噬菌体抗体库技术
噬菌体展示技术和其应用ppt课件

2024/3/30
25
应用举例:
部分做过的工作
2024/3/30
26
一、半合成噬菌体抗体库的构建
构建一个半合成抗体库,不经免疫制备人源抗Tie2 Fab抗体。通过RT-PCR方法,从人脐带血淋巴细胞总 RNA 扩增轻链基因及重链VH段基因,将轻链基因插 入pCOMb3载体中,得人轻链质粒库;从乙肝表面抗 体(HBsAb)的Fd段基因制备含有不同长度随机化 CDR3的FR3-CDR3-J-CH1片段,然后将VH段基因与随 机化的CDR3融合,得到Fd基因片段,再将其插入轻链 质粒库中,得半合成人Fab质粒库。
成3节段
2024/3/30
17
M13噬菌体
丝 状 噬 菌 体
λ噬菌体、T4噬菌体、T7噬菌体
蝌 蚪 形 噬 菌 体
2024/3/30
18
T7与M13相比优势明显
T7Select的优势 解释
是在细胞质中表 达的裂解性噬菌 体
C-端融合
与M13不同,T7是裂解性的,其展示的蛋白无需分泌。
插入序列被克隆到T7Select载体基因10 的C-端,可以使带有终止密码子的 插入子得以表达和展示。
2024/3/30
34人源噬菌体Fab抗体半合成的构建将酶切纯化的重链重叠PCR产M13的超感染 下,繁殖出表算出κ+Fd(包括CDR3-5个菌落,涂格,过夜培养后菌落PCR: 其中6个克隆中有轻链也有重链。双链插入率 为60%左右。
κ 链 文 库 的 容 量 为 5.03×106,λ 链 文 库 的 容 量 为 6.8×106(多次建库混合后的库容量)。
从平板上随机挑取10个菌落,涂为70%。
载体克隆容量大 T7载体比M13克隆容量大,而任何克隆到M13上大于1 kbp的片段都不稳定。
抗体制备技术的发展和医学应用

抗体制备技术的发展及其医学应用抗体是在对抗原刺激的免疫应答中,B淋巴细胞产生的一类糖蛋白。
它是能与相应抗原特异的结合、产生各种免疫效应(生理效应)的球蛋白。
国际卫生组织将具有抗体活性及化学结构与抗体相似的一类蛋白统一命名为免疫球蛋白,它与抗体都是指同一类蛋白质。
抗体的2条重链和2条轻链根据氨基酸序列变化程度分为V区和C区,其抗原结合特异性主要由V区中高度变异的超变区决定,3 个超变区共同形成1个抗原决定簇互补的表面,故又称为互补决定区( comp lementarity determining region,CDR)。
常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。
一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。
即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。
因而,常规血清抗体又称多克隆抗体(polyclonal antibody,PcAb),简称多抗。
多克隆抗体是由多克隆B细胞群产生的、针对多种抗原决定簇的混合抗体。
因为天然抗原是由多种抗原分子组成的,每种抗原分子又含有许多抗原决定簇,每一种抗原决定簇可激活相应的B细胞克隆,进而分化、成熟并合成相应的抗体。
由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。
因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。
随着杂交瘤技术的诞生,这一目标得以实现。
1 抗体的发展抗体的研究过程经历了免疫血清学研究、单克隆抗体研究和基因工程抗体研究3个不同阶段。
1.1 免疫血清学研究阶段免疫动物产生的抗体是多种抗体的混合物,所以早期制备的抗体是多克隆抗体. 多克隆抗体是人类有目的地利用抗体的第1步,其在生物医学等方面的应用已有上百年的发展历史. 但多克隆抗体具有不均一性,特异性差且动物抗体注入人体会产生严重的过敏反应等特性,限制了其在疾病诊断和治疗中的应用。
噬菌体展示技术的原理及应用

8、 DNA结合蛋白:
锌指蛋白是一类 DNA 结合小肽结构物,这些结 构含有锌,能用于构建一个大的蛋白区域,去识别 和结合特殊的 DNA 序列。噬菌体展示技术也可以用 于创造一个大的、具有识别不同 DNA 序列的 锌指 的多肽库。利用这个多肽库,可以研究有关氨基酸 序列与 DNA 结合位点之间的识别规则,可以通过设 计 锌指多肽去控制基因的表达,比如抑制小鼠细胞 系中的癌基因,也可以启动表达质粒的基因,或干 扰病毒感染插入的片段是从 某些组织或细胞中抽提的mRNA 的互补DNA 片 段,它用来筛选与受体特异性结合的片段。一般可 利用M13 噬菌体或其他表 达一部分真核蛋白,而M13 噬菌体和其他E. coli噬 菌体所能表达的真核蛋白更少。研究表明,没有一 个展示系统能够表达所有的真核细胞蛋白。无论 如何,噬菌体表面cDNA 库的表达将是研究蛋白质 之间相互作用的有用工具。cDNA 库的噬菌体展 示提供了一个应用免疫学方法进行酶:
例:碱性磷酸酶,蛋白水解酶类,等等
6、底物与抑制剂:
主要是蛋白酶的底物和其抑制剂。
7、信息传递研究:
利用噬菌体展示多肽库,发现了一些受体,如 凝血致活酶、黑皮质素受体、CD80 和一个 Hantaviral 受体;受体的配体, 如血管促生素、 αbungarotoxin, 和一些大蛋白分子中的折叠区域, 如 SH2、SH3 和 WW 区域。从多肽库中可分离 到与天然激素相似的、与受体结合的高亲和力的 多肽, 因此用完整细胞可以从多肽库中找到受体的 高选择性配体。在不知道任何有关的受体和配体 信息的情况下,用完整细胞和组织或动物,可筛 选到特异与靶组织结合的多肽和蛋白。
