分析:如图,延长CF 交AB 于点G ,∵在△AFG 和△AFC 中,∠GAF=∠CAF ,AF=AF ,∠AFG=∠AFC ,∴△AFG ≌△AFC (ASA ).∴AC=AG ,GF=CF .又∵点D 是BC 中点,∴DF 是△CBG 的中位线.∴DF=12BG=12(AB ﹣AG )=12(AB ﹣AC )=1. 18.若2216a b -=,13a b -=,则+a b 的值为 ________ . 【答案】-12. 【解析】分析:已知第一个等式左边利用平方差公式化简,将a ﹣b 的值代入即可求出a+b 的值.详解:∵a 2﹣b 2=(a+b )(a ﹣b )=16,a ﹣b=13,∴a+b=12. 故答案为12. 点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键.三、解答题(本题包括8个小题)19.如图,直线y=kx+2与x 轴,y 轴分别交于点A (﹣1,0)和点B ,与反比例函数y=m x 的图象在第一象限内交于点C (1,n ).求一次函数y=kx+2与反比例函数y=m x 的表达式;过x 轴上的点D (a ,0)作平行于y 轴的直线l (a >1),分别与直线y=kx+2和双曲线y=m x交于P 、Q 两点,且PQ=2QD ,求点D 的坐标.【答案】()1一次函数解析式为22y x =+;反比例函数解析式为4y x =;()()22,0D . 【解析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值;(2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数m y x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D点的坐标.【详解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=mx得m=1×4=4,∴反比例函数解析式为y=4x;(2)∵PD∥y轴,而D(a,0),∴P(a,2a+2),Q(a,4a),∵PQ=2QD,∴2a+2﹣4a =2×4a,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.20.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练。
【中考模拟】2018年天津市初中毕业生学业模拟考试数学试卷含答案

请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!2018年天津市初中毕业生学业模拟考试数学·答题卡请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!姓名:__________________________准考证号:贴条形码区考生禁填:缺考标记违纪标记以上标志由监考人员用2B铅笔填涂选择题填涂样例:正确填涂错误填涂[×][√][/]1.答题前,考生先将自己的姓名,准考证号填写清楚,并认真核准条形码上的姓名、准考证号,在规定位置贴好条形码。
2.选择题必须用2B铅笔填涂;填空题和解答题必须用0.5mm黑色签字笔答题,不得用铅笔或圆珠笔答题;字体工整、笔迹清晰。
3.请按题号顺序在各题目的答题区域内作答,超出区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
注意事项一、选择题(每小题3分,共36分)1[A][B][C][D]2[A][B][C][D]3[A][B][C][D]4[A][B][C][D]5[A][B][C][D]6[A][B][C][D]7[A][B][C][D]8[A][B][C][D]9[A][B][C][D]10[A][B][C][D]11[A][B][C][D]12[A][B][C][D]二、填空题(每小题3分,共18分)13._________________________14._________________________15._________________________16._________________________17._________________________18.(Ⅰ)_____________________(Ⅱ)__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!三、解答题(共66分,解答应写出文字说明、证明过程或演算步骤)19.(本小题8分)(Ⅰ)_____________________;(Ⅱ)_____________________;(Ⅲ)12345(Ⅳ)_____________________.20.(本小题8分)(Ⅰ)_____________________.(Ⅱ)(Ⅲ)21.(本小题10分)(Ⅰ)DCEBOA(Ⅱ)CFEDA BO22.(本小题10分)53°60°NBACABC请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!23.(本小题10分)解:(Ⅰ)表一购进甲种服装的数量/件1020x购进甲种服装所用费用/元8001600①________购进乙种服装所用费用/元5400②________③________表二购进甲种服装的数量/件1020x甲种服装获得的利润/元④________800⑤________乙种服装获得的利润/元27002400⑥________(Ⅱ)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效!24.(本小题10分)(Ⅰ)xyO ABB'O'(Ⅱ)xyO'B'BAO(Ⅲ)_________________________.25.(本小题10分)(Ⅰ)(Ⅱ)。
2018年天津中考数学模拟试卷

A.B.C.D.2018年天津中考模拟试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第2页.第Ⅱ卷为第3页至第8页.试卷满分120分.考试时间100分钟.答卷前.请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上.并在规定位置粘贴考试用条形码.答题时.务必将答案涂写在“答题卡”上.答案答在试卷上无效.考试结束后.将本试卷和“答题卡”一并交回.祝你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后.用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动.用橡皮擦干净后.再选涂其它答案标号的信息点.2.本卷共12题.共36分.一、选择题(本大题共12小题.每小题3分.共36分.在每小题给出的四个选项中.只有一项是符合题目要求的) 一、选择题:1. 计算(–2)–5的结果等于( )A .–7B .–3C .3D .72.cos30°的值等于( )A .12B .32 C .33 D .223.下列图标中.既是轴对称图形.又是中心对称图形的是( )A.B.C.D.BADC P(11题图)4.截至2016年底.国家开发银行对“一带一路”沿线国家累积发放贷款超过1600亿美元.其中1600亿用科学计数法表示为( )A .16×1010B .1.6×1010C . 1.6×1011D .0.16×10125. 如图是一个由4个相同的正方体组成的立体图形.它的主视图是( )6. 估计38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间7. 方程x 2–x –6=0的根为( )A .x 1=3,x 2= –2B . x 1= –3,x 2= 2C . x 1=3,x 2= 2D . x 1= –3,x 2= –28. 计算1x –x+1x的结果为( )A .–1B .xC .1xD .x –2x9. 己知反比例函数y =6x.当1<x <3时.y 的取值范围是( )A . 0<y <1B . 1<y <2C . 2<y <6D . y >610. 一种药品原价每盒25元.经过两次降价后每盒16元.设两次降价的百分率都为x .则x 满足( )A .16(1+2x )=25B .25(1–2x )=16C .16(1+x )2=25D .25(1–x )2=1611. 如图.在矩形ABCD 中.AB =5.AD =3.动点P 满足S △PAB =13S 矩形ABCD .则点P 到A .B 两点距离之和PA +PB 的最小值为( )A .29B .34C .5 2D .4112. 已知关于x 的二次函数y =ax 2+(a 2–1)x –a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3.则a 的取值范围是( )CQC A . 13<a <12B .2<a <3C . 13<a <12或–3<a <–2 D . 13<a <23或2<a <32018年天津中考模拟试卷数 学第Ⅱ卷注意事项:1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).2.本卷共13题.共84分.二、填空题(本大题共6小题.每小题3分.共18分) 13.计算25x x 的结果等于 .14.计算(5+3)(5–3)的结果等于 .15.若一次函数y =2x +b (b 为常数)的图象经过点(1.5).则b 的值为 . 16.不透明袋子中装有9个球.其中有2个红球、3个绿球和4个蓝球.这些球除颜色外无其他差别.从袋子中随机取出1个球.则它是红球的概率是 . 17. 如图.在矩形ABCD 中.AB = 2.E 是BC 的中点.AE ⊥BD 于点F .则CF 的长是 .18.在每个小正方形的边长为1的网格中.点A ,B ,C 均在格点上.点P .Q 分别为线段AB ,AC 上的动点.(Ⅰ)如图(1).当点P .Q 分别为AB .AC 中点时.PC +PQ 的值为 ; (Ⅱ)当PC +PQ 取得最小值时.在如图(2)所示的网格中.用无刻度的直(17题图)BCDAEF尺.画出线段PC ,PQ .简要说明点P 和点Q 的位置是如何找到的 .三、解答题(本大题共7小题.共66分.解答应写出文字说明、演算步骤或推理过程)19. 解不等式组1254 3.x x x +⎧⎨+⎩≥,①≤②请结合题意填空.完成本题的解答. (Ⅰ)解不等式①.得__________________; (Ⅱ)解不等式②.得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为__________________.20. 某商场服装部为了解服装的销售情况.统计了每位营业员在某月的销售额(单位:万元).并根据统计的这组数据.绘制出如下的统计图①和图②.请根据相关信息.解答下列问题.34521(Ⅰ)该商场服装部营业员的人数为.图①中m的值为(Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.21.如图.AB是⊙O的一条弦.E是AB的中点.过点E作EC⊥OA于点C.过点B作⊙O 的切线交CE的延长线于点D.(Ⅱ)若AB=12.BD=5.求⊙O的半径.22. 热气球的探测器显示.从热气球看一栋高楼顶部的仰角为30°.看这栋高楼底部的俯角为60°.热气球与高楼的水平距离为66 m .这栋高楼有多高?(结果精确到0.1 m .参考数据:3≈1.73)23. 公司有330台机器需要一次性运送到某地.计划租用甲、乙两种货车共8辆.已知每辆甲种货车一次最多运送机器45台、租车费用为400元.每辆乙种货车一次最多运送机器30台、租车费用为280元(Ⅰ)设租用甲种货车x 辆(x 为非负整数).试填写表格. 表一:CAB24.如图.在矩形AOBC中.O为坐标原点.OA、OB分别在x轴、y轴上.点B的坐标为(0,23).点A的坐标为(–2,0).(Ⅰ) 如图1.将△ABC沿AB所在直线翻折后.点C落在点D处.求点D的坐标; (Ⅱ)在(Ⅰ)的条件下.将△ABD绕点B逆时针旋转120°.得到△A′BD′.在x轴上有一动点P.当PB+PD′最小时.求点P坐标;(Ⅲ)在矩形AOBC内部有一动点Q.且∠ACQ=∠QAO.求OQ长度的最小值(直接写出结果即可).25. 已知抛物线y =ax 2+bx +c 关于y 轴对称.且经过点(0,1)和(1, 54).点F 的坐标为(0,2).点M 的坐标为(3,3). (Ⅰ)求该抛物线解析式;(Ⅱ) P是抛物线上的一个动点.点P横坐标为m.且满足0<m< 3.当△PFM面积最大时.求点P坐标;(Ⅲ)若抛物线上的动点P到定点F(0,2)的距离与到x轴的距离始终相等.求△PMF周长的最小值.。
