高考—圆锥曲线知识点总结
(完整版)高三圆锥曲线知识点总结

第八章 《圆锥曲线》专题复习一、椭圆方程.1. 椭圆的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+2.椭圆的方程形式: ①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12222 b a by ax =+. ii. 中心在原点,焦点在y 轴上:)0(12222 b a bx ay =+.②一般方程:)0,0(122B A By Ax =+.③椭圆的参数方程:2222+b y a x ⎩⎨⎧==θθsin cos b y a x (一象限θ应是属于20πθ ). 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. 3.椭圆的性质: ①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2.③焦点:)0,)(0,(c c -或),0)(,0(c c -.④焦距:2221,2b a c c F F -==.⑤准线:ca x 2±=或c a y 2±=.⑥离心率:)10( e ace =.⑦焦半径: i. 设),(00y x P 为椭圆)0(12222 b a by ax =+上的一点,21,F F 为左、右焦点,则:证明:由椭圆第二定义可知:)0()(),0()(0002200201 x a ex x ca e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”.ii.设),(00y x P 为椭圆)0(12222 b a ay bx =+上的一点,21,F F 为上、下焦点,则:⑧通径:垂直于x 轴且过焦点的弦叫做通径: 222b d a=;坐标:22(,),(,)b b c c a a -4.共离心率的椭圆系的方程:椭圆)0(12222 b a b y a x =+的离心率是)(22b a c ace -==,方程t t b y a x (2222=+是大于0的参数,)0 b a 的离心率也是ace =我们称此方程为共离心率的椭圆系方程. 5.若P 是椭圆:12222=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2tan2θb (用余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2cot2θ⋅b .1020,PF a ex PF a ex=+=-1020,PF a ey PF a ey =+=-asin α,)α)二、双曲线方程.1. 双曲线的第一定义:的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-2.双曲线的方程:①双曲线标准方程:)0,(1),0,(122222222 b a b x a y b a b y a x =-=-. 一般方程:)0(122 AC Cy Ax =+.3.双曲线的性质:①i. 焦点在x 轴上: 顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程ca x 2±= 渐近线方程:0=±b ya x 或02222=-b y a x ii. 焦点在y 轴上:顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2±=. 渐近线方程:0=±b x a y 或02222=-b x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩⎨⎧==θθsec tan a y b x . ②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a ce =. ④准线距c a 22(两准线的距离);通径a b 22. ⑤参数关系ace b a c =+=,222. ⑥焦半径公式:对于双曲线方程12222=-b y a x (21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)“长加短减”原则:aex MF a ex MF -=+=0201 构成满足a MF MF 221=-aex F M a ex F M +-='--='0201(与椭圆焦半径不同,椭圆焦半aey F M a ey F M a ey MF a ey MF -'-='+'-='+=-=020102014. 等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . 5.共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .6.共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x .例如:若双曲线一条渐近线为x y 21=且过)21,3(-p ,求双曲线的方程? 解:令双曲线的方程为:)0(422≠=-λλy x ,代入)21,3(-得12822=-y x . 7.直线与双曲线的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条;区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1区域⑤:即过原点,无切线,无与渐近线平行的直线.注意:⑴过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.⑵若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“∆法与渐近线求交和两根之和与两根之积同号.⑶若P 在双曲线12222=-b y a x ,则常用结论1:P 到焦点的距离为m 与n ,则P 到两准线的距离比为m ︰n. 简证:ePF e PF d d 2121= =nm. ⑷:从双曲线一个焦点到另一条渐近线的距离等于b.三、抛物线方程.设0 p ,抛物线的标准方程、类型及其几何性质:注意:⑴x c by ay =++2顶点)244(2aba b ac --.⑵)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.⑶通径为2p ,这是过焦点的所有弦中最短的.⑷px y 22=(或py x 22=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩⎨⎧==222pty ptx )(t 为参数). ⑸关于抛物线焦点弦的几个结论:设AB 为过抛物线 y 2=2px (p>0 )焦点的弦,A(x 1 ,y 1)、B (x 2 ,y 2 ) ,直线AB 的倾斜角为θ,则:① x 1x 2=24p , y 1y 2=-p 2; ② |AB|=22sin p θ;③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为900;⑤112||||FA FB P+=. 