一、发展简史
Dulbecco等提出了在病毒表面展示外源抗原 决定簇和肽的概念。 1985年Smith — 首次利用基因工程技术将 EcoRⅠ内切酶的部分基因片段(171 bp和132 bp)与 pⅢ基因融合,获得的重组噬菌体可在体外稳定增 生,表达产物能被抗EcoRⅠ内切酶抗体所识别.。 1988年Parmley — 将已知抗原决定簇与噬菌体 PⅢ N端融合呈现在其表面,并提出通过构建随机 肽库可以了解抗体识别的抗原决定簇表位的设想.。 1990年McCafferty — 用噬菌体展示技术筛选 溶菌酶的单链抗体成功使噬菌体展示技术进入一 个广泛应用的时代。
天然人源IgG Fab噬菌体抗体库的构建及多样性分析

n Y eh ma tb dy f m e lh ou te . eh ds Toa e e n o i g telg tc an d Fd rgo o h eh a y c an fte h ma av u n a io r n o h atyv lne r M t o : t g n se c dn ih h i a e in ft e v h so h u n s l h s n i
m r o d a MioioyadP r il ,h nh i ei l oeeo u a n e i ,hnh i 102 C i etfMei l c b l n aa to S ag a M d a C lg F dnU irt S ga 3 3 , h a t c r og so g y c l f v sy a 20 n
红霞等
天然人源 I b g F 噬菌体抗体库 的构建厦多搓 G a
箜
di1 .99jin 10—8 X 2 1 .100 o: 36/. s.0044 .00 1.1 0 s
・
免疫学 技术 与 方法 ・
天然 人源 IG a g F b噬菌体 抗 体库 的构 建 及 多样性 分 析①
m npaed pae a ba a o t c db etgt gt dhayca ee iot et FbC V rbe e o e a hg— sl dFblrr w s n r t yi rn el ev h ngns n ev o p alN.ai lrg n o t i y i y cs u e s n i h i a h n i th c r a is f h
从鼠源到全人源单克隆抗体制备技术及改造策略的研究进展

从鼠源到全人源单克隆抗体制备技术及改造策略的研究进展摘要:近年来,单克隆抗体是生物制药领域研究和发展最快的领域之一,单克隆抗体具有地耐药性、高效性、专一性等多种优越特性而受到各界关注,随着单克隆抗体制备技术的不断出现,对其稳定性和亲和力提出了更高的要求,本项目从全人源单克隆技术出发,探讨其改造策略以及未来发展方向关键字:鼠源,全人源,单克隆抗体单克隆抗体是一种由人类通过采用各种化学技术或者人工方式制备,由单一b 受体细胞的单克隆抗体细胞产生的一种抗体。
其高度均一,且仅针对某一特定受体抗原上的表位。
单克隆免疫抗体的制备方法主要具有产物纯度高、交叉免疫反应少、制备时间和成本低、结构均一、特异性强等特点,其主要生物学机理功能主要特点是与抗原分子结合后不能产生间接免疫受体分子或直接阻断配体。
当前已有40多种单抗体克隆免疫抗体被广泛用于自身自体免疫功能性疾病、肿瘤和器官移植等各个方面,效果显著。
1全人源单克隆抗体制备技术自从1975年,KOHLER等人通过杂交瘤技术成功获得了具有抗原特异性的鼠源性单克隆抗体,从而开启了单克隆抗体开发的新纪元。
随着多年发展,单克隆抗体已经成为人们疾病诊治的重要工具。
而鼠源性抗体来源于小鼠,在对人体使用时,存在着诸多缺陷,为解决此类问题,全人源单克隆抗体被提出,是未来单克隆抗体的主要研究方向之一,目前使用较为广泛的全人源单克隆抗体制备技术有以下几种:1.1噬菌体抗体库技术噬菌体抗体库技术至1990年成功实施以来,经过30年的发展,已经成为该领域应用最广的制备技术之一。
噬菌体抗体库技术的应用原理是使用PCR技术(聚合酶链式反应技术),将人体抗体编码的基因序列通过技术进行扩增,然后将抗体的基因序列插入到噬菌体中的适当位置,并通过建立一个噬菌体抗体库,让人体抗体和另一个噬菌体外壳上的蛋白进行相融,将两者互相融合的蛋白质形式展示在噬菌体的表面。
噬菌体抗体库技术将通过构建好的抗体库与抗原进行结合,并通过抗原与抗体的差异性相互结合的基因组原理,通过筛选,挑出一种能与目的抗原进行结合的噬菌体,在通过噬菌体基因测序,得到一种新的基因序列,并将其通过基因组技术应用于全人源抗体中。
人源乳腺癌噬菌体抗体库的构建及初步筛选

MC _ 结合 活 性 癌 噬 菌 体抗 体 库 中 筛选 到 6 特 异 性 噬 菌体 抗 体 , 下一 步进 行 单 链 抗 体 的 株 为
乳 腺 癌放 射 性 核 素 显 影 及 治 疗 奠 定 了基 础 。
关 键词 : 腺 癌 ; 菌 体 抗 体 库 ; 乳 噬 筛选 ; 链 抗 体 单 中 图分 类 号 : 7 7 9 R 3 . 4 R 3 . ; 7 0 4 文献 标 识 码 : A 文 章 编 号 :6 18 4 (O O 0 —5 6O 1 7-3 8 2 1 ) 50 1一3
T ANG h — i , h o ln , S u b n LIS a —i PENG e e 1 Ji , t . a
.