〖中考零距离-新课标〗2018年天津市中考数学第一次模拟试题及答案解析

2018年天津市中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣12.tan60°的值等于()A.B.C.D.3.下列logo标志中,既是中心对称图形又是轴对称图形的是()A.B. C.D.4.据2015年1月16日的渤海早报报道,2014年天津市公共交通客运量达1510000000人次,较2013年增长10.6%,将1510000000用科学记数法表示应为()A.151×l07 B.15.1×108C.15×l07D.1.51 xl095.如图,根据三视图,判断组成这个物体的块数是()A.6 B.7 C.8 D.96.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm7.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为()A.40°B.50°C.55°D.60°8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.9.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A.x(x+1)=45 B.x(x﹣1)=45 C.x(x+1)=45 D.x(x﹣1)=4511.如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A .B .2C .D .312.二次函数y=ax 2+bx+c (a ≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >﹣1时,y 的值随x 值的增大而增大. 其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题:13.若,则的值为 .14.抛物线y=﹣2x 2+x ﹣4的对称轴为 .15.晨光中学规定学生的体育成绩满分为100分,其中早操及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小惠的三项成绩依次是95分,90分,85分,小惠这学期的体育成绩为 分.16.已知反比例函数y=﹣,则有①它的图象在一、三象限:②点(﹣2,4)在它的图象上;③当l <x <2时,y 的取值范围是﹣8<y <﹣4;④若该函数的图象上有两个点A (x 1,y 1),B (x 2,y 2),那么当x 1<x 2时,y 1<y 2 以上叙述正确的是 .17.如图,△ABC 是边长为的等边三角形,点P .Q 分别是射线AB 、BC 上两个动点,且AP=CQ ,PQ 交AC 与D ,作PE 丄AC 于E ,那么DE 的长度为 .18.如图,有一张长为7宽为5的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为(结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明裁剪的过程.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得(Ⅱ)解不等式②,得(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为.20.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)求这100个样本数据的平均数、众数和中位数;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?21.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.(Ⅰ)求⊙O的半径;(Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案)22.如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?24.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P 为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;(2)设该二次函数的图象与x轴的两个交点中右侧的交点为点B,若∠ABO=45°,将直线AB向下平移2个单位得到直线l,求直线l的解析式;(3)在(2)的条件下,设M(p,q)为二次函数图象上的一个动点,当﹣3<p<0时,点M关于x轴的对称点都在直线l的下方,求m的取值范围.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.计算(﹣16)÷8的结果等于()A.B.﹣2 C.3 D.﹣1【考点】有理数的除法.【分析】根据有理数的除法,同号得负,并把绝对值相除,即可解答.【解答】解:(﹣16)÷8=﹣2,故选:B.【点评】本题考查了有理数的除法,解决本题的关键是熟记有理数的除法法则.2.tan60°的值等于()A.B.C.D.【考点】特殊角的三角函数值.【分析】求得60°的对边与邻边之比即可.【解答】解:在直角三角形中,若设30°对的直角边为1,则60°对的直角边为,tan60°==,故选D.【点评】考查特殊角的三角函数值;熟练掌握特殊角的三角函数值是解决此类问题的关键.3.下列logo标志中,既是中心对称图形又是轴对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、是中心对称图形,不是轴对称图形,故本选项错误.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.据2015年1月16日的渤海早报报道,2014年天津市公共交通客运量达1510000000人次,较2013年增长10.6%,将1510000000用科学记数法表示应为()A.151×l07 B.15.1×108C.15×l07D.1.51 xl09【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1510000000用科学记数法表示为:1.51 xl09.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,根据三视图,判断组成这个物体的块数是()A.6 B.7 C.8 D.9【考点】由三视图判断几何体.【分析】从主视图看出:从左到右依次有1个、2个、3个,从左视图和俯视图可以看出只有一列,据此求解.【解答】解:根据左视图和俯视图发现该组合体共有一列,从主视图发现该组合体共有1+2+3=6个小正方体,【点评】本题可根据“俯视图打地基,正视图疯狂盖,左视图拆违章”进行求解.要注意本题中第二层有两种不同的情况.6.如图,要拧开一个边长为a(a=6mm)的正六边形,扳手张开的开口b至少为()A.4mm B.6mm C.4mm D.12mm【考点】正多边形和圆.【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30度,再根据锐角三角函数的知识求解.【解答】解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6mm,∠AOB=60°,∴cos∠BAC=,∴AM=6×=3(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=6(mm).故选B.【点评】本题考查了正多边形和圆的知识,构造一个由半径、半边、边心距组成的直角三角形,熟练运用锐角三角函数进行求解.7.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为()A.40°B.50°C.55°D.60°【考点】切线的性质.【分析】首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.【解答】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°﹣∠PAO﹣∠P﹣∠PBO=360°﹣90°﹣70°﹣90°=110°,∴∠C=∠AOB=55°.故选:C.【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.【考点】概率公式.【分析】看有食物的情况占总情况的多少即可.【解答】解:共有6条路径,有食物的有2条,所以概率是,故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.一天,小亮看到家中的塑料桶中有一个竖直放置的玻璃杯,桶子和杯子的形状都是圆柱形,桶口的半径是杯口半径的2倍,其主视图如图所示.小亮决定做个试验:把塑料桶和玻璃杯看作一个容器,对准杯口匀速注水,注水过程中杯子始终竖直放置,则下列能反映容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.【考点】函数的图象.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,因为杯子和桶底面半径比是1:2,则底面积的比为1:4,在高度相同情况下体积比为1:4,杯子内水的体积与杯子外水的体积比是1:3,所以高度不变时,杯外注水时间是杯内注水时间的3倍,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:C.【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.10.