方波三角波发生电路的设计及仿真

合集下载

lm358正弦波方波三角波产生电路

lm358正弦波方波三角波产生电路

《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。

LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。

本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。

二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。

通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)RC滤波电路。

在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。

3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。

三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)反相输入和正向输入。

通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。

3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。

四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

方波-三角波产生电路的设计.

方波-三角波产生电路的设计.

方波-三角波产生电路的设计1 技术指标设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。

2 设计方案及其比较产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。

由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。

2.1 方案一非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。

矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。

但此时要求前后电路的时间常数配合好,不能让积分器饱和。

如图1所示为该电路设计图。

由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。

如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。

1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。

利用叠加定理可得: 21211211211)()(O V V O V P V R R R R R V R R R R V ⋅++++⋅++= 当0>P V 时,U1输出为正,即Z O V V +=1当0<P V 时,U1输出为负,即Z O V V -=12U 构成反相积分器,1O V 为负时,2O V 正向变化;1O V 为正时,2O V 负向变化。

当Z V O V R R R V ⋅+=1212时,可得: 0)()()()(121121121211=⋅+⋅++++-⋅++=Z V V V Z V P V R R R R R R R R V R R R R V 当2O V 上升使P V 略高于0v 时,U1的输出翻转到Z O V V +=1 同样,Z V O V R R R V ⋅+-=1212时,当2O V 下降使P V 略低于0时,Z O V V -=1。

方波三角波产生电路设计的快速原型验证及仿真验证

方波三角波产生电路设计的快速原型验证及仿真验证

方波三角波产生电路设计的快速原型验证及仿真验证引言:方波和三角波是电子技术中常用的波形信号。

在很多应用中,需要产生这两种波形信号来实现特定的功能。

本文旨在通过快速原型验证和仿真验证的方式,设计方波和三角波的产生电路,并对其性能进行评估和分析。

一、方波产生电路设计的快速原型验证1. 方波产生原理:方波产生电路的基本原理是利用集成电路中的触发器,通过控制触发器的输入信号,使其输出产生方波波形。

常用的方波产生电路有施密特触发器电路和反馈电阻电容网络电路。

2. 施密特触发器电路设计:施密特触发器电路是一种基于正反馈原理的方波产生电路。

其原理是通过设置上下阈值电压,当输入信号超过上阈值时,输出从低电平跳变到高电平;当输入信号低于下阈值时,输出从高电平跳变到低电平,从而产生方波波形。

在设计施密特触发器电路时,我们需要选择合适的集成电路,如CD40106、CD74HC14等,根据数据手册提供的电路参数和实际应用需求,计算合适的电阻和电容数值,并进行电路原理图设计。

3. 反馈电阻电容网络电路设计:反馈电阻电容网络电路是常用的方波产生电路之一,通过改变电阻和电容的数值和连接方式,可以得到不同频率和占空比的方波波形。

在设计反馈电阻电容网络电路时,我们需要根据频率和占空比的要求,选择合适的电阻和电容数值,并进行电路原理图设计。

通过快速原型验证,可以测试电路设计的性能,并进行必要的调整和优化。

二、三角波产生电路设计的快速原型验证1. 三角波产生原理:三角波产生电路的基本原理是通过比较器和集成电路中的积分器,使其输出产生三角波波形。

常用的三角波产生电路有反馈电容电路、反馈电阻电容网络电路等。

2. 反馈电容电路设计:反馈电容电路是一种基于积分原理的三角波产生电路。

其原理是利用电容器在电压充放电过程中的积分特性,通过控制电容的充放电过程,实现产生三角波波形。

在设计反馈电容电路时,我们需要选择合适的集成电路,如LM331、ICL8038等,根据数据手册提供的电路参数和实际应用需求,计算合适的电阻和电容数值,并进行电路原理图设计。

模电实验-方波三角波发生电路

模电实验-方波三角波发生电路

方波三角波发生电路一、实验要求:1、振荡频率范围:500HZ-1000HZ2、方波输出电压幅度:Vom=±8v3、三角波峰值调节范围:Vom1=2-4v4、集成运放采用uA7415、双向稳压管用2个D1N4735反接替代二、实验仿真与分析:1、确定参数:取R1=10k,Vom1=4v,则R2=Vom*R1/Vom1=20k,取电容C=1uF,暂时取R和R3为1k.2、设置瞬态分析,应特别注意时间的设置,由于周期为1ms~2ms,可设置终止时间为10ms.时间过大则波形过于密集,时间小则波形越偏离方波。