四、圆锥曲线的统一定义.1. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹. 当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线; 当0=e 时,轨迹为圆(ace =,当b a c ==,0时). 2. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.3. 当椭圆的焦点位置不明确,而无法确定其标准方程时,可设方程为22x y m n+ =1(m>0,n>0且m ≠n ),这样可以避免讨论和繁杂的运算,椭圆与双曲线的标准方程均可用简单形式 mx 2+ny 2=1(mn ≠0)来表示,所不同的是:若方程表示椭圆,则要求m>0,n>0且m ≠n ; 若方程表示双曲线,则要求mn<0,利用待定系数法求标准方程时,应注意此方法的合理使用,以避免讨论。
高考圆锥曲线知识点、题型全总结

圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是由平面上直线与一个定点及一定曲线相交而形成的曲线,分为圆、椭圆、双曲线和抛物线四种类型。
在高三数学中,学习圆锥曲线是必不可少的。
以下为圆锥曲线的相关知识点总结。
一、坐标系下的圆锥曲线方程式1.圆的方程所谓圆,是指平面上到定点距离等于定长的所有点的集合。
设圆心为$O({{x_0},{y_0}})$,半径为 $r$,则圆的方程为$${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$$3.双曲线的方程二、圆锥曲线的性质(1)对圆上任意一点,作圆的切线,它垂直于切点与圆心的连线。
(2)两个数轴上投影相等的两点与圆心之间的距离相等(称为圆的两点定理)。
(3)圆心为原点的圆,其半径为 $r$,横轴方程为 $x^2 + y^2 = r^2$,纵轴方程为$x^2 + y^2 = r^2$。
2.椭圆(1)椭圆的两个焦点与中心 $O$ 在一条直线上。
(2)椭圆的上下两支称为上半部和下半部,椭圆与 $x$ 轴的交点称为顶点。
(4)椭圆的到两个焦点分别距离和为定值,等于两倍的圆长轴长。
(2)双曲线的两支曲线称为左半支和右半支,曲线的两个交点称为顶点,与左右两支连接的两条直线称为渐近线。
4.抛物线(1)抛物线是关于顶点对称的曲线。
(2)抛物线与横轴交于顶点 $O$。
(3)抛物线与纵轴垂直。
三、曲线的参数方程如果把圆的中心移到原点,半径为 $r$,则圆的参数方程为$$\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}$$如果双曲线的中心移到原点,且 $a>b$,则双曲线的参数方程为$$\begin{cases}x=c\cosh \theta \\y=b\sinh \theta\end{cases}$$其中,$c=\sqrt{{a^2} + {b^2}}$,$\cosh \theta = \frac{{{e^\theta } + {e^{ - \theta }}}{2}}$,$\sinh \theta = \frac{{{e^\theta } - {e^{ - \theta }}}{2}}$。
(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
圆锥曲线知识点整理

圆锥曲线知识点整理圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
下面我们来详细整理一下圆锥曲线的相关知识点。
一、椭圆1、定义平面内与两个定点 F₁、F₂的距离之和等于常数(大于|F₁F₂|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} =1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} =1\)(\(a > b > 0\))3、椭圆的性质(1)范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b \leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于 x 轴、y 轴和原点对称。
(3)顶点:椭圆有四个顶点,焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:椭圆的离心率\(e =\frac{c}{a}\),\(0 < e < 1\),\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。
二、双曲线1、定义平面内与两个定点 F₁、F₂的距离之差的绝对值等于常数(小于|F₁F₂|)的点的轨迹叫做双曲线。
这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。
2、标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\),其中\(a > 0\),\(b > 0\),\(c^2 = a^2 + b^2\)。
高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结
高中数学圆锥曲线知识点总结
一、圆锥曲线的基本概念
1、圆锥曲线:平面内以圆为母线的曲线,又称为圆锥线,是数学上的一类曲线。
2、离心率:圆锥曲线的离心率是有两个参数确定的:它们是焦距a和准线焦距c。
3、双曲线:双曲线是一类特殊的圆锥曲线,a>0, c>0时,它概括了圆锥曲线的一般情况,称为双曲线。
二、圆锥曲线的性质
1、改变离心率可以改变圆锥曲线的形状,当离心率大于1时,曲线呈双曲线,当离心率小于1时,曲线呈凹凸线;
2、圆锥曲线的焦点与顶点之间的距离是两个焦距的和,a+c;
3、圆锥曲线的切线方程的斜率是1/(a+c);
4、圆锥曲线的半矢量的方向是以焦点为圆心,从焦距a出发的方向;
5、圆锥曲线的曲率半径是2a+c;
6、圆锥曲线的弧长是一定积分的表达式,是确定的;
7、圆锥曲线的曲线方程是确定的,但极坐标表示法有两种形式,要根据离心率来确定;
三、圆锥曲线的应用
1、圆锥曲线的应用着重于机械设计领域,如齿轮的设计和制造;
2、圆锥曲线的半径可以用于圆弧的求解和曲线的精度检验;
3、圆锥曲线的弧长可以用于求解同轴运动的轮毂的周长;
4、圆锥曲线的曲线方程可以用于二维图形的绘制;
5、圆锥曲线的曲线方程可以用于求解曲面曲线的面积和表面积;
6、圆锥曲线的曲线方程可以用于求解椭圆锥曲线的主曲线参数,以求解椭球面的曲线参数;
7、圆锥曲线的曲率半径可以用于求解圆的曲率半径参数;
8、圆锥曲线的切线可以用于求解圆弧的切线参数;
9、圆锥曲线的球面可以用于求解曲面的曲率方向;