参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A.x(x+1)=45 B.x(x﹣1)=45 C.x(x+1)=45 D.x(x﹣1)=45【考点】由实际问题抽象出一元二次方程.【分析】每家公司都与其他公司鉴定了一份合同,设有x家公司参加,则每个公司要签(x﹣1)份合同,签订合同共有x(x﹣1)份.【解答】解:设有x家公司参加,依题意,得x(x﹣1)=45,故选B.【点评】考查了由实际问题抽象出一元二次方程,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数;或者平面内,n个点(没有三点共线)之间连线,所有线段的条数.11.如图,在Rt△ABC中,CD是边AB上的高,若AC=4,AB=10,则AD的长为()A.B.2 C.D.3【考点】相似三角形的判定与性质;射影定理.【分析】求出∠ADC=∠ACB=90°,∠CAD=∠BAC,推出△CAD∽△BAC,得出比例式=,代入求出即可.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△CAD∽△BAC,∴=,∵AC=4,AB=10,∴=,∴AD==,故选A.【点评】本题考查了相似三角形的性质和判定,关键是能根据相似得出比例式.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【专题】代数几何综合题;压轴题;数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c >0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y 轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:13.若,则的值为.【考点】分式的化简求值.【专题】计算题.【分析】这道求代数式值的题目,不应考虑把a的值直接代入,两式合并后约分,然后再代入求值.【解答】解:原式====.【点评】分子、分母能因式分解的先因式分解,化简到最简然后代值求解.14.抛物线y=﹣2x2+x﹣4的对称轴为.【考点】二次函数的性质.【分析】根据抛物线y=ax2+bx+c的对称轴公式为X=﹣,此题中的a=﹣4,b=3,将它们代入其中即可.【解答】解:x=﹣=﹣=.故答案为.【点评】本题考查二次函数对称轴公式的应用,熟练掌握对称轴公式是解题的关键.15.晨光中学规定学生的体育成绩满分为100分,其中早操及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小惠的三项成绩依次是95分,90分,85分,小惠这学期的体育成绩为88.5 分.【考点】加权平均数.【专题】计算题.【分析】利用加权平均数的公式直接计算.用95分,90分,85分别乘以它们的百分比,再求和即可.【解答】解:小惠这学期的体育成绩=(95×20%+90×30%+85×50%)=88.5(分).故答案为88.5.【点评】本题考查了加权成绩的计算.16.已知反比例函数y=﹣,则有①它的图象在一、三象限:②点(﹣2,4)在它的图象上;③当l<x<2时,y的取值范围是﹣8<y<﹣4;④若该函数的图象上有两个点A (x1,y1),B(x2,y2),那么当x1<x2时,y1<y2以上叙述正确的是②③.【考点】反比例函数的性质.【分析】利用反比例函数的性质逐条进行分析后即可确定正确的答案.【解答】解:①∵k=﹣8<0,∴它的图象在一、三象限错误:②∵﹣2×4=﹣8,∴点(﹣2,4)在它的图象上正确;③当l<x<2时,y的取值范围是﹣8<y<﹣4,正确;④当两个点A (x1,y1),B(x2,y2)分别位于不同的象限时,则x1<x2时,y1<y2错误,故答案为:②③.【点评】考查了反比例函数的性质,对于反比例函数y=,当k>0时,在每一个象限内,函数值y 随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.17.如图,△ABC是边长为的等边三角形,点P.Q分别是射线AB、BC上两个动点,且AP=CQ,PQ交AC与D,作PE丄AC于E,那么DE的长度为.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】过P作PF∥BC交AC于F,推出△APF是等边三角形,推出AP=PF=CQ,求出∠FPD=∠Q,根据AAS证△FPD≌△CQD,推出FD=DC,根据等腰三角形性质得出AE=EF,求出DE=FE+DF=AC,代入求出即可.【解答】解:过P作PF∥BC交AC于F,∵△ABC是等边三角形,∴∠ACB=∠B=∠A=60°,∵PF∥BC,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴∠APF=∠AFP=∠A=60°,∴△APF是等边三角形,∴AP=PF,∵AP=CQ,∴PF=CQ,∵PF∥BC,∴∠FPD=∠Q,在△FPD和△CQD中,∴△FPD≌△CQD(AAS),∴FD=DC,∵AP=PF,PE⊥AF,∴AE=EF,∴DE=FE+DF=CD+AE=AC,∵AC=,∴DE=,故答案为.【点评】本题考查了全等三角形的性质和判定,等边三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点的综合运用.18.如图,有一张长为7宽为5的矩形纸片ABCD,要通过适当的剪拼,得到一个与之面积相等的正方形.(Ⅰ)该正方形的边长为(结果保留根号);(Ⅱ)现要求只能用两条裁剪线,请你设计一种裁剪的方法.在图中画出裁剪线,并简要说明裁剪的过程.【考点】图形的剪拼.【分析】(I)设正方形的边长为a,则a2=7×5,可解得正方形的边长;(II)以BM=6为直径作半圆,在半圆上取一点N,使MN=1,连接BN,则∠MNB=90°,由勾股定理,得BN==,由此构造正方形的边长,利用平移法画正方形.【解答】解:(I)设正方形的边长为a,则a2=7×5,解得a=;(II)如图,(1)以BM=6为直径作半圆,在半圆上取一点N,使MN=1,连接BN,由勾股定理,得BN==;(2)以A为圆心,BN长为半径画弧,交CD于K点,连接AK,(3)过B点作BE⊥AK,垂足为E,(4)平移△ABE,△ADK,得到四边形BEFG即为所求.故答案为:.【点评】此题考查了图形的剪拼,用到的知识点是勾股定理、矩形的性质、正方形的性质等,关键是利用有关性质通过空间想象画出图形.三、解答题(本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程)19.解不等式组,请结合题意填空,完成本题的解答:(Ⅰ)解不等式①,得x≥﹣1(Ⅱ)解不等式②,得x<2(Ⅲ)把不等式①和②的解集在数轴上表示出来(Ⅳ)原不等式的解集为﹣1≤x<2 .【考点】解一元一次不等式组;在数轴上表示不等式的解集.【专题】计算题.【分析】(Ⅰ)、(Ⅱ)通过移项、合并,把x的系数化为1得到不等式的解;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)根据大小小大中间找确定不等式组的解集.【解答】解:(Ⅰ)解不等式①,得x≥﹣1;(Ⅱ)解不等式②,得x<2;(Ⅲ)如图,(Ⅳ)原不等式的解集为﹣1≤x<2.故答案为x≥﹣1,x<2,﹣1≤x<2.【点评】本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.为了倡导“节约用水,从我做起”的活动,某市政府决定对市直机关500户家庭的用水情况作一次调查,调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.(1)求这100个样本数据的平均数、众数和中位数;(2)根据样本数据,估计该市直机关500户家庭中月平均用水量不超过12吨的约有多少户?【考点】条形统计图;用样本估计总体;加权平均数;中位数;众数.【分析】(1)根据平均数、众数、中位数的计算公式和定义分别进行解答即可得出答案;(2)先求出家庭中月平均用水量不超过12吨所占的百分比,再乘以总数即可得出答案.【解答】解:(1)这100个样本数据的平均数是:(10×20+11×40+12×10+13×20+14×10)=11.6(吨);11出现的次数最多,出现了40次,则众数是11;把这100个数从小到大排列,最中间两个数的平均数是11,则中位数是11;(2)根据题意得:×500=350(户),答:该市直机关500户家庭中月平均用水量不超过12吨的约有350户.【点评】此题考查了条形统计图,用到的知识点是平均数、众数、中位数和用样本估计总体,关键是读懂统计图,从不同的统计图中得到必要的信息.21.如图,点P为⊙O上一点,弦AB=cm,PC是∠APB的平分线,∠BAC=30°.(Ⅰ)求⊙O的半径;(Ⅱ)当∠PAC等于多少时,四边形PACB有最大面积?最大面积是多少?(直接写出答案)【考点】垂径定理;勾股定理;圆周角定理.【分析】(Ⅰ)连接OA,OC,根据圆周角定理得到∠AOC=60°,由角平分线的定义得到∠APC=∠BPC,求得,得到AD=BD=,OC⊥AB,即可得到结论;(Ⅱ)先求得AC=BC,再根据已知条件得S四边形PACB=S△ABC+S△PAB S△ABC,当S△PAB最大时,四边形PACB面积最大,求出PC=2,从而计算出最大面积.【解答】解:(Ⅰ)如图1,连接OA,OC,∵∠ABC=30°,∴∠AOC=60°,∵PC是∠APB的平分线,∴∠APC=∠BPC,∴,∴AD=BD=,OC⊥AB,∴OA=1,∴⊙O的半径为1;(Ⅱ)如图2,∵PC平分∠APB,∴∠APC=∠BPC,∴AC=BC,由AB=cm,求得AC=BC=1,∵S四边形PACB=S△ABC+S△PAB,S△ABC为定值,当S△PAB最大时,四边形PACB面积最大,由图可知四边形PACB由△ABC和△PAB组成,且△ABC面积不变,故要使四边形PACB面积最大,只需求出面积最大的△PAB即可,在△PAB中,AB边不变,其最长的高为过圆心O与AB垂直(即AB的中垂线)与圆O交点P,此时四边形PACB面积最大.此时△PAB为等边三角形,此时PC应为圆的直径∠PAC=90°,∵∠APC=∠BAC=30°,∴PC=2AC=2,∴四边形PACB的最大面积为×=(cm2).【点评】本题考查了垂径定理,圆周角定理,以及圆心角、弧、弦之间的关系,根据题意分类讨论是解题的关键.22.如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿着俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC (结果精确到1m).【考点】解直角三角形的应用-仰角俯角问题.【专题】几何图形问题.【分析】首先过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,进而里锐角三角函数关系得出DE、AE的长,即可得出DF的长,求出BC即可.