生物柴油工艺流程图 CAD图==

合集下载

国内流行的生物柴油的工艺流程汇总

国内流行的生物柴油的工艺流程汇总

国内流行的生物柴油的工艺流程
目前,国内的生物柴油技术很多,专利申请已经301项(截止2007年11月5日),而实际的生产工艺并不多,目前能够投入实际生产且正在使用的工艺流程有如下三种:
一、酸--碱两步法:这是最传统的工艺也是目前自主研制技术的一般企业常用的工艺流程;其优点是能耗低,掌握的好可以真正“免蒸馏”,技术参考资料也比较多;缺点是要经过酸-碱的转化,对于酯化后物料的酸价、杂质、水等要求比较严,容易发生皂化,废水量较大。

二、分离反应法:这也是许多企业在不自觉的情况下采用的,主要思路是采用先蒸馏(汽提)分离脂肪酸的办法,先实现脂肪酸与中性油的物理分离,而后针对脂肪酸和中性油分别采用酯化和碱催化酯交换的办法进行反应,得到统一的甲酯。

此法的优点是工艺简单,容易掌握,产品的销售比较灵活;缺点是能耗大,设备要求高(尤其是耐腐蚀)。

三、完全酸催化法:这是一些企业常采用的办法,优点是对于原料要求低,可以处理基本所有原料,采用了非水洗工艺;缺点是能耗高(三种方法中第二),酯化设备的耐腐蚀要求高。

四、需要补充的是,酸催化法尤其适合于植物毛油,对于目前处于热门开发的麻疯树等产油作物,所榨得的毛油不必经过精制,直接进入酸催化。

而传统的碱催化则需要经过严格的精制才能进入催化工艺流程。

高效短流程生物柴油制备技术

高效短流程生物柴油制备技术

内的能源供应已面临前所未有的挑战!
12000
一次能源消费量 /Mtoe来自10000 8000 6000
2008年世界一次能源构成仍以 石油为主
6.40% 24.10% 5.50% 29.20%
4000 2000 0 2001 2002 2003 2004 2005 2006 2007 2008
煤炭 石油
燃烧充分, 环保性能好 闪点高,安 全性能好 可再生性,原 料循环供给 可单独使用, 也可混合使用
生 物 柴 油 的 优 越 性 能
与传统石化石 化柴油相比较
润滑性能好
低温启动性能好
抗爆性好 不需改装,适用 任何柴油引擎
生物柴油技术研究现状 生物柴油技术研究现状 生物柴油制备方法
直接混合 物理方法 微乳化法 生 物 柴 油 制 备 方 法
反应级数 活化能 动力学方程 kJ/mol 1.45 66.79 − dc = 5.56 ×10 e
A 5

dt
6.679×104 1.45 RT A
c
1.4 1.8
20.43 20.14
20300 − dc A − = 18.1e RT c1.4 A dt
世界能源形势 世界能源形势 生物柴油
生物柴油(biodiesel)是以 油料作物、野生油料植物和工程 微藻等水生植物油,以及动物油 脂、废食用油等为原料,通过酯 交换工艺制成的甲酯或乙酯燃 料,是资源永续的可再生能源, 被称为“绿色柴油”,已成为最受 欢迎的石化柴油替代品。
生物柴油
世界能源形势 世界能源形势 生物柴油性能
34.80%
天然气 水电 核电
年份
世界2001~2008年一次能源消费情况
2008年世界一次能源构成

生物柴油工艺流程

生物柴油工艺流程

生物柴油工艺流程附录:生物柴油的生产工艺及三废处理一、生物柴油生产的原材料1、地沟油(主要成份:脂肪酸甘油酯和脂肪酸)2、植物油脂(主要成份:脂肪酸甘油酯和脂肪酸)3、酸化油(主要成份:脂肪酸和脂肪酸甘油酯)4、米糠油(主要成份:脂肪酸和脂肪酸甘油酯)5、动物油脂(主要成份:脂肪酸和脂肪酸甘油酯)二、生物柴油生产的副料1、甲醇(含量95%以上)2、固体酸酯化催化剂(含氧化硅)3、碳酸钠(工业级)4、氢氧化钾(工业级)5、脱色剂(主要成份次氯酸钙)6、活性白土三、生物柴油的生产工艺1、酯化反应催化剂方程式:RCOOH+CH3OH→→→RCOOCH3+H2O生物柴油反应温度:60-110℃反应压力:常压三废情况:有5-7%的含甲醇(<2%)的酸性(PH=4左右)废水产生。