( . e a t n o c l y, is P o l s s i l f Ne in Ne i n S c u n 6 1 0 , ln ; 1D p r me t f On o g F rt ep e p t i a g, i a g, i a 4 0 0 C ̄ a o Ho a o j j h i 2 De a t n f Nu l r d c e C l g f B s d c e C o g ig Me i l n v ri C o g ig 4 0 1 , hn ) . p rme t c a o e Me ii , ol e a i Me ii , h n qn d c iest h n q n 0 0 6 C i a n e o c n a U y,
EL S Re u t A h g n io y o . I A. s l s p a e a t d f 4 2× 1 wa b a n d a d s x a tv l n s a an tb e s a c r e l MCF 7 we e g i e b 0 s o t i e n i ci e co e g i s r a tc n e el - r an d fo t e S f i r r . o cu in S x a t o y bn i g t r a tc n e e l r to g y we e ie t id fo h ma iep a ea — r m h c v l a y C n lso i n i d i d n o b e s a c rc l mo e s r n l r d n i e r m u n z h g n b b f t o y l r r . i wo k p o ie st e b ssf rr d o u l e i g n n h r p o r a tc n e . i d i a y Th s b b r r v d s u h a i o a in ci ma i g a d t e a y f r b e s a c r d
噬菌体展示

噬菌体展示
简介
噬菌体是一种能够感染细菌并在其中繁殖的病毒。
它被广泛用于生物学研究和生物技术应用中,特别是在基因工程和基因治疗领域。
噬菌体展示技术是一种将特定蛋白质或肽段展示在噬菌体表面的方法。
通过选择与目标蛋白质相互作用的噬菌体克隆,可以筛选出具有特定功能的蛋白质或肽段。
本文将介绍噬菌体展示技术的原理、应用和优点。
原理
噬菌体展示技术依赖于噬菌体基因组中的一个外源基因,该基因编码目标蛋白质或肽段。
这个外源基因通常被插入到噬菌体的毒力因子基因中,例如毒力因子III基因。
插入后,目标蛋白质或肽段会与细菌细胞的表面结合。
噬菌体携带的基因信息会导致细菌细胞表面展示目标蛋白质或肽段。
通过这种方式,科研人员可以通过筛选和选择的方法找到与目标蛋白质或肽段相互作用的噬菌体克隆。
应用
噬菌体展示技术在生物学研究和生物技术应用中有广泛的应用。
以下是一些常见的应用领域:
抗体库筛选
噬菌体展示技术可用于抗体库筛选,以寻找与特定抗原相互作用的抗体。
通过将抗原展示在噬菌体表面,科研人员可以筛选出具有高亲和力和特异性的抗体,用于治疗和诊断应用。
肽库筛选
噬菌体展示技术也可用于肽库筛选,以寻找具有特定功能的肽段。
通过将肽段展示在噬菌体表面,科研人员可以筛选出与特定靶点相互作用的肽段,用于药物开发和治疗应用。
蛋白质互作网络研究
噬菌体展示技术可以用于研究蛋白质互作网络。
通过将一种蛋白质展示在噬菌体表面,并将其用作识别其他与其相互作用的蛋白质的。
噬菌体抗体库筛选操作流程tomlinsonij

噬菌体抗体库筛选操作流程tomlinsonijtheLibrariesGeneral Introduction toOver the past 10 years Greg Winter’s lab at the MRC Laboratory of Molecular Biology and the MRC Centre for Protein Engineering (Cambridge, UK) has created a number of artificial libraries of antibodies that can be used to derive binders to almost any target molecule using phage display and selection. These binders can be used for all the same applications as conventional monoclonal antibodies (ELISA, Western blotting, FACS, immunohistochemistry etc) but can be isolated in a fraction of the time and without the need for animal immunisation. To date these so called “na?ve” or “single pot” phage-antibody libraries have been used successfully in hundreds of molecular biology labs world-wide to derive highly specific antibody reagents to a wide range of different proteins, peptides or small molecule compounds.The latest libraries (Tomlinson I and J) that are being distributed by the MRC HGMP Resource Centre each comprise over 100 million different scFv fragments cloned in an ampicillin resistant phagemid vector and transformed into TG1 E. Coli cells (scFv fragments comprise a single polypeptide with the VH and VL domains attached to one another by a flexible Glycine-Serine linker). By carefully following the protocol provided, large numbers of phagemids can be produced and used to select specific binders to target molecules that are attached to the surface of a tube or biotinylated and captured by streptavidin coated beads (so called “panning”). After each round of panning, the non-binders are washed away and the phagemids bound to the target molecule/s are eluted and amplified by infection into fresh TG1 cells. After producing new phagemids from the previous round of panning, the process can be repeated. Typically two or three rounds of panning are required to ensure that more than half the different scFvs in the selected population bind to the target molecule. The monoclonal scFvs can then be screened for binding (using a simple ELISA based protocol) and then used for further analysis of the target molecule. Since all the functional scFvs in the Tomlinson I and J libraries bind Proteins A and L, either of these secondary reagents can be used for detection, purification or immobilisation. Alternatively, secondary reagents that bind the attached myc or HIS6 tags can be used, although in our experience it is better to use the Protein A or L reagents.Finally, we would like to emphasise that these libraries represent a valuable resource. Whether you are familiar with phage display or not we recommend that you perform test selections and subsequent ELISA screening using the anti-bovine serum albumin and anti-bovine ubiquitin controls provided. Only when these experiments have been successfully carried out should you defrost the libraries and start preparing library phage.Derivation of librariesBoth libraries are based on a