【解答】解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,∴cos∠ADE=cos15°=≈0.97,∴≈0.97,解得:DE=1552(m),sin15°=≈0.26,∴≈0.26,解得;AE=416(m),∴DF=500﹣416=84(m),∴tan∠BDF=tan15°=≈0.27,∴≈0.27,解得:BF=22.68(m),∴BC=CF+BF=1552+22.68=1574.68≈1575(m),答:他飞行的水平距离为1575m.【点评】此题主要考查了解直角三角形的应用,正确构造直角三角形得出CF,BF的长是解题关键.23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费:在乙商场累计购物超过50元后,超出50元的部分按95%收费.回答下列问题:(Ⅰ)①若你在甲商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;②若你在乙商场累计购物x元,实际付款金额y元,写出y关于x的函数关系式;(Ⅱ)当你在同一商场累计购物超过100元时,在哪家商场的实际花费少?【考点】一次函数的应用.【分析】(Ⅰ)①分两种情况,当x≤100时,y=x;当x>100时,根据甲商场累计购物超过100元后,超出100元的部分按90%收费列出合算解析式;②分两种情况,当x≤100时,y=x;当x>100时,根据乙商场累计购物超过50元后,超出50元的部分按95%收费列出解析式;(Ⅱ)根据在同一商场累计购物超过100元时和(1)得出的关系式0.9x+10与0.95x+2.5,分别进行求解,然后比较,即可得出答案.【解答】解:(Ⅰ)①分两种情况,当x≤100时,y=x;当x>100时,根据题意得:y=100+(x﹣100)×90%=0.9x+10;②分两种情况,当x≤100时,y=x;当x>100时,根据得:y=50+(x﹣50)×95%=0.95x+2.5;(Ⅱ)根据题意得:0.9x+10<0.95x+2.5,解得:x>150,0.9x+10>0.95x+2.5,解得:x<150,则当累计购物大于150时上没封顶,选择甲商场实际花费少;当累计购物正好为150元时,两商场花费相同;当累计购物超过100元而不到150元时,在乙商场实际花费少.【点评】此题主要考查了一元一次不等式的应用和一元一次方程的应用,解决问题的关键是读懂题意,依题意列出相关的式子进行求解.本题涉及方案选择时应与方程或不等式联系起来.24.如图,将一个正方形纸片OABC放置在平面直角坐标系中,其中A(1,0),C(0,1),P 为AB边上一个动点,折叠该纸片,使O点与P点重合,折痕l与OP交于点M,与对角线AC交于Q点(Ⅰ)若点P的坐标为(1,),求点M的坐标;(Ⅱ)若点P的坐标为(1,t)①求点M的坐标(用含t的式子表示)(直接写出答案)②求点Q的坐标(用含t的式子表示)(直接写出答案)(Ⅲ)当点P在边AB上移动时,∠QOP的度数是否发生变化?如果你认为不发生变化,写出它的角度的大小.并说明理由;如果你认为发生变化,也说明理由.【考点】一次函数综合题.【分析】(Ⅰ)过M作ME⊥x轴于点E,由三角形中位线定理可求得ME和OE,可求得M点坐标;(Ⅱ)①同(Ⅰ)容易求得M坐标;②由条件可分别求得直线l和AC的方程,利用图象的交点,可求得Q坐标;(Ⅲ)可分别用t表示出OQ和OP的长,可证明△OPQ为直角三角形,且OQ=OP,可得到∠QOP=45°.【解答】解:(Ⅰ)过M作ME⊥x轴于点E,如图1,由题意可知M为OP中点,∴E为OA中点,∴OE=OA=,ME=AP=,∴M点坐标为(,);(Ⅱ)①同(Ⅰ),当P(1,t)时,可得M(,t);②设直线OP的解析式为y=kx,把P(1,t)代入可求得k=t,∴直线OP解析式为y=tx,又l⊥OP,∴可设直线MQ解析式为y=﹣x+b,且过点M(,),把M点坐标代入可得=﹣+b,解得b=,∴直线l解析式为y=﹣x+,又直线AC解析式为y=﹣x+1,联立直线l和直线AC的解析式可得,解得,∴Q点坐标为(,);(Ⅲ)不变化,∠QOP=45°.理由如下:由(Ⅱ)②可知Q点坐标为(,),∴OQ2=PQ2=()2+()2=,又P(1,t),∴OP2=1+t2,∴OQ2+QP2=OP2,∴△OPQ是以OP为斜边的等腰直角三角形,∴∠QOP=45°,即∠QOP不变化.【点评】本题主要考查一次函数的综合应用,涉及正方形的性质、待定系数法求函数解析式、三角形中位线定理、直角三角形的判定等知识点.在(Ⅰ)中利用M为OP的中点是解题的关键,在(Ⅱ)②中求得直线l和直线AC的解析式是解题的关键,在(Ⅲ)中,注意利用(Ⅱ)的结论,求得OQ 和OP的长是解题的关键.本题涉及知识点较多,计算量大,有一定的难度.25.在平面直角坐标系xOy中,二次函数y=mx2﹣(m+n)x+n(m<0)的图象与y轴正半轴交于A点.(1)求证:该二次函数的图象与x轴必有两个交点;。
【名师推荐-新课标】2018年天津市中考数学模拟试题及答案解析二

2018年天津市中考数学模拟试卷(三)一、选择题(共3小题,每小题0分,满分0分)1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°2.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q3.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共9小题,每小题0分,满分0分)4.将多项式ax2﹣4ax+4a分解因式为.5.不等式组的解集是.6.关于x的分式方程有解,则字母a的取值范围是.7.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为.8.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n= .9.已知m是方程x2﹣x﹣1=0的一个根,则m(m+1)2﹣m2(m+3)+4的值为.10.已知x是的小数部分,则= .11.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为.12.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2015A2016= .三、解答题13.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.14.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是千米/时,t= 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.15.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.16.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?17.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.18.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.19.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC 的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.20.如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M 是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.21.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.22.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.23.已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b的值.参考答案与试题解析一、选择题(共3小题,每小题0分,满分0分)1.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170°D.150°【考点】直角三角形的性质.【分析】利用直角三角形的性质以及互余的关系,进而得出∠COA的度数,即可得出答案.【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.2.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q【考点】有理数大小比较.【分析】先根据相反数确定原点的位置,再根据点的位置确定绝对值最小的数即可.【解答】解:∵点M,N表示的有理数互为相反数,∴原点的位置大约在O点,∴绝对值最小的数的点是P点,故选C.3.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】二次函数图象与系数的关系.【分析】根据函数与x中轴的交点的个数,以及对称轴的解析式,函数值的符号的确定即可作出判断.【解答】解:函数与x轴有两个交点,则b2﹣4ac>0,即4ac﹣b2<0,故①正确;函数的对称轴是x=﹣1,即﹣=﹣1,则b=2a,2a﹣b=0,故②正确;当x=1时,函数对应的点在x轴下方,则a+b+c<0,则③正确;则y1和y2的大小无法判断,则④错误.故选C.二、填空题(共9小题,每小题0分,满分0分)4.将多项式ax2﹣4ax+4a分解因式为a(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用完全平方公式分解即可.【解答】解:原式=a(x2﹣4x+4)=a(x﹣2)2,故答案为:a(x﹣2)2.5.不等式组的解集是﹣1≤x<3 .【考点】解一元一次不等式组.【分析】分别解每一个不等式,再求解集的公共部分.【解答】解:,解不等式①得:x≥﹣1,解不等式②得:x<3,所以不等式组的解集是:﹣1≤x<3,故答案为:﹣1≤x<3.6.关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0 .【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:方程去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程有解,则字母a的取值范围是a≠5,a≠0,故答案为:a≠5,a≠0.7.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为5cm或cm .【考点】菱形的性质;正方形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在AC的两边两种情况补成以BF为斜边的Rt△BGF,然后求出BG、FG,再利用勾股定理列式计算即可得解.【解答】解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF===cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF===5cm,综上所述,BF长为5cm或cm.