2、中和反应碳酸钠溶液,在常温常压下操作。

3、甲醇回收70-90℃、常压情况下操作。

4、生物柴油的脱色精制使用脱色剂,60-80℃常压下脱色反应。

4、白土精制1-2%活性白土,常压90-110℃下精制。

三废情况:有1-2%的固体废渣产生。

具体工艺流程图如下:甲醇加催化剂甲醇(去精馏)加热加热↓加热↑加热地沟油等→→→沉降→→→酯化反应→→→甲醇回收→→→80℃↓ 90℃↓ 90℃ 80℃去杂去水水脱色剂白土↓加热↓脱色反应→→→白土精制→→→过滤→→→成品110℃↓白土渣四、关于三废处理1、废水:少量含甲醇酸性废水集中收集,经活性炭吸附、碱中和处理后,并经检测符合国家排放标准后直接排放。

2、废渣:白土精制废渣装入编织袋直接外售,可用于窑炉燃料。

生物柴油的加工工艺流程

生物柴油的加工工艺流程

生物柴油的加工工艺流程英文回答:Biodiesel is a renewable and environmentally friendly alternative to traditional diesel fuel. It is produced through a process called transesterification, which involves reacting vegetable oils or animal fats with an alcohol, usually methanol, in the presence of a catalyst, such as sodium hydroxide or potassium hydroxide.The first step in the biodiesel production process is the pretreatment of the feedstock, which can be either vegetable oil or animal fat. This involves removing any impurities, such as water, free fatty acids, and solid particles. The feedstock is then heated to reduce its viscosity and increase its reactivity.Once the feedstock is pretreated, it is mixed with methanol and a catalyst in a reactor. The catalyst helps to speed up the reaction and increase the yield of biodiesel.The mixture is typically heated and stirred for several hours to ensure complete conversion of the triglycerides in the feedstock to methyl esters, which are the main component of biodiesel.After the reaction is complete, the mixture is allowed to settle, and the biodiesel layer is separated from the glycerin layer. The glycerin, a byproduct of the transesterification process, can be further processed for other uses, such as in the production of soaps and cosmetics.The separated biodiesel is then washed to remove any remaining impurities, such as catalyst residues and soap. This is typically done by mixing the biodiesel with water and allowing the impurities to settle out. The water is then drained off, and the biodiesel is dried to remove any remaining moisture.The final step in the biodiesel production process is the quality control and testing. The biodiesel is testedfor various parameters, such as viscosity, flash point, andacid value, to ensure that it meets the required specifications. If necessary, adjustments can be made to the production process to improve the quality of the biodiesel.Overall, the process of producing biodiesel involves several steps, including pretreatment of the feedstock, transesterification, separation of biodiesel and glycerin, washing, drying, and quality control. It is a complex process that requires careful attention to detail to ensure the production of high-quality biodiesel.中文回答:生物柴油是一种可再生和环保的替代传统柴油燃料的选择。

生物柴油工艺流程简述

生物柴油工艺流程简述

本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。

是在国内外同行业中具有先进性的生物柴油生产新工艺。

叙述如下:STEP-1前处理原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。

因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。

这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。

饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。

STEP-2 甲醇触媒的溶解水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。

另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。

在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。

通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。

还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。

过量甲醇通过闪蒸分离后经精馏回用。

(工艺流程)生物柴油技术工艺及流程

(工艺流程)生物柴油技术工艺及流程

生物柴油技术及工艺流程分析报告(上)一、概述1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。

生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。

在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。

生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。

此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。

1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。

美国能源部研究得出的结论是:使用B20(生物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。

1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。

地沟油到生物柴油工艺流程

地沟油到生物柴油工艺流程

1、直接混合:粘度高,所含的酸性组分、游离脂肪酸以及在贮存和燃烧过程中,因氧化和聚合而形成的凝胶、炭沉积和润滑油粘度增大等不可避免的严重问题。

2、裂解法:生产工艺复杂,设备昂贵,产物中不饱和烃含量较高,并且热解后氧以二氧化碳的形式损失掉(生产过程需要消耗大量的能量)3、用碱酯交换法:用精炼植物油,中和游离脂肪酸易皂化,含酸值较高的油(地沟油)不适合。