single human framework for V H (V3-23/DP-47 and J H 4b) and V κ (O12/O2/DPK9 and J κ1) with side chain diversity incorporated at positions in the antigen binding site that make contacts to antigen in known structures and are highly diverse in the mature repertoire. The canonical structure (V H : 1-3, V κ: 2-1-1) encoded by this framework is by far the most common in the human antibody repertoire. The CDR3 of the heavy chain was designed to be as short as possible yet still able to form an antigen binding surface. Both libraries can be selected and affinity matured without knowing the sequences of selected clones. Libraries are in phagemid/scFv format and have been pre-screened for binding to Protein A and Protein L so that the majority of clones in the unselected libraries are functional.Constructed in pIT2 (HIS myc tag). Diversified (DVT) side chains based mainly on those positions which are diverse in the primary repertoire (total of 18 residues - H50, H52, H52a, H53, H55, H56, H58, H95, H96, H97, H98, L50, L53, L91, L92, L93, L94 and L96). After selection, can be matured by incorporating additional diversity based on somatic mutation. Library size (with insert): 1.47 x 108 Percentage insert: 96%As above but with NNK side chains. Library size (with insert): 1.37 x 108 Percentage insert: 88%1. Check that you have received:a tube of Library I (~500 µl)a tube of Library J (~500 µl)a glycerol stock of a positive control anti-ubiquitin ScFv in bacterial strain TG1 (labeled TG1-antiubi)a glycerol stock of a positive control anti-BSA ScFv in bacterial strain TG1 (labeled 13CG2)a glycerol stock of T-phage resistant E. Coli. TG1 for propagation of phage (labeled TG1Tr)(lac-proAB) supE thi hsdD5/F' traD36 proA+B lacI q lacZM15)(K12a glycerol stock of E. Coli. HB2151 for expression of antibody fragmentsara ?(lac-proAB) thi/F' proA+B lacI q lacZ?M15)(K12KM133 (~100 µl with 107 pfu/ml)Phage2. Check the library is still frozen and make sure you keep it frozen at -70°C until needed.3. Make stock of KM13 according to Protocol G.4. Run through the protocols using the control clones before you use the library: Streak the controlson TYE plates containing 100 µg/ml ampicillin and 1 % glucose. After overnight growth at 37°C in an incubator pick a single colony from each and grow these overnight (shaking at 37°C) in 5 ml 2xTY1 containing 100 µg/ml ampicillin and 1 % glucose. Make phage for the positive and negative controls separately (use 500 µl of overnight in D1-D10). Use a 1:100 mixture of phage produced from the positive and the negative controls and perform one round of selection (C1-C11) using 100 µg/ml of ubiquitin2 in PBS for coating. Check for enrichment of ubiquitin binders (should be over 50% after one round of selection) by monoclonal phage ELISA (E9-E14).5. Wherever possible use devoted pipettes and disposable plastic ware. The use of polypropylenetubes is recommended as phage may adsorb non-specifically to other plastics.6. For efficient infection of phage, E. coli must be grown at 37°C and be in log phase (OD at 600 nmof 0.4). To prepare this:i. Transfer a bacterial colony from a minimal media plate into 5 ml of 2xTY medium (no antibioticsor glucose). Grow shaking overnight at 37°C.ii. Next day dilute overnight 1:100 into fresh 2xTY medium. Grow shaking at 37°C until OD 600 is0.4 (1.5-2 hrs)7. All centrifugations, except those performed in a micro centrifuge, are performed at 4°C.8.Libraries I and J must be used separately and preferably in parallel. This will ensureselecting the most antigen binding clones.In advanceGather all equipment and reagents (product details are given in the notes at the end of all the protocols). Make sure you have all the necessary media and plates for bacterial growth (the large Bio-Assay plates need to be air-dried in a sterile environment for 2 hrs before use).Plan your time - most of the daily procedures can be performed simultaneously, so read through each protocol carefully before starting.StepsProcedureDay 1 (5 hrs) A1-A6 Grow libraries I and J and make phageB1-B3 Make secondary stock of librariesDay 2 (6 hrs) A7-A12 Grow libraries I and J and make phage (cont.)C1 Coat immunotubes for 1st round of selectionDay 3 (6.5 hrs) C2-C11 1st round of selectionDay 4 (3 hrs) D1-D6 Make phage from 1st round of selectionC1 Coat immunotubes for 2nd round of selectionDay 5 (6.5 hrs) D7-D11 Make phage from 1st round of selection (cont.)C2-C11 2nd round of selectionDay 6 (3 hrs) D1-D6 Make