仿真分析知此时方波电压幅值为6V左右。

设置R3为全局变量,扫描分析使得方波幅值最大,确定R3=100,此时三角波幅值也满足要求:CPARAMETERS:v ar = 1k8.0V4.0V0V-4.0V-8.0V0s1ms2ms3ms4ms5ms6ms7ms8ms9ms10ms V(R2:2)V(R1:1)Time方波幅值为7.02V ,三角波幅值为3.7V ,取两个波谷值测取周期,T=3.7651-1.6182=2.1ms 并不符合要求,故要减小周期,即减小R仿真分析得当R=800时,仿真图像为周期为1.7ms,符合要求。

3、 设置瞬态分析,得到运放的电压传输特性分别为: 方波:三角波:Time0s1ms2ms 3ms 4ms 5ms 6ms 7ms 8ms 9ms 10msV(R2:2)V(R1:1)-8.0V-4.0V0V4.0V8.0VV(R1:1)-4.0V-3.0V -2.0V -1.0V 0.0V 1.0V 2.0V 3.0V 4.0VV(R2:2)-8.0V-4.0V0V4.0V8.0V4.0V2.0V0V-2.0V-4.0V-8.0V-6.0V-4.0V-2.0V0V 2.0V 4.0V 6.0V8.0V V(R1:1)V(R:1)三、实验体会:两个稳压管用来稳定输出方波,理论上是可以通过改变稳压值来调节方波幅值的,但是实验中却发现对方波幅值影响非常小,调不到8v,但是三角波却能够满足要求。

方波三角波发生电路的设计及仿真

方波三角波发生电路的设计及仿真

长春理工大学国家级电工电子实验教学示范中心学生实验报告■一一_______ 学年第___________ 学期实验课程_________________________ 实验地点_________________________ 学院______________________ 专业______________________ 学号______________________姓名______________________r 学习用集成运算放大器构成的方波和三角波发生电路的设计方法。

2、学习方波和三角波发生电路主要性能指标的测试方法。

二、 实验原理1. 方波和三角波发生电路型式的选择由集成运放构成的方波和三角波发生器的电路型式较多,但通常它们均由滞回比较器和积分电 路组成。

按积分电路的不同,又可分为两种类型:一类是由普通RC 积分电路和滞回比较器所组成, 另一类由恒流充放电的积分电路和滞回比较器所组成。

简单的方波和三角波发生电路如图34所示。

其特点是线路简单,但性能较差,尤英是三角波 的线性度很差.负载能力不强匚该电路主要用作方波发生器,当对三角波要求不髙时.也可选用这 种电路。

更常用的三角波和方波发生电路是由集成运放组成的积分器与滞回比较辭组成,如图3・2所示。

由于采用了由集成运放组成的积分器,电容C 始终处在恒流充、放电状态,使三角波和方波的性能 大为改善,不仅能得到线性度较理想的三角波,而且也便于调右振荡频率和幅度。

R4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMOD DZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 UA741X2 8 0 5 6 9 UA741Cl 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV=4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 -5 5 0.01*.DC V4 5 -5 0.01.TRA5US 12MS.PROBE.END运行.TRAN语句,可获得:Tire图3-3 输出方波电压波形图3・4 输出三角波电压波形输出三角波电压波形参考的输入网单文件如下:A drvieR4 1 2 500R14 8 10KR2 8 120KR3 9 1100DZ1 1 10 DMODDZ2 0 10 DMODVCC 5 0 DC 12VEE 6 0 DC -12XI 0 2 5 6 4 LM324X2 8 0 5 6 9 LM324C1 2 4 1U.MODEL DMOD D IS=2E-14 RS=3 BV二 4.85 IBV=1UA.LIB EVAL.UB*V4 4 0 1*.DC V4 •5 5 0.01*.DC V4 5 -5 0.01.TRAN 5US 12MS.PROBE.END因为LM324具有电源电压范围宽的特点,所以T变小了•减小了频率的调右范【悅2、R3的作用是什么?增大其值是否可以?R3是稳压管的限流电阻,R3的阻值是由稳压管Dz来确定的.所以可以根据Dz的情况来增大。