4、生物酶法主要问题是:转化率低,短链醇对酶有一定毒性,酶易失活,酶催化剂价格贵,生产周期长。

5、酸酯交换法:就非常适合用在废油上,摆脱了以上的缺点。

因此我们选择用酸酯交换法。

酸酯交换法工艺流程原理如下:1)地沟油的前处理,将水和不纯固体分离掉。

2)地沟油预酯化反应,加入一定量的酸催化剂(浓硫酸)和甲醇,在25 -120℃下,将废油脂中游离脂肪酸转化成脂肪酸甲酯。

3)酯交换反应,预酯化反应后的地沟油在除去下层的废水后,加入一定量的碱催化剂(KOH)和甲醇,在50-120℃下,将中性油脂即脂肪酸甘油酯转化成脂肪酸甲酯。

4)酯交换反应后得到一个粗产品:过量甲醇和副产物甘油的混合物,通过蒸馏分离将甲醇和甘油从产品中分离出去。

5)精制,在特殊的处理剂作用下,可将残留在产品中的催化剂、游离甘油、脂肪酸肥皂、有色物质等杂质转化成不溶或难溶于产品的残渣,从而可非常容易地从产品中分离出去,中和碱催化剂分解脂肪酸肥皂,破坏乳化、脱色、凝絮沉淀。

6)调和,上述工序得到的精制产品,其冰点通常在-3℃—-5℃左右,比石油柴油的高,为了保证在低温下不至于发生燃料系统的堵塞,而添加防寒剂以降低冰点。

7)精密过滤得到产品生物柴油。

在整个生产过程中有废水、废渣和过量原料及副产物产生,处理方法简述如下:1)废水废水→沉降→过滤→脱色、絮凝、中和→过滤↓↓废渣(另外处理)排放←生化处理←爆气2)废渣废渣→发酵→混合→有机复合肥3)副产品反应混合物→分离→副产物→蒸馏、分离→甲醇(回收再利用)↓生物柴油所需原材料表原材料规格地沟油国内收集甲醇>99%(国产)氢氧化钾 >95%(国产)硫酸 70%和95%(国产)处理剂日本公司提供配方(国产)降温剂日本公司指定(国产货)。

生物柴油工艺流程简述

生物柴油工艺流程简述

生物柴油工艺流程简述本项目所采用的是吸收发展日本HAVE技术及与公司技术研发合作方上海华东理工大学共同研制的脂肪酸甲脂提纯的分子蒸馏技术和自有的精制技术相结合,自主开发创新,独具特色的生产工艺和设备。

是在国内外同行业中具有先进性的生物柴油生产新工艺。

叙述如下:STEP-1前处理原料油在,多数场合时是含有一定的水分和微生物的,在加热100℃以上的情况下.甘油三酯(三酸甘油酯)的一部分加水分解,变为游离脂肪酸。

因此,一般的原料油尤其是废食用油里含有2~3%的游离脂肪酸,饱和溶解度的水以及残渣的固定成分。

这些杂质,特别是在由碱性触媒法的酯化交换过程中,使触媒活性下降,产生副反应生成使燃料特性变坏的副生物,所以,在酯交换反应前,有去除的必要.D/OIL制造过程中,配合高速分离,真空脱水,脱酸等,几乎可以全部除去废食用油中的杂质。

饱和脂肪酸采用烙合法断链转换成不饱和脂肪酸。

STEP-2 甲醇触媒的溶解水分等杂质含有量在所定值以下的甲醇和触媒混合后,用来调制甲醇溶液.此过程中,特别要注意的是,由于溶解热的突然沸腾,有必要控制溶解速度和溶液的温度。