phage from 2nd round of selectionC1 Coat immunotubes for 3nd round of selectionDay 7 (6.5 hrs) D7-D11 Make phage from 2nd round of selection (cont.)C2-C11 3rd round of selectionDay 8 (3 hrs) D1-D6 Make phage from 3rd round of selectionE1 Coat 96 well plate for polyclonal phage ELISADay 9 (6.5 hrs) D7-D11 Make phage from 3rd round of selection (cont.)E2-E8 Polyclonal phage ELISAFurther characterisation of individual clones can be performed by monoclonal phage ELISA (protocol E), monoclonal ELISA using soluble scFv fragments (protocol F), PCR screening (to check for insert, protocol H) and sequencing (protocol I).1. Add the library stock to 200 ml pre-warmed 2xTY containing 100 µg/ml ampicillin and 1 %glucose.2. Grow shaking at 37°C until the OD 600 is 0.4 (1-2 hrs).3. Take 50 ml of this and add 2x1011 KM13 helper phage3. (Use the remaining 150 ml to make asecondary bacterial stock of the library by following protocol B).4. Incubate without shaking in a 37°C water bath for 30 min.5. Spin at 3,000 g for 10 min (3,600 rpm in Centra 8 or equivalent). Resuspend in 100 ml of 2xTYcontaining 100 µg/ml ampicillin, 50 µg/ml kanamycin and 0.1% glucose.6. Incubate shaking at 30°C overnight.7. Spin the overnight culture at 3,300 g for 30 min (4,000 rpm in Centra 8 or equivalent).8. Add 20 ml PEG/NaCl (20 % Polyethylene glycol 6000, 2.5 M NaCl)to 80 ml supernatant. Mix welland leave for 1 hr on ice.9. Spin 3,300 g for 30 min (4,000 rpm in Centra 8 or equivalent). Pour away PEG/NaCl. Respinbriefly and aspirate any remaining dregs of PEG/NaCl.10 Resuspend the pellet in 4 ml PBS and spin at 11,600 g for 10 min in a micro centrifuge to removeany remaining bacterial debris.11. Store the phage at 4°C for short term storage or in PBS with 15 % glycerol for longer termstorage at -70°C.12. To titre the phage stock dilute 1µl phage in 100µl PBS, 1µl of this in 100µl PBS and so on untilthere are 6 dilutions in total. Add 900µl of TG1 at an OD 600 of 0.4 to each tube and incubate at 37°C in a waterbath for 30 mins. Spot 10 µl of each dilution on a TYE5 plate containing 100 µg/ml ampicillin and 1 % glucose and grow overnight at 37°C. Phage stock should be 1012-1013/ml, enough for at least 10 selections.1. Grow the remaining 150 ml from A3 for a further 2 hr shaking at 37°C.2. Spin down the cells at 10,800 g for 10 min. Resuspend in 10 ml of 2xTY containing 15 % glycerol.3. Store this secondary stock in 20x 500 µl aliquots at -70°C. Use one aliquot for each phagepreparation according to protocol A - this will only be necessary if you wish to do more than 10 selections.(Alternatively, phage can be selected using biotinylated antigen in solution or affinity chromatography. For details see Winter et al. (1994) Annu. Rev. Immunol.12, 433)immunotube6 overnight with 4 ml of the required antigen. The efficiency of coating can1. Coatdepend on the antigen concentration, the buffer and the temperature. Usually 10-100 µg/mlantigen in PBS is used.2. Next day wash tube 3 times with PBS (pour into the tube and then pour it immediately out again).3. Fill tube to brim with 2 % MPBS (2 % Marvel milk powder7 in PBS). Incubate at rt. Standing onthe bench for 2 hr to block.4. Wash tube 3 times with PBS.1012 to 1013 phage from A11 in 4 ml of 2 % MPBS. Incubate for 60 min at rt. rotating using 5. Addan under-and-over turntable and then stand for a further 60 min at rt. Throw away supernatant.6. Wash tubes 10 (round 1)-20 (rounds 2 and 3) times with PBS containing 0.1 % Tween 20.7. Shake out the excess PBS and elute phage by adding 500 µl of trypsin-PBS (50 µl of 10mg/mltrypsin stock solution8 added to 450 µl PBS) and rotating for 10 min at rt using an under-and-over turntable.8. Take 1.75 ml of TG1 at an OD 600 of 0.4 and add 250 µl of the eluted phage (the remaining 250µl should be stored at 4°C). Incubate for 30 min at 37°C in a water bath without shaking.