故答案为:5cm或cm.8.若x2+x+m=(x﹣3)(x+n)对x恒成立,则n= 4 .【考点】因式分解-十字相乘法等.【分析】利用多项式乘法去括号,得出关于n的关系式进而求出n的值.【解答】解:∵x2+x+m=(x﹣3)(x+n),∴x2+x+m=x2+(n﹣3)x﹣3n,故n﹣3=1,解得:n=4.故答案为:4.9.已知m是方程x2﹣x﹣1=0的一个根,则m(m+1)2﹣m2(m+3)+4的值为 3 .【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义得到m2﹣m﹣1=0,则m2=m+1,然后利用降次的方法对原式进行化简即可.【解答】解:∵m是方程x2﹣x﹣1=0的一个根,∴m2﹣m﹣1=0,∴m2=m+1,∴m(m+1)2﹣m2(m+3)+4=m(m2+2m+1)﹣(m+1)(m+3)+4=m(m+1+2m+1)﹣(m2+4m+3)+4=3m2+2m﹣m2﹣4m﹣3+4=2m2﹣2m+1=2(m+1)﹣2m+1=2m+2﹣2m+1=3.故答案为3.10.已知x是的小数部分,则= .【考点】分式的混合运算.【分析】将分母因式分解,计算括号内分式加法,再将除法转化为乘法,最后约分可化简原式,将x的值代入计算即可.【解答】解:原式=÷=•=,∵x是的小数部分,且2<<3,∴x=﹣2,∴原式===.故答案为:.11.二次函数y=x2的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数y=x2的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为2.【考点】菱形的性质;二次函数图象上点的坐标特征.【分析】连结BC交OA于D,如图,根据菱形的性质得BC⊥OA,∠OBD=60°,利用含30度的直角三角形三边的关系得OD=BD,设BD=t,则OD=t,B(t,t),利用二次函数图象上点的坐标特征得t2=t,解得t1=0(舍去),t2=1,则BD=1,OD=,然后根据菱形性质得BC=2BD=2,OA=2OD=2,再利用菱形面积公式计算即可.【解答】解:连结BC交OA于D,如图,∵四边形OBAC为菱形,∴BC⊥OA,∵∠OBA=120°,∴∠OBD=60°,∴OD=BD,设BD=t,则OD=t,∴B(t,t),把B(t,t)代入y=x2得t2=t,解得t1=0(舍去),t2=1,∴BD=1,OD=,∴BC=2BD=2,OA=2OD=2,∴菱形OBAC的面积=×2×2=2.故答案为2.12.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2015A2016= 2()2015.【考点】正方形的性质.【分析】由四边形ABCB1是正方形,得到AB=AB1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=,AA1=2,∴A1B2=A1B1=,∴A1A2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2015A2016=2()2015,故答案为:2()2015.三、解答题13.根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:根据所给信息解答下列问题:(1)请补全条形统计图并在图中标明相应数据;(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据关注消费的人数是420人,所占的比例式是30%,即可求得总人数,然后利用总人数乘以关注教育的比例求得关注教育的人数;(2)利用总人数乘以对应的百分比即可;(3)利用列举法即可求解即可.【解答】解:(1)调查的总人数是:420÷30%=1400(人),关注教育的人数是:1400×25%=350(人).;(2)880×10%=88万人;(3)画树形图得:则P(抽取的两人恰好是甲和乙)==.14.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)乙车的速度是60 千米/时,t= 3 小时;(2)求甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围;(3)直接写出乙车出发多长时间两车相距120千米.【考点】一次函数的应用.【分析】(1)首先根据图示,可得乙车的速度是60千米/时,然后根据路程÷速度=时间,用两地之间的距离除以乙车的速度,求出乙车到达A地用的时间是多少;最后根据路程÷时间=速度,用两地之间的距离除以甲车往返AC两地用的时间,求出甲车的速度,再用360除以甲车的速度,求出t的值是多少即可.(2)根据题意,分3种情况:①当0≤x≤3时;②当3<x≤4时;③4<x≤7时;分类讨论,求出甲车距它出发地的路程y与它出发的时间x的函数关系式,并写出自变量的取值范围即可.(3)根据题意,分3种情况:①甲乙两车相遇之前相距120千米;②当甲车停留在C地时;③两车都朝A地行驶时;然后根据路程÷速度=时间,分类讨论,求出乙车出发多长时间两车相距120千米即可.【解答】解:(1)根据图示,可得乙车的速度是60千米/时,甲车的速度是:÷=720÷6=120(千米/小时)∴t=360÷120=3(小时).(2)①当0≤x≤3时,设y=k1x,把(3,360)代入,可得3k1=360,解得k1=120,∴y=120x(0≤x≤3).②当3<x≤4时,y=360.③4<x≤7时,设y=k2x+b,把(4,360)和(7,0)代入,可得解得∴y=﹣120x+840(4<x≤7).(3)①÷+1=300÷180+1==(小时)②当甲车停留在C地时,÷60=240÷6=4(小时)③两车都朝A地行驶时,设乙车出发x小时后两车相距120千米,则60x﹣[120(x﹣1)﹣360]=120,所以480﹣60x=120,所以60x=360,解得x=6.综上,可得乙车出发后两车相距120千米.故答案为:60、3.15.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【考点】相似三角形的应用.【分析】先根据相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,=,=,∴,又∵∠A=∠A,∴△ABC∽△AMN,∴,即,解得:MN=1500米,答:M、N两点之间的直线距离是1500米;16.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?【考点】一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.【分析】(1)利用A、B两种礼盒的单价比为2:3,单价和为200元,得出等式求出即可;(2)利用两种礼盒恰好用去9600元,结合(1)中所求,得出等式,利用两种礼盒的数量关系求出即可;(3)首先表示出店主获利,进而利用a,b关系得出符合题意的答案.【解答】解:(1)设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.17.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.【解答】解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.18.一次函数y=2x+2与反比例函数y=(k≠0)的图象都过点A(1,m),y=2x+2的图象与x轴交于B点.(1)求点B的坐标及反比例函数的表达式;(2)C(0,﹣2)是y轴上一点,若四边形ABCD是平行四边形,直接写出点D的坐标,并判断D点是否在此反比例函数的图象上,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)在y=2x+2中令y=0,求得B的坐标,然后求得A的坐标,利用待定系数法求得反比例函数的解析式;(2)根据平行线的性质即可直接求得D的坐标,然后代入反比例函数的解析式判断即可.【解答】解:(1)在y=2x+2中令y=0,则x=﹣1,∴B的坐标是(﹣1,0),∵A在直线y=2x+2上,∴A的坐标是(1,4).∵A(1,4)在反比例函数y=图象上∴k=4.∴反比例函数的解析式为:y=;(2)∵四边形ABCD是平行四边形,∴D的坐标是(2,2),∴D(2,2)在反比例函数y=的图象上.19.如图,在△ABC中,BA=BC,以AB为直径的⊙O分别交AC、BC于点D、E,BC 的延长线于⊙O的切线AF交于点F.(1)求证:∠ABC=2∠CAF;(2)若AC=2,CE:EB=1:4,求CE的长.【考点】切线的性质;相似三角形的判定与性质.【分析】(1)首先连接BD,由AB为直径,可得∠ADB=90°,又由AF是⊙O的切线,易证得∠CAF=∠ABD.然后由BA=BC,证得:∠ABC=2∠CAF;(2)首先连接AE,设CE=x,由勾股定理可得方程:(2)2=x2+(3x)2求得答案.【解答】(1)证明:如图,连接BD.∵AB为⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°.∵AF是⊙O的切线,∴∠FAB=90°,即∠DAB+∠CAF=90°.∴∠CAF=∠ABD.∵BA=BC,∠ADB=90°,∴∠ABC=2∠ABD.∴∠ABC=2∠CAF.(2)解:如图,连接AE,∴∠AEB=90°,设CE=x,∵CE:EB=1:4,∴EB=4x,BA=BC=5x,AE=3x,在Rt△ACE中,AC2=CE2+AE2,即(2)2=x2+(3x)2,∴x=2.∴CE=2.20.如图1所示,在正方形ABCD和正方形CGEF中,点B、C、G在同一条直线上,M 是线段AE的中点,DM的延长线交EF于点N,连接FM,易证:DM=FM,DM⊥FM(无需写证明过程)(1)如图2,当点B、C、F在同一条直线上,DM的延长线交EG于点N,其余条件不变,试探究线段DM与FM有怎样的关系?请写出猜想,并给予证明;(2)如图3,当点E、B、C在同一条直线上,DM的延长线交CE的延长线于点N,其余条件不变,探究线段DM与FM有怎样的关系?请直接写出猜想.【考点】四边形综合题.【分析】(1)连接DF,NF,由四边形ABCD和CGEF是正方形,得到AD∥BC,BC∥GE,于是得到AD∥GE,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,即可得到结论;(2)连接DF,NF,由四边形ABCD是正方形,得到AD∥BC,由点E、B、C在同一条直线上,于是得到AD∥CN,求得∠DAM=∠NEM,证得△MAD≌△MEN,得出DM=MN,AD=EN,推出△MAD≌△MEN,证出△DFN是等腰直角三角形,于是结论得到.