另有,KOH触媒由于吸水性较高,所以,在储藏和使用阶段尽量防止吸收水分、一旦,吸收了大量的水分时, KOH就会变得难于溶解,将会影响到下一个工序。

STEP-3 酯交换反应将经过前处理的原料油和触媒,甲醇混合,在65度左右时进行酯交换反应(Ⅲ--4)。

在此工序中,为了达到完全反应的目的(tri-di-mono-甘油酯的转化率在99%以上),有必要控制甲醇/原料油比,触媒/原料油比,搅拌速度,反应时间等的参数。

通常,甲醇/原料油比和触媒/原料比越大,反应速度越快,投入化学反应理论以上的过剩甲醇时,不只是D/OIL的制造原价升高, D/OIL中的残存甲醇浓度也升高,燃料特性反而恶化。

还有,此工程,如果原料油中水分和游离脂肪酸有残留的情况下,会引起如下图所示的副反应。

过量甲醇通过闪蒸分离后经精馏回用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、概述1.1生物柴油概述生物柴油(Biodiesel) ,又称脂肪酸甲酯(Fatty Acid Ester) 是以植物果实、种子、植物导管乳汁或动物脂肪油、废弃的食用油等作原料,与醇类(甲醇、乙醇) 经交酯化反应(Transesterification reaction) 获得。

生物柴油这一概念最早由德国工程师Dr.Rudolf Diesel (1858-1913) 于1895年提出,是指利用各类动植物油脂为原料,与甲醇或乙醇等醇类物质经过交脂化反应改性,使其最终变成可供内燃机使用的一种燃料。

在1900年巴黎博览会上,Dr.Rudolf Diesel展示了使用花生油作燃料的发动机。

生物柴油具有一些明显优势,其含硫量低,可减少约30%的二氧化硫和硫化物的排放;生物柴油具有较好的润滑性能,可以降低喷油泵、发动机缸体和连杆的磨损,延长其使用寿命;生物柴油具有良好的燃料性能,而且在运输、储存、使用等方面的安全性均好于普通柴油。

此外,生物柴油是一种可再生能源,也是一种降解性较高的能源。

1.2使用生物柴油可降低二氧化碳排放生物柴油的使用能减少温室气体二氧化碳的排放,可以这样来理解:燃烧生物柴油所产生的二氧化碳与其原料生长过程中吸收的二氧化碳基本平衡,所以不会增加大气中二氧化碳的含量.而燃烧矿物燃料所释放的二氧化碳需要几百万年才能再转变为石化能,故使用生物柴油能大大减少石化燃料的消耗,相当于降低了二氧化碳的排放。

美国能源部研究得出的结论是:使用B20(生物柴油和普通柴油按1:4混合)和B100(纯生物柴油)较之使用柴油,从燃料生命循环的角度考虑,能分别降低二氧化碳排放的15.6%和78.4%。

1.3生物柴油降低空气污染物的排放生物柴油由于本身含氧10%左右,十六烷值较高,且不含芳香烃和硫,所以它能够降低CO、HC、微粒、NOx和芳香烃等污染物的发动机排气管排放,尤其是微粒中PM10的排放,而它正是导致人类呼吸系统疾病根源的污染物。

生物柴油具有许多优点:*原料来源广泛,可利用各种动、植物油作原料。

*生物柴油作为柴油代用品使用时柴油机不需作任何改动或更换零件。

*可得到经济价值较高的副产品甘油(Glycerine) 以供化工品、医药品等市场。

*相对于石化柴油,生物柴油贮存、运输和使用都很安全(不腐蚀溶器,非易燃易爆) ;*可再生性(一年生的能源作物可连年种植收获,多年生的木本植物可一年种维持数十年的经济利用期,效益高;*可在自然状况下实现生物降解,减少对人类生存环境的污染。

生物柴油突出的环保性和可再生性,引起了世界发达国家尤其是资源贫乏国家的高度重视。

德国已将生物柴油应用在奔驰、宝马、大众、奥迪等轿车上,全国现有900多家生物柴油加油站。

美国、印度等其他发达国家和发展中国家也在积极发展生物柴油产业。

目前,世界生物柴油年产量已超过350万吨,预计2010年可达3000万吨以上。

1.4我国生物柴油发展的现状在生物柴油方面,我国的技术研究并不落后于欧美等发达国家,从各种公开的文献资料上,涉及生物柴油的文献80余篇,涉及技术研究的文献20余篇,内容包括了生物柴油生产技术和应用研究的各个方面。