µl, 10 µl of a 1:102 dilution and 10 µl of a 1:104 dilution on TYE plates containing 1009. Spot10µg/ml ampicillin and 1 % glucose and grow overnight at 37°C to titre the phage.10. In round 1 if using a complex antigen (eg cells, cell lysates etc): take the remaining TG1 cultureand spin at 11,600 g in a micro centrifuge for 5 min. Resuspend the pelleted bacteria in 1 ml of 2xTY and plate on a large square Bio-Assay dish9 containing TYE, 100 µg/ml ampicillin and 1 % glucose.In round 1 if using a single hapten, carbohydrate or protein antigen and in subsequent rounds for all antigens: take the remaining TG1 culture and spin at 11,600 g in a micro centrifuge for 5 min.Resuspend the pelleted bacteria in 50 µl of 2xTY and plate on a regular TYE plate containing 100 µg/ml ampicillin and 1 % glucose.11. Grow plates at 37°C overnight.The first round of selection is the most important. Any errors made at this point will be amplified in subsequent rounds of selection. After each round you should get back at least 100 infective phage. If you get less than this it is probable that a mistake has occurred. If so, try repeating the infection with a freshly grown TG1 culture (from a new overnight) at an OD 600 of 0.4 using the remaining 250 µl of eluted phage from C7. If this still yields less than 100 phage, repeat the selection starting at C1.1. After overnight growth add 7 ml of 2xTY 15 % glycerol to the large square Bio-Assay dish or 2mlsto the regular plates and loosen the cells with a glass spreader, mixing them thoroughly. After inoculating 50 µl of the scraped bacteria to 50 ml of 2xTY containing 100 µg/ml ampicillin and 1 % glucose, store 1 ml of the remaining bacteria at -70°C in 15% glycerol.2. Grow shaking at 37°C until the OD 600 is 0.4 (1-2 hrs).3. Take 10 ml of this culture and add 5x1010 helper phage.4 Incubate without shaking in a 37°C water bath for 30 min.5. Spin at 3,000 g for 10 min. Resuspend in 50 ml of 2xTY containing 100 µg/ml ampicillin, 50 µg/mlkanamycin and 0.1% glucose.6. Incubate shaking at 30°C overnight.7. Spin the overnight culture at 3,300 g for 15 min.8. Add 10 ml PEG/NaCl (20 % Polyethylene glycol 6000, 2.5 M NaCl)to 40 ml supernatant. Mix welland leave for 1 hr on ice.9. Spin 3,300 g for 30 min. Pour away PEG/NaCl. Respin briefly and aspirate any remaining dregsof PEG/NaCl.10. Resuspend the pellet in 2 ml PBS and spin at 11,600 g for 10 min in a micro centrifuge to removethe remaining bacterial debris.11. Use 1 ml of this phage for the next round of selection (protocols C and D) and store 1 ml at 4°C.12. Repeat selection for another 2 rounds.Populations of phage produced at each round of selection can be screened for binding by ELISA to identify "polyclonal" phage antibodies. Phage from single colonies can then be screened by ELISA to identify "monoclonal" phage antibodies. Alternatively, after a polyclonal phage ELISA you could proceed directly to making monoclonal soluble antibody fragments, see protocol F. In general, we have found that 2% Marvel in PBS is best for blocking during phage ELISA whereas 3% BSA in PBS is best for blocking during scFv ELISA.1. Coat a 96 well flexible assay plate10 overnight with 100 µl per well of antigen in the same bufferand at the same concentration as used for selection.2. Wash wells 3 times with PBS. Plates can be immersed in a shallow bath containing PBS but youshould check that all wells fill with wash solution (if they do not you may create false positivesduring later washes). Discard liquid by flipping plate over and then shaking it. Add 200 µl per well of 2 % MPBS (2 % Marvel in PBS) or 3% BSA-PBS (3% bovine serum albumin in PBS) to block and incubate for 2 hr at rt.3. Wash wells 3 times with PBS. Add 10 µl PEG precipitated phage from the end of each round ofselection in 100 µl 2 % MPBS (or 3 % BSA-PBS).4. Incubate for 1 hr at rt. Discard phage solution and wash 3 times with PBS-0.1 % Tween 20.5. Add 1 in 5000 dilution of HRP-anti-M1311 in 2 % MPBS (or 3 % BSA-PBS). Incubate for 1 hr atrt., wash 3 times with PBS-0.1 % Tween 20.µl of substrate solution (100 µg/ml TMB12 in 100 mM sodium acetate, pH 6.0. with10 µl 1006. Addof 30 % hydrogen peroxide added to 50 ml of this solution directly before use) to each well and leave at rt. for 2-15 min. A blue colour should develop.7. Stop the reaction by adding 50 µl 1 M sulphuric acid. The blue colour should turn yellow.9. Inoculate individual colonies from the titration plates from each round of selection (see C11) into100 µl 2xTY containing 100 µg/ml ampicillin and 1 % glucose in 96 cell-well plates13. Growshaking (250 rpm) overnight at 37°C.10. Use a 96 well transfer device14 to transfer a small inoculum (about 2 µl) from this plate to asecond 96 cell-well plate containing 200 µl of 2xTY with 100 µg/ml ampicillin and 1 % glucose per well. Grow shaking (250 rpm) at 37°C for 2 hr. (Make glycerol stocks of the original 96-well plate, by adding glycerol to a final concentration of 15 %, and then storing the plates at -70°C).11. After 2 hr incubation (of the second plate) add 25 µl 2xTY containing 100 µg/ml