【解答】解:(1)如图2,DM=FM,DM⊥FM,证明:连接DF,NF,∵四边形ABCD和CGEF是正方形,∴AD∥BC,BC∥GE,∴AD∥GE,∴∠DAM=∠NEM,∵M是AE的中点,∴AM=EM,在△MAD与△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∠DCF=∠DCB=90°,在△DCF与△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠EFN+∠NFC=90°,∴∠DFC+∠CFN=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM(2)猜想:DM⊥FM,DM=FM,证明如下:如图3,连接DF,NF,连接DF,NF,∵四边形ABCD是正方形,∴AD∥BC,∵点E、B、C在同一条直线上,∴AD∥CN,∴∠ADN=∠MNE,在△MAD与△MEN中,,∴△MAD≌△MEN,∴DM=MN,AD=EN,∵AD=CD,∴CD=NE,∵CF=EF,∵∠DCF=90°+45°=135°,∠NEF=180°﹣45°=135°,∴∠DCF=∠NEF,在△DCF与△NEF中,,∴△MAD≌△MEN,∴DF=NF,∠CFD=∠EFN,∵∠CFD+∠EFD=90°,∴∠NFE+∠EFD=90°,∴∠DFN=90°,∴DM⊥FM,DM=FM.21.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.【考点】二次函数综合题.【分析】(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围.【解答】解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB===3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,即当m≤时,平移后的抛物线总有不动点.22.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.【考点】四边形综合题.【分析】(1)作ME⊥x轴于E,则∠MEP=90°,先证出∠PME=∠CPO,再证明△MPE≌△PCO,得出ME=PO=t,EP=OC=4,求出OE,即可得出点M的坐标;(2)连接AM,先证明四边形AEMF是正方形,得出∠MAE=45°=∠BOA,AM∥OB,证出四边形OAMN是平行四边形,即可得出MN=OA=4;(3)先证明△PAD∽△PEM,得出比例式,得出AD,求出BD,求出四边形BNDM的面积S是关于t的二次函数,即可得出结果.【解答】解:(1)作ME⊥x轴于E,如图1所示:则∠MEP=90°,ME∥AB,∴∠MPE+∠PME=90°,∵四边形OABC是正方形,∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,∵PM⊥CP,∴∠CPM=90°,∴∠MPE+∠CPO=90°,∴∠PME=∠CPO,在△MPE和△PCO中,,∴△MPE≌△PCO(AAS),∴ME=PO=t,EP=OC=4,∴OE=t+4,∴点M的坐标为:(t+4,t);(2)线段MN的长度不发生改变;理由如下:连接AM,如图2所示:∵MN∥OA,ME∥AB,∠MEA=90°,∴四边形AEMF是矩形,又∵EP=OC=OA,∴AE=PO=t=ME,∴四边形AEMF是正方形,∴∠MAE=45°=∠BOA,∴AM∥OB,∴四边形OAMN是平行四边形,∴MN=OA=4;(3)∵ME∥AB,∴△PAD∽△PEM,∴,即,∴AD=﹣t2+t,∴BD=AB﹣AD=4﹣(﹣t2+t)=t2﹣t+4,∵MN∥OA,AB⊥OA,∴MN⊥AB,∴四边形BNDM的面积S=MN•BD=×4(t2﹣t+4)=(t﹣2)2+6,∴S是t的二次函数,∵>0,∴S有最小值,当t=2时,S的值最小;∴当t=2时,四边形BNDM的面积最小.23.已知关于x的一元二次方程x2+2x+=0有两个不相等的实数根,k为正整数.(1)求k的值;(2)当此方程有一根为零时,直线y=x+2与关于x的二次函数y=x2+2x+的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线y=x+b与该新图象恰好有三个公共点,求b的值.【考点】二次函数综合题.【分析】(1)先根据一元二次方程根的情况利用判别式与0的关系可以求出k的值;(2)利用m先表示出M与N的坐标,再根据两点间的距离公式表示出MN的长度,根据二次函数的极值即可求出MN的最大长度和M的坐标;(3)根据图象的特点,分两种情况讨论,分别求出b的值即可.【解答】解:(1)∵关于x的一元二次方程有两个不相等的实数根.∴.∴k﹣1<2.∴k<3.∵k为正整数,∴k为1,2.(2)把x=0代入方程得k=1,此时二次函数为y=x2+2x,此时直线y=x+2与二次函数y=x2+2x的交点为A(﹣2,0),B(1,3)由题意可设M(m,m+2),其中﹣2<m<1,则N(m,m2+2m),MN=m+2﹣(m2+2m)=﹣m2﹣m+2=﹣.∴当m=﹣时,MN的长度最大值为.此时点M的坐标为.(3)当y=x+b过点A时,直线与新图象有3个公共点(如图2所示),把A(﹣2,0)代入y=x+b得b=1,当y=x+b与新图象的封闭部分有一个公共点时,直线与新图象有3个公共点.由于新图象的封闭部分与原图象的封闭部分关于x轴对称,所以其解析式为y=﹣x2﹣2x∴有一组解,此时有两个相等的实数根,则所以b=,综上所述b=1或b=.2016年6月16日。
2018年天津市中考数学模拟测试题

∴=
,解得 x=30+10 .∴河的宽度为( 30+10 )米 .
23.
24. 解:( 1)45°, ;(2)①
- 2;②
.
25. 解:( 1)∵ 抛物线过( 0,-3 )点,∴- 3a= -3 ∴ a=1 ∴y =x2-2x -3 ∴y= x2- 2x- 3=( x- 1) 2- 4∴抛物线C 1 的顶点坐标为( 1,-4 )
EF∥ MN,小聪在河岸
MN上点 A 处用测角仪测得河对岸小树 C 位于东北方向,然后沿河岸走了 30 米,到达 B 处,
测得河对岸电线杆 D位于北偏东 30°方向,此时,其他同学测得 CD=10米.请根据这些数
据求出河的宽度. (精确到 0.1 )(参考数据: 2 ≈ 1.414 , 3 ≈ 1.132 )
与 t 之间的函数关系式 .
25. 已知抛物线 C1 的函数解析式为 y=ax 2-2x-3a, 若抛物线 C1 经过点 (0 , -3).
⑴求抛物线 C1 的顶点坐标 .
⑵已知实数 x> 0,请证明 x+ 1 ≥ 2,并说明 x 为何值时才会有 x+ 1 =2;
x
x
⑶若将抛物线先向上平移 4 个单位,再向左平移 1 个单位后得到抛物线 C2 ,设 A(m, y 1),
3
请结合题意填空:完成本题的解答:
(Ⅰ)解不等式 (1) ,得
;
(Ⅱ)解不等式 (2) ,得
;
(Ⅲ)把不等式 (1) 和 (2) 的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为
.
20. 为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,
从该地区随机抽取部分七年级学生作为样本, 采用问卷调查的方法收集数据 (参与问卷调查
2018年天津市中考数学模拟试卷答案

一、单选题 1.【答案】C 【考点】有理数的混合运算 【解析】 【解答】原式=﹣2×5﹣3=﹣10﹣3=﹣13, 故答案为:C 【分析】根据绝对值的性质化简之后,再由有理数乘法和减法运算法则计算即可. 2.【答案】B 【考点】特殊角的三角函数值 【解析】 【解答】sin60°=
√3 2
.
1
【解析】解答:
因此选择 C.
分析: 分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘 方,即把分子、分母分别乘方,然后再进行乘除运算. 8.【答案】D 【考点】二元一次方程组的解,解二元一次方程组 【解析】 【解答】解:将两个方程相加,可得(x+y)+(3x-5y)=3+4, 得 4x-4y=7, 则 x-y
故选 D. 【分析】求 a-b,则由两方程相加,方程的左边可变为 4x-4y,即可解出 x-y。 9.【答案】B 【考点】图形的旋转 【解析】 【解答】解:∵△ABC 绕点 A 旋转到△AED 的位置, ∴AD=AC,∠BAE=∠CAD, ∵AD=AC, ∴∠ACD=∠ADC=65°, ∴∠CAD=180°﹣65°﹣65°=50°, ∴∠BAE=50°, ∵AE⊥BC, ∴∠ABC=90°﹣∠BAE=40°. 故选 B. 【分析】先根据旋转的性质得 AD=AC,∠BAE=∠CAD,再根据等腰三角形的性质和三角形内 角和计算出∠CAD=50°,则∠BAE=50°,然后利用互余计算∠ABC 的度数. 10.【答案】C 【考点】反比例函数的性质 【解析】 【解答】因为点(-2,y1)、(-1,y2)、(1,y3)在反比例函数 y =������ 的图象上, 则 y1=− ,y2=−3,y3=3,
2 2 2 2 1 1 3 3
2018年天津市河北区中考数学模拟试卷和解析答案

2018年天津市河北区中考数学模拟试卷一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出地四个选项中,只有一项是符合题目要求地)1.(3分)下列图形中既是轴对称图形又是中心对称图形地是()A.B.C.D.2.(3分)由五个相同地立方体搭成地几何体如图所示,则它地左视图是()A.B.C.D.3.(3分)如图中三视图对应地几何体是()A.圆柱B.三棱柱C.圆锥D.球4.(3分)已知x=2是一元二次方程x2﹣mx﹣10=0地一个根,则m等于()A.﹣5 B.5 C.﹣3 D.35.(3分)二次函数y=x2﹣6x﹣7地对称轴为()A.x=3 B.x=﹣3 C.x=﹣1 D.x=76.(3分)如图,AB是⊙O地直径,C,D是⊙O上位于AB异侧地两点.下列四个角中,一定与∠ACD互余地角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD7.(3分)下列说法正确地是()A.方差越大,数据地波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前地安检应采用抽样调查D.掷一枚硬币,正面一定朝上8.(3分)如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)地图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数地解析式为()A.y= B.y=﹣C.y=D.y=﹣9.(3分)下列条件不能判定△ADB∽△ABC地是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=10.(3分)若关于x地一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k地取值范围在数轴上表示正确地是()A.B.C.D.11.(3分)如图,若△ABC和△DEF地面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S212.(3分)如图,在Rt∠AOB地平分线ON上依次取点C,F,M,过点C作DE ⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间地函数关系式是()A.y=B.y= C.y=2D.y=3二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:sin60°=.14.