10、圆锥曲线的曲线可以用于运动学分析和机器学习算法中的运动路径规划。
高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结一、椭圆1.平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。
这两个定点称为椭圆的焦点, 两焦点的距离称为椭圆的焦距.2.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率 ()22101c b e e a a==-<<二、双曲线1.平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线. 即: 。
这两个定点称为双曲线的焦点, 两焦点的距离称为双曲线的焦距.2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 范围 或 ,或 ,顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性关于 轴、 轴对称, 关于原点中心对称离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±3.等轴双曲线: 双曲线 称为等轴双曲线, 其渐近线方程为 , 离心率 . 4、共渐近线的双曲线系方程:三、抛物线1.平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线. 定点 称为抛物线的焦点, 定直线 称为抛物线的准线.2.抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥ 0x ≤0y ≥ 0y ≤3.过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 , 称为抛物线的“通径”, 即 .4.焦半径公式:若点 在抛物线 上, 焦点为 , 则 ; 若点 在抛物线 上, 焦点为 , 则 ; 5、焦点弦: = +p四、圆1.定义: 点集{M ||OM |=r }, 其中定点O 为圆心, 定长r 为半径.2.方程: (1)标准方程: 圆心在c(a,b), 半径为r 的圆方程是(x-a)2+(y-b)2=r2圆心在坐标原点, 半径为r 的圆方程是x2+y2=r2(2)一般方程: ①当D2+E2-4F >0时, 一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程, 圆心为 半径是 。
高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。
圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。
1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。
椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。
2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。
在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。
3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。
椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。
二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。
三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。
例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。
2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。
例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考专题-圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。
若M 为椭圆上任意一点,则有21||||2MF MF a +=。
椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。
注:①以上方程中,a b 的大小0a b >>,其中222b ac =-;②在22221x y a b +=和22221y x a b+=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。
例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。
(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。
若同时以x -代替x ,y -代替y方程也不变,则曲线关于原点对称。
所以,椭圆关于x 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。
在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。
同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a ;在22Rt OB F ∆中,2||OB b =,2||OF c =,22||B F a =,且2222222||||||OF B F OB =-,即222c a b =-;④离心率:椭圆的焦距与长轴的比ce a=叫椭圆的离心率。
∵0a c >>,∴01e <<,且e 越接近1,c 就越接近a ,从而b 就越小,对应的椭圆越扁;反之,e 越接近于0,c 就越接近于0,从而b 越接近于a ,这时椭圆越接近于圆。
当且仅当a b =时,0c =,两焦点重合,图形变为圆,方程为222x y a +=。
2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PF PF a -=)。
注意:①式中是差的绝对值,在1202||a F F <<条件下;12||||2PF PF a -=时为双曲线的一支;21||||2PF PF a -=时为双曲线的另一支(含1F 的一支);②当122||a F F =时,12||||||2PF PF a -=表示两条射线;③当122||a F F >时,12||||||2PF PF a -=不表示任何图形;④两定点12,F F 叫做双曲线的焦点,12||F F 叫做焦距。
①范围:从标准方程12222=-by a x ,看出曲线在坐标系中的范围:双曲线在两条直线a x ±=的外侧。