ampicillin, 1 %glucose and 109 helper phage.12. Shake (250 rpm) at 37°C for 1 hr. Spin 1,800 g for 10 min, then aspirate off the supernatant.13. Resuspend pellet in 200 µl 2xTY containing 100 µg/ml ampicillin and 50 µg/ml kanamycin. Growshaking (250 rpm) overnight at 30°C.14. Spin at 1,800 g for 10 min and use 50 µl of the supernatant in phage ELISA as detailed above.Individual colonies picked from the various rounds of selection (as plated on the dilution series) can be induced in TG-1 to produce soluble scFv (F2-F6). This will ensure the expression of all selected clones including those in which the scFvs contain TAG stop codons (TG-1 as able to suppress termination and introduce a glutamate residue at these positions). Unfortunately, since the TAG stop codon between the scFv and the gIII gene is also suppressed this leads to co-expression of the scFv-pIII fusion which tends to lower the overall levels of scFv expression, even in clones where there are no TAG stop codons in the scFv itself. To circumvent this problem, the selected phage can be used to infect HB2151 (a non-suppresor strain) which is then induced to give soluble expression of antibody fragments (scFv genes that do not contain TAG stop codons will now yield higher levels of soluble scFv than in TG-1, but those that contain TAG stop codons will not produce any soluble scFv) (F1-F6). The expressed scFvs can then be used in ELISA. Detection of bound scFv can be performed using either Protein A-HRP15 or Protein L-HRP16 conjugates.1. From each selection take 10 µl of eluted phage and infect 200 µl exponentially growing HB2151bacteria (OD 600 of 0.4) for 30 min at 37°C in a water bath. Plate 50 µl, 50 µl of a 1:102 dilution,50 µl of a 1:104 dilution and 50 µl of a 1:106 dilution on TYE plates containing 100 µg/mlampicillin and 1 % glucose and grow overnight at 37°C.2. Pick individual colonies into 100 µl 2xTY 100 µg/ml ampicillin and 1 % glucose in 96 cell-wellplates and grow shaking (250 rpm) overnight at 37°C./doc/d1ca22bb960590c69ec376eb.html e a 96 well transfer device14 to transfer a small inocula (about 2 µl) from this plate to a second96 cell-well plate containing 200 µl 2xTY containing 100 µg/ml ampicillin and 0.1 % glucose perwell. Grow shaking (250 rpm) at 37°C until the OD 600 is approximately 0.9 (about 3 hr). (A stock can be made of the first plate, by adding glycerol to a final concentration of 15 % and storing at -70°C).4. Once OD 0.9 is reached (wells look quite cloudy) add 25 µl 2xTY containing 100 µg/ml ampicillinand 9 mM IPTG (isopropyl β-D-thiogalactoside, final concentration 1 mM IPTG). Continueshaking (250 rpm) at 30°C overnight.5. Coat a 96 well flexible assay plate overnight with 100 µl per well of antigen in the same buffer andat the same concentration as used for selection.6. Spin the plate from step F4 at 1,800 g for 10 min and use 50 µl of the supernatant (take care notto transfer any bacteria) for ELISA in 3% BSA-PBS (final concentration) (protocol E) except usinga 1:5000 dilution of Protein A-HRP15 or Protein L-HRP16 to detect binding in step E5.µl TG1 at an OD 600 of 0.4 with 10 µl of 100-fold serial dilutions of KM13 helper 2001. Infectphage3 (in order to get well separated plaques) in a 37°C water bath (without shaking) for 30 min.Add to 3 ml molten H-top agar (42°C) and pour onto warm TYE plates (no antibiotics). Allow to set and incubate overnight at 37°C.2. Pick a small plaque into 5 ml of fresh TG1 at an OD 600 of 0.4. Grow for about 2 hr shaking at37°C.3. Add to 500 ml 2xTY in a 2 litre flask and grow shaking at 37°C for 1 hr. Add kanamycin to a finalconcentration of 50 µg/ml (no glucose). Grow overnight shaking at 30°C.4. Spin overnight culture at 10,800 g for 15 min. Add 100 ml PEG/NaCl (20 % polyethylene glycol6000, 2.5 M NaCl) to 400 ml supernatent and leave for 1 hr on ice.5. Spin 10,800 g for 30 min. Pour away PEG/NaCl.6. Resuspend the pellet in 8 ml PBS and add 2 ml PEG/NaCl. Mix well and leave for 20 minutes onice.7. Spin 3,300 g for 30 min. Respin briefly and aspirate any remaining dregs of PEG/NaCl.8. Resuspend pellet in 5 ml PBS and spin at 11,600 g for 10 min in a micro centrifuge to remove anyremaining bacterial debris.9. Store the helper phage at 4°C for short term storage or in PBS with 15 % glycerol for longer termstorage at -70°C.10. To titre the helper phage take 45µl phage and add 5µl trypsin stock solution. Incubate for 30 minsat 37 °C. Dilute 1µl of trypsin treated phage in 1ml PBS and