在专利库中有关生物柴油的专利检索结果为121条.在技术研究取得进展的同时,我国生物柴油产业也已经起步,相继有四川古杉、海南正和等7~8家企业参与生物柴油产业开发。

但我国生物柴油产量很少,目前还不能对生物柴油产量作出准确的数据统计,生物柴油还没有形成固定的区域市场,我们在产业方面非常落后。

我国从2001年开始生产生物柴油。

目前全国生产生物柴油的企业有数十家,年产量超过10万吨。

二、产品和技术2.1生物柴油产品特性与常规柴油相比,生物柴油下述具有无法比拟的性能。

1) 具有优良的环保特性。

主要表现在由于生物柴油中硫含量低,使得二氧化硫和硫化物的排放低,可减少约30%(有催化剂时为70%);生物柴油中不含对环境会造成污染的芳香族烷烃,因而废气对人体损害低于柴油。

检测表明,与普通柴油相比,使用生物柴油可降低90%的空气毒性,降低94%的患碍率;由于生物柴油含氧量高,使其燃烧时排烟少,一氧化碳的排放与柴油相比减少约10%(有催化剂时为95%);生物柴油的生物降解性高。

2) 具有较好的低温发动机启动性能。

无添加剂冷滤点达-20℃。

3) 具有较好的润滑性能。

使喷油泵、发动机缸体和连杆的磨损率低,使用寿命长。

4) 具有较好的安全性能。

由于闪点高,生物柴油不属于危险品。

因此,在运输、储存、使用方面的有是显而易见的。

5) 具有良好的燃料性能。

十六烷值高,使其燃烧性好于柴油,燃烧残留物呈微酸性使催化剂和发动机机油的使用寿命加长。

6) 具有可再生性能。

作为可再生能源,与石油储量不同其通过农业和生物科学家的努力,可供应量不会枯竭。

生物柴油的优良性能使得采用生物柴油的发动机废气排放指标不仅满足目前的欧洲Ⅱ号标准,甚至满足随后即将在欧洲颁布实施的更加严格的欧洲Ⅲ号排放标准。

而且由于生物柴油燃烧时排放的二氧化碳远低于该植物生长过程中所吸收的二氧化碳,从而改善由于二氧化碳的排放而导致的全球变暖这一有害于人类的重大环境问题。

因而生物柴油是一种真正的绿色柴油。

据美国能源部的研究,生物柴油对人比食盐的毒性还小,比糖更容易降解,生物柴油致癌物排放量比石化柴油降低93.6%。

由于生物柴油燃烧所排放的二氧化碳远低于植物生长过程中所吸收的二氧化碳。

因此,与使用矿物柴油不同,理论上其用量的增加不仅不会增加,反而会降低因二氧化碳的排放,从而能缓解全球变暖这个影响人类生存的重大环境问题。

作为可再生能源,与石油不同,其可以通过农业和生物科学家的努力,使其可供应量不会枯竭。

原料供应有保证,价格较稳定。

油料作物增产空间大,加之转基因技术可使油料含油达70%左右,有一定降价空间。

燃料油供应不受欧佩克(石油输出国组织)的控制,更有利于国际燃油市场的稳定和发展。

下表表明了纯生物柴油(B100)和掺入20%的生物柴油(B20)比石化柴油的污染的降低比例:Pollution ReductionsPollutant ReductionsCarbon MonoxideHydrocarbons -56-70%ParticulateMatter -40-55% -10-18%Toxics -60-90% -12-20%Oxides ofNitrogen + 5% + 1.2% 综上表所述,不难看出,使用生物柴油只有NOx的排放是上升的,而在燃料技术和柴油机技术领域,已经有多种技术措施能够不牺牲生物柴油的优点,减少NOX排放,故生物柴油的使用对降低发动机有害物的排放相当有利。