方波、三角波(锯齿波)产生电路.ppt

方波、三角波(锯齿波)产生电路.ppt

VZ
反相积分电路
1 vO1 RC
同相迟滞比较器

v dt V
0 S
t
O1
(0 )
R1vO R2vI vP + vN 0 R1 R2 R1 R2
Vth vI R1 vO FVZ 2.72V R2
VO2 t VO1 (0 ) RC
R6
– + R7
A2
vO
同相输入 迟 滞比较器
t
积分电路
t
end
反相积分电路
DZ VZ= 8V
VZ
习题9.4.9
同相迟滞比较器
方波、三角波(锯齿波)产生电路
画出vO1、vO2的波形。求振荡频率;
C R vS 5.1k
vN R1 – + R3 R2 15k 2k vO2
– +
0.047F
A1
A2
vO1
vI 5.1k vP
DZ VZ= 8V
求振荡频率;画出vO1、vO的波形。
C R vS 5.1k
vN R1 – +
– +
0.047F
A1
A2 R2 15k
R3 2k vO2
vO1
vI 5.1k vP
vO2
DZ VZ= 8V
VZ
VO2 v ( t ) t V ( 0 ) O1 O1 t RC 0 T VZ T vO1 v O1 ( ) ( FVZ ) FVZ 2 RC 2 FVZ T 4 RC t VZ 0 R2 f 3kHz 4 RCR1 如何调整三角波的幅值和频率?
锯齿波发生电路772锯齿波及三角波产生电路方波三角波锯齿波产生电路锯齿波产生电路同相输入滞比较器积分电路

方波-三角波发生电路实验报告

方波-三角波发生电路实验报告

河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年4月26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。

指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。

2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。

3、把方波信号通过一个积分器。

转换成三角波。

方案二:1、由滞回比较器和积分器构成方波三角波产生电路。

2、然后通过低通滤波把三角波转换成正弦波信号。

方案三:1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。

二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。

当R1=R2、C1=C2。

即f=f0时,F=1/3、Au=3。

然而,起振条件为Au略大于3。

实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。

如果R4/R3大于2时,正弦波信号顶部失真。

调试困难。

RC串、并联选频电路的幅频特性不对称,且选择性较差。

因此放弃方案一。

方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。

比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。

通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。

然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。

因此不满足使用低通滤波的条件。

放弃方案二。

方案三:方波、三角波发生器原理如同方案二。

比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。

正弦波、方波、三角波发生电路解析

正弦波、方波、三角波发生电路解析

一、设计目的及要求:1.1、设计目的:(1).掌握波形产生电路的设计、组装和调试的方法;(2).熟悉集成电路:集成运算放大器LM324,并掌握其工作原理。

1.2、设计要求: (1)设计波形产生电路。

(2)信号频率范围:100Hz ——1000Hz 。

(3)信号波形:正弦波。

二、实验方案:方案一:为了产生正弦波,必须在放大电路里加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构成的振荡器一般得不到正弦波,这是由于很难控制正反馈的量。

如果正反馈量大,则增幅,输出幅度越来越大,最后由三极管的非线性限幅,这必然产生非线性失真。

反之,如果正反馈量不足,则减幅,可能停振,为此振荡电路要有一个稳幅电路。

为了获得单一频率的正弦波输出,应该有选频网络,选频网络往往和正反馈网络或放大电路合而为一。

选频网络由R 、C 和L 、C 等电抗性元件组成。

正弦波振荡器的名称一般由选频网络来命名。

正弦波发生电路的组成:放大电路、正反馈网络、选频网络、稳幅电路。

产生正弦波的条件与负反馈放大电路产生自激的条件十分类似。

只不过负反馈放大电路中是由于信号频率达到了通频带的两端,产生了足够的附加相移,从而使负反馈变成了正反馈。

在振荡电路中加的就是正反馈,振荡建立后只是一种频率的信号,无所谓附加相移。

(a)负反馈放大电路 (b)正反馈振荡电路图1 振荡器的方框图比较图1(a) 和 (b)就可以明显地看出负反馈放大电路和正反馈振荡电路的区别了。

由于振荡电路的输入信号i X =0,所以i X =fX 。

由于正、负号的改变,正反馈的放大倍数为:F AA A -=1f,式中A 是放大电路的放大倍数,.F 是反馈网络的放大倍数。

振荡条件:1..=F A幅度平衡条件:|..F A |=1相位平衡条件:ϕAF = ϕA +ϕF = ±2n π振荡器在刚刚起振时,为了克服电路中的损耗,需要正反馈强一些,即要求1|..|>F A 这称为起振条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长春理工大学
国家级电工电子实验教学示范中心学生实验报告
■一一_______ 学年第___________ 学期
实验课程_________________________ 实验地点_________________________ 学院______________________ 专业______________________ 学号______________________
姓名______________________
r 学习用集成运算放大器构成的方波和三角波发生电路的设计方法。