make five 100 fold serial dilutions of this in 1ml aliquots of PBS. Add 50µl of the six dilutions to six separate tube containing 1ml of TG1 at an OD 600 of 0.4. Mix, add 3 ml molten H-Top and pour evenly onto TYE plates.Perform the same dilution series using 1µl of non-trypsin treated phage. The titre of the trypsin treated phage should be 105-108 lower than for the non-trypsin treated phage. If not, pickanother plaque and repeat helper phage preparation.Once the libraries have been selected you may wish to check individual clones for the presence of full length VH and Vκinsert. All PCRs are at annealing temperature of 55°C. 1 min extension for V H or Vκon their own, 2 min extension for V H and Vκ together.For V H only use LMB3: CAG GAA ACA GCT ATG AClink seq new: CGA CCC GCC ACC GCC GCT Gwith insert = 527 bpwithout insert = 227 bpFor Vκ only use DPK9 FR1 seq: CAT CTG TAG GAG ACA GAG TCpHEN seq: CTA TGC GGC CCC ATT CAwith insert = 368 bpwithout insert = no bandFor V H and Vκ use LMB3: CAG GAA ACA GCT ATG ACpHEN seq: CTA TGC GGC CCC ATT CAwith insert = 935 bpwithout insert = 329 bpFor sequencing of selected clones the following primers are recommended.For V H use link seq new CGA CCC GCC ACC GCC GCT GFor Vκ use pHEN seq CTA TGC GGC CCC ATT CAXhoI NotIRBS CAGGAAACAGCTATGACCATGATTACGCCAAGCTTGCATGCAAATTCTATTTCAAGGAGACAGTCATA ATG AAA TAC CTA ----------------> M K Y L LMB3SfiI __NcoI__TTG CCT ACG GCA GCC GCT GGA TTG TTA TTA CTC GCG GCC CAG CCG GCC ATG GCC GAG GTG TTT L P T A A A G L L L L A A Q P A M A E V F XhoI linkerGAC TAC TGG GGC CAG GGA ACC CTG GTC ACC GTC TCG AGC GGT GGA GGC GGT TCA GGC GGA GGTD Y W G Q G T L V T V S S G G G G S G G GSalI NotI HIS-tag GGC AGC GGC GGT GGC GGG TCG ACG GAC ATC CAG ATG ACC CAG GCG GCC GCA CAT CAT CAT CACG S G G G G S T D I Q M T Q A A A H H H H<------------------------link seq newmyc-tagCAT CAC GGG GCC GCA GAA CAA AAA CTC ATC TCA GAA GAG GAT CTG AAT GGG GCC GCA TAG ACTH H G A A E Q K L I S E E D L N G A A * T<---------------------pHEN seq1. 2xTY is 16g Tryptone, 10g Yeast Extract and 5g NaCl in 1 litre.2. Bovine ubiquitin (5 mg) is available from Fluka, Chemika-BioChemika, Industriestrasse 25, CH-9470 Buchs, Switzerland, Tel +41 81 755 2511, Fax +41 81 756 5449.3. KM13 is the protease cleavable helper phage described i n Kristensen and Winter, Folding andDesign3, 321-328 (1998).4. PBS is5.84 g NaCl, 4.72 g Na2HPO4 and 2.64 g NaH2PO4.2H20, pH 7.2, in 1 litre.5. TYE is 15g Bacto-Agar, 8g NaCl, 10g Tryptone, 5g Yeast Extract in 1 litre.6. Nunc Maxisorp immuno test tubes (Cat. No. 4-44202) are available from Gibco BRL, LifeTechnologies Ltd., P. O. Box 35, Trident House, Washington Road, Paisley, PA3 4EF, Scotland, U.K, Tel +44 141 814 6100, Fax +44 141 887 1167.7. 'Marvel' is dried skimmed milk powder.8. Trypsin (T-1426 Type XIII from Bovine Pancreas - Sigma Chemical Company Ltd., Fancy Rd.,Dorset, BH17 7NH, U.K, Tel +44 1202 733114; Fax +44 1202 715460) made up in 50mM Tris-HCl pH7.4, 1mM CaCl2 and stored at -20°C9. Nunc Bio-Assay dish is available from Gibco BRL (see note 6).10. Falcon MicroTest III flexible 96 well flat bottomed assay plates are available from BectonDickinson Labware, Becton Dickinson and Co., 2 Bridgewater Lane, Lincoln Park, NJ 07035,USA.11. HRP-anti-M13 is available from Amersham International plc, Amersham Place, Little Chalfont,Buckinghamshire, HP7 9NA, UK. Tel: +44 01494 544000; Fax: +44 01494 542929.12. TMB is 3,3',5,5'-tetramethylbenzidine and is available from Sigma (see Note 8). A 10 mg/ml stocksolution can be made by dissolving the TMB in DMSO.13. Corning 'Cell Wells' flat-bottomed multiple well tissue culture treated plates are available fromCorning Glass Works, Corning N.Y. 14831. USA.14. The 96 well transfer device is a piece of wood the size of a microtitre plate with a handle on oneside and 96 metal pins (each 7 cm long with a concave end) on the other. This can be sterilised between bacterial transfer by immersion in a bath of ethanol and then by flaming (hold well away from your body and any flamable objects). If you haven't got one of these (or something similar) you will have to make one yourself or alternatively use a multichannel pipette for bacterialtransfer.15. Horse Radish Peroxidase conjugated Protein A is available from Amersham International plc (seenote 11)14. Horse Radish Peroxidase conjugated Protein L is available from Actigen Ltd, 5 Signet Court,Swanns Road, Cambridge, CB5 8LA, UK. Tel: +44 01223 319101; Fax: +44 01233 316443.。