即22a x ≥,a x ≥即双曲线在两条直线a x ±=的外侧。
②对称性:双曲线12222=-by a x 关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222=-by a x 的对称中心,双曲线的对称中心叫做双曲线的中心。
③顶点:双曲线和对称轴的交点叫做双曲线的顶点。
在双曲线12222=-by a x 的方程里,对称轴是,x y 轴,所以令0=y 得a x ±=,因此双曲线和x 轴有两个交点)0,()0,(2a A a A -,他们是双曲线12222=-by a x 的顶点。
令0=x ,没有实根,因此双曲线和y 轴没有交点。
1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。
2)实轴:线段2A A 叫做双曲线的实轴,它的长等于2,a a 叫做双曲线的实半轴长。
虚轴:线段2B B 叫做双曲线的虚轴,它的长等于2,b b 叫做双曲线的虚半轴长。
④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。
从图上看,双曲线12222=-by a x 的各支向外延伸时,与这两条直线逐渐接近。
⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。
定义式:a b =; 2)等轴双曲线的性质:(1)渐近线方程为:x y ±= ;(2)渐近线互相垂直。
注意以上几个性质与定义式彼此等价。
亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。
3)注意到等轴双曲线的特征a b =,则等轴双曲线可以设为:)0(22≠=-λλy x ,当0>λ时交点在x 轴,当0<λ时焦点在y 轴上。
⑥注意191622=-y x 与221916y x -=的区别:三个量,,a b c 中,a b 不同(互换)c 相同,还有焦点所在的坐标轴也变了。
3.抛物线(1)抛物线的概念平面内与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)。
定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。
方程()022>=p pxy 叫做抛物线的标准方程。
注意:它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F (2p ,0),它的准线方程是2p x -= ;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:px y 22-=,py x 22=,py x 22-=.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)y px p =>22(0)y px p =->22(0)x py p =>22(0)x py p =->图形焦点坐标 (,0)2p (,0)2p -(0,)2p(0,)2p -准线方程 2p x =-2p x =2p y =-2p y =范围 0x ≥ 0x ≤ 0y ≥ 0y ≤ 对称性x 轴 x 轴 y 轴 y 轴 顶点(0,0) (0,0) (0,0) (0,0) 离心率 1e =1e =1e = 1e =点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p 的几何意义:是焦点到准线的距离。
(一)椭圆的定义:1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。
这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。
对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。
若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。
这两种特殊情况,同学们必须注意。
(4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。
同学们想一想其中的道理。
o Fxy loxyF lxyoF l(5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为:22222222x y y x 1(a b 0),1(a b 0),a b a b+=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,222a cb =+。
不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。
椭圆的焦点在 x 轴上⇔标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上⇔标准方程中y 2项的分母较大。
(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。
总结如下:几点说明:(1)长轴:线段12A A ,长为2a ;短轴:线段12B B ,长为2b ;焦点在长轴上。
(2)对于离心率e ,因为a>c>0,所以0<e<1,离心率反映了椭圆的扁平程度。
由于22221c a b b e a a a-===-,所以e 越趋近于1,b 越趋近于0,椭圆越扁平;e 越趋近于0,b 越趋近于a ,椭圆越圆。
(3)观察下图,22||,||OB b OF c ==,所以22||B F a =,所以椭圆的离心率e = cos ∠OF 2B 2知识点一:椭圆的定义第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和为定值)2(2121F F a PF PF >=+ ,这个动点P的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹不存在.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=.注意:①只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程; ②在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=;③椭圆的焦点总在长轴上. 当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -; 知识点三:椭圆的第二方程1. 椭圆12222=+by a x 的参数方程⎩⎨⎧==θθsin cos b y a x (θ为参数)2. 椭圆的第二定义到F (c ,0)的距离和到直线l :c a x 2=的距离之比为常数a c(0>>c a )的点的轨迹为12222=+b y a x 。