2、学习方波和三角波发生电路主要性能指标的测试方法。

二、 实验原理
1. 方波和三角波发生电路型式的选择
由集成运放构成的方波和三角波发生器的电路型式较多,但通常它们均由滞回比较器和积分电 路组成。

按积分电路的不同,又可分为两种类型:一类是由普通RC 积分电路和滞回比较器所组成, 另一类由恒流充放电的积分电路和滞回比较器所组成。

简单的方波和三角波发生电路如图34所示。

其特点是线路简单,但性能较差,尤英是三角波 的线性度很差.负载能力不强匚该电路主要用作方波发生器,当对三角波要求不髙时.也可选用这 种电路。

更常用的三角波和方波发生电路是由集成运放组成的积分器与滞回比较辭组成,如图3・2所示。

由于采用了由集成运放组成的积分器,电容C 始终处在恒流充、放电状态,使三角波和方波的性能 大为改善,不仅能得到线性度较理想的三角波,而且也便于调右振荡频率和幅度。

R4 1 2 500
R14 8 10K
R2 8 120K
R3 9 1100
DZ1 1 10 DMOD DZ2 0 10 DMOD
VCC 5 0 DC 12
VEE 6 0 DC -12
XI 0 2 5 6 4 UA741
X2 8 0 5 6 9 UA741
Cl 2 4 1U
.MODEL DMOD D IS=2E-14 RS=3 BV=4.85 IBV=1UA
.LIB EVAL.UB
*V4 4 0 1
*.DC V4 -5 5 0.01
*.DC V4 5 -5 0.01
.TRA5US 12MS
.PROBE
.END
运行.TRAN语句,可获得:
Tire
图3-3 输出方波电压波形
图3・4 输出三角波电压波形
输出三角波电压波形参考的输入网单文件如下:
A drvie
R4 1 2 500
R14 8 10K
R2 8 120K
R3 9 1100
DZ1 1 10 DMOD
DZ2 0 10 DMOD
VCC 5 0 DC 12
VEE 6 0 DC -12
XI 0 2 5 6 4 LM324
X2 8 0 5 6 9 LM324
C1 2 4 1U
.MODEL DMOD D IS=2E-14 RS=3 BV二 4.85 IBV=1UA
.LIB EVAL.UB
*V4 4 0 1
*.DC V4 •5 5 0.01
*.DC V4 5 -5 0.01
.TRAN 5US 12MS
.PROBE
.END
因为LM324具有电源电压范围宽的特点,所以T变小了•减小了频率的调右范【悅
2、R3的作用是什么?增大其值是否可以?
R3是稳压管的限流电阻,R3的阻值是由稳压管Dz来确定的.所以可以根据Dz的情况来增大。

arm
10V'
(-2: 90)2^.71(6?
-10V-I―1—1―1―—1—•—•——■—■—■—―■—'—'―—•—■—■_―■—■—■―—•—•—•——■—■—■_―■—'—'——•—■—■—
-3.00T -2.«T-2.96V ・2.鉀?-2.9ZV -2.9CTT -2.88? -2.86V -2.847 -2.8ZV -2.80V 口V⑴
V4
3、测得的信号频率与理论值进行比较?
f的测量值f'二1/T二1kHz,理论值f'二1kHz, f二f',所以测得的信号频率与理论值相同。

4、测出电压比较器的门限值?并与理论计算值比较。

测量的电压比较器的门限值为V上=6. 0097V, V下二-6.0096Y,理论值为V上二6V, V下二-6V。

由于仪器存在误差,所以测量值与理论值在误差允许范围内相同。

七、总结分析
(1)通过该仿真实验的测量分析,了解了集成运放的特性,及积分,微分电路的要求。

(2)电路的门限值与温度有关,稳压管的恒流电阻应根据稳压管的稳压电流来确左。

相关文档
最新文档