(3分)若关于x地方程x2+mx+1=0有两个相等地实数根,则m=.15.(3分)若正方形地外接圆直径为4,则其内切圆半径为.16.(3分)二次函数y=x2﹣2x﹣5地最小值是.17.(3分)如图,以AD为直径地半圆O经过Rt△ABC地斜边A地两个端点,交直角边AC于点E.B、E是半圆弧地三等分点,若OA=2,则图中阴影部分地面积为.18.(3分)如图是二次函数y=ax2+bx+c图象地一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③b+c=0④若B(﹣,y1)、C(﹣,y2)为函数图象上地两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确地结论是(填写代表正确结论地序号)三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB地距离.(≈1.41,≈1.73,结果取整数)20.(10分)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点.且A点坐标为(1,3),B点地横坐标为﹣3.(Ⅰ)求反比例函数和一次函数地解析式;(Ⅱ)根据图象直接写出使得y1≤y2时,x地取值范围.21.(10分)某小组有5名学生,其中有3名女生和2名男生,现在要从这5名学生中抽取2名学生参加两项不同地活动.(Ⅰ)请用“列表法”或“树状图法”列出所有情况;(Ⅱ)求刚好抽到一男一女地概率.22.(12分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB 地延长线于点P.(Ⅰ)求证:PA是⊙O地切线;(Ⅱ)若BC=2,AB=2,求sin∠ABD地值.23.(12分)如图,边长为2地正方形ABCD中,P是对角线AC上地一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ;连接PQ,PQ与BC交于点E,QP延长线与AD(或AD延长线)交于点F,连接CQ.求证:(Ⅰ)CQ=AP;(Ⅱ)△APB∽△CEP.24.(12分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B地左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线地对称轴交于点E,点P为线段BC上地一个动点(P不与B,C两点重合),过点P作x轴地垂线交抛物线于点F,设点P地横坐标为m(0<m<3)(Ⅰ)当m为何值时,四边形PEDF为平行四边形;(Ⅱ)设△BCF地面积为S,求S地最大值.2018年天津市河北区中考数学模拟试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出地四个选项中,只有一项是符合题目要求地)1.(3分)下列图形中既是轴对称图形又是中心对称图形地是()A.B.C.D.【解答】解:A、既是轴对称图形,又是中心对称图形,故A正确;B、不是轴对称图形,是中心对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、是轴对称图形,不是中心对称图形,故D错误.故选:A.2.(3分)由五个相同地立方体搭成地几何体如图所示,则它地左视图是()A.B.C.D.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.3.(3分)如图中三视图对应地几何体是()A.圆柱B.三棱柱C.圆锥D.球【解答】解:图中三视图对应地几何体是圆锥,故选:C.4.(3分)已知x=2是一元二次方程x2﹣mx﹣10=0地一个根,则m等于()A.﹣5 B.5 C.﹣3 D.3【解答】解:将x=2代入x2﹣mx﹣10=0,∴4﹣2m﹣10=0∴m=﹣3故选:C.5.(3分)二次函数y=x2﹣6x﹣7地对称轴为()A.x=3 B.x=﹣3 C.x=﹣1 D.x=7【解答】解:二次函数y=x2﹣6x﹣7地对称轴为x=﹣,故选:A.6.(3分)如图,AB是⊙O地直径,C,D是⊙O上位于AB异侧地两点.下列四个角中,一定与∠ACD互余地角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD【解答】解:连接BC,如图所示:∵AB是⊙O地直径,∴∠ACB=∠ACD+∠BCD=90°,∵∠BCD=∠BAD,∴∠ACD+∠BAD=90°,故选:D.7.(3分)下列说法正确地是()A.方差越大,数据地波动越大B.某种彩票中奖概率为1%,是指买100张彩票一定有1张中奖C.旅客上飞机前地安检应采用抽样调查D.掷一枚硬币,正面一定朝上【解答】解:A、方差越大,数据地波动越大,正确;B、某种彩票中奖概率为1%,是指买100张彩票可能有1张中奖,错误;C、旅客上飞机前地安检应采用全面调查,错误;D、掷一枚硬币,正面不一定朝上,错误,故选:A.8.(3分)如图,直线y=﹣x+2与y轴交于点A,与反比例函数y=(k≠0)地图象交于点C,过点C作CB⊥x轴于点B,AO=2BO,则反比例函数地解析式为()A.y= B.y=﹣C.y=D.y=﹣【解答】解:∵直线y=﹣x+2与y轴交于点A,∴A(0,2),即OA=2,∵AO=2BO,∴OB=1,∴点C地横坐标为﹣1,∵点C在直线y=﹣x+2上,∴点C(﹣1,3),∴反比例函数地解析式为:y=﹣.故选:B.9.(3分)下列条件不能判定△ADB∽△ABC地是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.10.(3分)若关于x地一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,则k地取值范围在数轴上表示正确地是()A.B.C.D.【解答】解:∵关于x地一元二次方程(k+1)x2+2(k+1)x+k﹣2=0有实数根,∴,解得:k>﹣1.故选:A.11.(3分)如图,若△ABC和△DEF地面积分别为S1,S2,则()A.S1=S2B.S1=S2C.S1=S2D.S1=S2【解答】解:作AM⊥BC于M,DN⊥EF于N,如图,在Rt△ABM中,∵sin∠B=,∴AM=3sin50°,∴S1=BC•AM=×7×3sin50°=sin50°,在Rt△DEN中,∠DEN=180°﹣130°=50°,∵sin∠DEN=,∴DN=7sin50°,∴S2=EF•DN=×3×7sin50°=sin50°,∴S1=S2.故选:D.12.(3分)如图,在Rt∠AOB地平分线ON上依次取点C,F,M,过点C作DE ⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE,设OC=x,图中阴影部分面积为y,则y与x之间地函数关系式是()A.y=B.y= C.y=2D.y=3【解答】解:∵ON是Rt∠AOB地平分线,∴∠DOC=∠EOC=45°,∵DE⊥OC,∴∠ODC=∠OEC=45°,∴CD=CE=OC=x,∴DF=EF,DE=CD+CE=2x,∵∠DFE=∠GFH=120°,∴∠CEF=30°,∴CF=CE•tan30°=x,∴EF=2CF=x,∴S△DEF=DE•CF=x2,∵四边形FGMH是菱形,∴FG=MG=FE=x,∵∠G=180°﹣∠GFH=60°,∴△FMG是等边三角形,∴S△FGH=x2,∴S菱形FGMH=x2,∴S阴影=S△DEF+S菱形FGMH=x2.故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:sin60°=.【解答】解:sin60°=.故答案为:.14.(3分)若关于x地方程x2+mx+1=0有两个相等地实数根,则m=±2.【解答】解:∵a=1,b=m,c=1,而方程有两个相等地实数根,∴b2﹣4ac=m2﹣4=0∴m=±2.故填:m=±2.15.(3分)若正方形地外接圆直径为4,则其内切圆半径为.【解答】解:如图所示,连接OA、OE,∵AB是小圆地切线,∴OE⊥AB,∵四边形ABCD是正方形,∴AE=OE,∴△AOE是等腰直角三角形,∴OE=OA=.故答案为:16.(3分)二次函数y=x2﹣2x﹣5地最小值是﹣6.【解答】解:∵原式可化为y=x2﹣2x+1﹣6=(x﹣1)2﹣6,∴最小值为﹣6.故答案为:﹣617.(3分)如图,以AD为直径地半圆O经过Rt△ABC地斜边A地两个端点,交直角边AC于点E.B、E是半圆弧地三等分点,若OA=2,则图中阴影部分地面积为.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧地三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵OA=2,∴AD=4,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分地面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:﹣.18.(3分)如图是二次函数y=ax2+bx+c图象地一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出以下结论:①abc<0②b2﹣4ac>0③b+c=0④若B(﹣,y1)、C(﹣,y2)为函数图象上地两点,则y1>y2⑤当﹣3≤x≤1时,y≥0,其中正确地结论是②③⑤(填写代表正确结论地序号)【解答】解:由图象可知,a<0,b<0,c>0,∴abc>0,故①错误.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.∵抛物线对称轴为x=﹣1,与x轴交于A(﹣3,0),∴抛物线与x轴地另一个交点为(1,0),∴b+c=0,故③正确.∵B(﹣,y1)、C(﹣,y2)为函数图象上地两点,又点C离对称轴近,∴y1,<y2,故④错误,由图象可知,﹣3≤x≤1时,y≥0,故⑤正确.∴②③⑤正确,故答案为②③⑤.三、解答题(本大题共6小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一条光纤线路从A地到B地需要经过C地,图中AC=40千米,∠CAB=30°,∠CBA=45°,求AB地距离.(≈1.41,≈1.73,结果取整数)【解答】解:如图,过C作CD⊥AB,交AB于点D,在Rt△ACD中,CD=AC•sin∠CAD=AC•sin30°=40×=20(千米),AD=AC•cos∠CAD=AC•cos30°=40×=20(千米),在Rt△BCD中,BD====20(千米),∴AB=AD+DB=20+20=20(+1)≈55(千米),答:AB地距离约为55千米.20.(10分)如图,一次函数y1=kx+b(k≠0)与反比例函数y2=(m≠0)相交于A和B两点.且A点坐标为(1,3),B点地横坐标为﹣3.(Ⅰ)求反比例函数和一次函数地解析式;(Ⅱ)根据图象直接写出使得y1≤y2时,x地取值范围.【解答】解:(Ⅰ)把点A(1,3)代入y2=,得到m=3,∵B点地横坐标为﹣3,∴点B坐标(﹣3,﹣1),把A(1,3),B(﹣3,﹣1)代入y1=kx+b得到,解得,∴y1=x+2,y2=.(Ⅱ)由图象可知y1≤y2时,x≤﹣3或0<x≤1.21.(10分)某小组有5名学生,其中有3名女生和2名男生,现在要从这5名学生中抽取2名学生参加两项不同地活动.(Ⅰ)请用“列表法”或“树状图法”列出所有情况;(Ⅱ)求刚好抽到一男一女地概率.【解答】解:(Ⅰ)用A表示女生,B表示男生,画图如下:共有20种情况;(Ⅱ)由树状图可知,刚好抽到一男一女地有12种等可能结果,所以刚好抽到一男一女地概率为=.22.(12分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB 地延长线于点P.(Ⅰ)求证:PA是⊙O地切线;(Ⅱ)若BC=2,AB=2,求sin∠ABD地值.【解答】(Ⅰ)证明:连结AO,交BC于点E.∵点A是地中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O地切线;(Ⅱ)解:∵AO⊥BC,BC=2,∴BE=,又∵AB=6∴sin∠BAE==,∵OA=OB∴∠ABD=∠BAO,∴sin∠ABD=sin∠BAE=.23.(12分)如图,边长为2地正方形ABCD中,P是对角线AC上地一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ;连接PQ,PQ与BC交于点E,QP延长线与AD(或AD延长线)交于点F,连接CQ.求证:(Ⅰ)CQ=AP;(Ⅱ)△APB∽△CEP.【解答】证明:(Ⅰ)如图,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(Ⅱ)如图,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP.24.(12分)如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B地左侧),与y轴相交于点C,顶点为D,连接BC,与抛物线地对称轴交于点E,点P为线段BC上地一个动点(P不与B,C两点重合),过点P作x轴地垂线交抛物线于点F,设点P地横坐标为m(0<m<3)(Ⅰ)当m为何值时,四边形PEDF为平行四边形;(Ⅱ)设△BCF地面积为S,求S地最大值.【解答】解:(I)对于抛物线y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D(1,4)令x=0,得到y=3;令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,解得:x=﹣1或x=3,则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;设直线BC地函数解析式为y=kx+b,把B(3,0),C(0,3)分别代入得:,解得:k=﹣1,b=3,∴直线BC地解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴E(1,2),∴DE=4﹣2=2,∵PF⊥x轴,∴P(m,﹣m+3),F(m,﹣m2+2m+3),∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),当m=2时,四边形PEDF为平行四边形;(II)∵B(3,0),∴OB=3,∴S=PF•OB=×3(﹣m2+3m)=﹣(m﹣)2+(0<m<3),则当m=时,S取得最大值为.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:BAPl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
C.
D.
2018年天津中考模拟试卷
数 学
本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分.第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第8页.试卷满分120分.考试时间100分钟.
答卷前,请你务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码.答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效.考试结束后,将本试卷和“答题卡”一并交回.
祝你考试顺利!
第Ⅰ卷
注意事项:
1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号的信息点.
2.本卷共12题,共36分.
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,
只有一项是符合题目要求的) 一、选择题:
1. 计算(–2)–5的结果等于( ) A .–7
B .–3
C .3
D .7
2.cos30°的值等于( ) A .12 B .32
C .
33 D .2
2
3.下列图标中,既是轴对称图形,又是中心对称图形的是( )
4.截至2016年底,国家开发银行对“一带一路”沿线国家累积发放贷款超过1600
A.
B.
C.
D.
B
A
D
C P
(11题图)
亿美元.其中1600亿用科学计数法表示为( )
A .16×1010
B .1.6×1010
C . 1.6×1011
D .0.16×1012 5. 如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
6. 估计38的值在( )
A .4和5之间
B .5和6之间
C .6和7之间
D .7和8之间 7. 方程x 2–x –6=0的根为( )
A .x 1=3,x 2= –2
B . x 1= –3,x 2= 2
C . x 1=3,x 2= 2
D . x 1= –3,x 2= –2 8. 计算1x –x+1
x
的结果为( )
A .–1
B .x
C .1x
D .x –2
x
9. 己知反比例函数y =6
x
,当1<x <3时,y 的取值范围是( )
A . 0<y <1
B . 1<y <2
C . 2<y <6
D . y >6
10. 一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足( )
A .16(1+2x )=25
B .25(1–2x )=16
C .16(1+x )2=25
D .25(1–x )2=16 11. 如图,在矩形ABCD 中,AB =5,AD =3.动点P 满足S △P AB =1
3S 矩形ABCD .则点P 到A ,
B 两点距离之和P A +PB 的最小值为( ) A .29 B .34
C .5 2
D .41
12. 已知关于x 的二次函数y =ax 2+(a 2–1)x –a 的图象与x 轴的一个交点的坐标为(m ,0),若2<m <3,则a 的取值范围是( ) A . 13<a <1
2
B .2<a <3
C . 13<a <12或–3<a <–2
D . 13<a <2
3或2<a <3
图(2)
图(1)
A B
C
P
Q C B A
2018年天津中考模拟试卷
数 学
第Ⅱ卷
注意事项:
1.用黑色字迹的签字笔将答案写在“答题卡”上(作图可用2B 铅笔).
2.本卷共13题,共84分.
二、填空题(本大题共6小题,每小题3分,共18分) 13.计算2
5
x x 的结果等于 . 14.计算(5+3)(5–3)的结果等于 .
15.若一次函数y =2x +b (b 为常数)的图象经过点(1,5),则b 的值为 . 16.不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是 . 17. 如图,在矩形ABCD 中,AB =2,E 是BC 的中点,AE ⊥BD 于点F ,则CF 的长是 .
18.在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,点P ,Q 分别为线段AB ,AC 上的动点.
(Ⅰ)如图(1),当点P ,Q 分别为AB ,AC 中点时,PC +PQ 的值为 ; (Ⅱ)当PC +PQ 取得最小值时,在如图(2)所示的网格中,用无刻度的直尺,画出线段PC ,PQ ,简要说明点P 和点Q 的位置是如何找到的 .
(17题图)
B
C
D
A E
F
三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过
程)
19. 解不等式组1254 3.
x x x +⎧⎨
+⎩≥,
①≤②
请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得__________________; (Ⅱ)解不等式②,得__________________; (Ⅲ)把不等式①和②的解集在数轴上表示出来:
(Ⅳ)原不等式组的解集为__________________.
20. 某商场服装部为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题.
(Ⅰ)该商场服装部营业员的人数为 ,图①中m 的值为 (Ⅱ)求统计的这组销售额额数据的平均数、众数和中位数.
3
4
5
2
1
B
C D
A
O E
21.如图,AB 是⊙O 的一条弦,E 是AB 的中点,过点E 作EC ⊥OA 于点C ,过点B 作⊙O 的切线交CE 的延长线于点D . (Ⅰ)求证:DB =DE ;
(Ⅱ)若AB =12,BD =5,求⊙O 的半径.
22. 热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:3≈1.73)
C
A
B
23. 公司有330台机器需要一次性运送到某地,计划租用甲、乙两种货车共8辆,
已知每辆甲种货车一次最多运送机器45台、租车费用为400元,每辆乙种货车一次最多运送机器30台、租车费用为280元
(Ⅰ)设租用甲种货车x辆(x为非负整数),试填写表格.
表一:
租用甲种货车的数量/辆 3 7 x
租用甲种货车的费用/元2800
租用乙种货车的费用/元280
(Ⅱ)给出能完成此项运送任务的最节省费用的租车方案,并说明理由.
24.如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,23),点A的坐标为(–2,0).
(Ⅰ) 如图1,将△ABC沿AB所在直线翻折后,点C落在点D处,求点D的坐标;(Ⅱ)在(Ⅰ)的条件下,将△ABD绕点B逆时针旋转120°,得到△A′BD′,在x轴上有一动点P,当PB+PD′最小时,求点P坐标;
(Ⅲ)在矩形AOBC内部有一动点Q,且∠ACQ=∠QAO,求OQ长度的最小值(直接写出结果即可).
25. 已知抛物线y=ax2+bx+c关于y轴对称,且经过点(0,1)和(1, 5
4),点F的坐标为
(0,2),点M的坐标为(3,3).
(Ⅰ)求该抛物线解析式;
(Ⅱ) P是抛物线上的一个动点,点P横坐标为m,且满足0<m<3,当△PFM 面积最大时,求点P坐标;
(Ⅲ)若抛物线上的动点P到定点F(0,2)的距离与到x轴的距离始终相等,求
△PMF周长的最小值.。