2.2生物柴油在我国的双重环保作用在我国生物柴油的发展除上述优点外,还有下面双重环保作用1)减少垃圾油的排放,减轻污水处理的压力和成本。

据保守估计,北京市目前垃圾油量已经超过5万吨/年,如果若不进行处理,流向江河则会造成水体过度肥化。

2)转化餐饮废油,保障人民身体健康,我国每年消耗植物油1200万吨,直接产生下脚酸化油250万吨,大中城市餐饮业产生地沟油可达400万吨。

许多不法商人从下水道和泔水中提取垃圾油并当作食用油销售。

这种垃圾油很不卫生,过氧化值、酸价、水分、细菌严重超标,属非食用油,一旦食用,将会破坏白血球和肠道黏膜,引起事物中毒,甚至致癌。

北京、天津、乌鲁木齐、呼和浩特、沈阳、郑州、西安、南宁等地都先后发生过垃圾油进入餐桌的事件。

进入餐桌的垃圾油将对广大人民的身体健康造成严重危害。

鉴于此,我国不少大中城市已积极开展工作,研究利用垃圾油生产生物柴油的技术.2.3生物柴油的缺点和局限1)生物柴油粘度大(菜籽油为4.2;豆油4.0:石化柴油1.2~3.5单位mm2/s,40℃) ,冬季来临时变浓变厚,流动性变差。

在冬季,目前还不能使用B100纯生物柴油,只能使用B20生化柴油。

2) 动力降低8%-10%. 生物柴油热值与石化柴油热值相比为:32.8:35.7 = 92%,在相同质量下,即动力约为石化柴油的92%。

3) 对发动机橡胶部件有腐蚀作用(1996年之前柴油车). 但B20 不会对橡胶部件腐蚀.4)因生物柴油的分子较大,粘度较高,因而影响喷射时程,导致喷射效果不佳。

5) 应用范围小。

目前生物柴油在全球的市场尚不及石化柴油,应用范围有限。

在美国,其生化柴油仅在为了环保规则、环保友善时而以某些特殊价格出售,其主要使用(B20生化柴油) ,范围包括联邦或州政府车队,都市公车、卡车、海运公园、矿区等。

6) 生物柴油价格高,目前国外生物柴油行业严重依赖政府的政策支持和价格补贴。

2.4生物柴油质量指标世界上主要的国家都制定了自己的生物柴油标准,比较主要的生物柴油标准有下面几种:DIN 51606:德国的生物柴油标准,被认为是世界上最严格的标准,所有的汽车制造商都认可此标准。

EN590:2000开始在欧盟的12个国家适用,如,冰岛,捷克,挪威,瑞士,法国等。

EN14214:基于DIN 51606 设立的欧盟新标准。

我国第一项生物柴油国家标准《柴油机燃料调和用生物柴油》已进入报批程序。

由上表可看出, 我国生物柴油国家标准是一项相对比较高的标准。

2.5目前生物柴油生产所用技术目前生物柴油主要是用化学法生产,即用动物和植物油脂和甲醇或乙醇等低碳醇在酸或者碱性催化剂和高温(230~250℃)下进行转酯化(酯交换)反应,生成相应的脂肪酸甲酯或乙酯,在经洗涤干燥即得生物柴油。

生产设备与一般制油设备相同,生产过程中可产生10%左右的副产品甘油。

目前几种主要的工艺方法:•碱催化法•酸催化法脂肪酶或生物酶法•超临界萃取法1.碱催化法:用氢氧化钠或氢氧化钾为催化剂,这是目前最常用的制取方法,将植物油脂与甲醇予以酯交换(交酯化)反应,并使用氢氧化钠(油脂重量的1%) 或甲醇钠(Sodium methoxide) 做为催化剂,大约混合搅拌反应2小时,即可制得生物柴油。

2.酸催化法:因废油脂通常含有大量的游离脂肪酸,而不能用碱性催化剂转化为生物柴油,因而先用浓硫酸或磷酸作为酸性催化剂预处理这些高游离脂肪酸原料,使FFA 转化为酯。

然后通过碱性催化剂将甘三酯转酯化反应。

酸催化工艺的不利之处是FFA 同醇反应产生水,这抑制了FFA 的酯化和甘油的转酯化反应。

可以在酯化反应后对物料进行脱醇、脱水处理。

在我国目前的国情和当前的油价下,使用食品级油脂作为原料来生产生物柴油还不太现实,餐饮废油和部分工业用油脂相对来说成本较低。

但是,这些废弃油脂通常含有较高的游离脂肪酸,所以对于这些废弃油脂要先用酸催化法,然后通过碱性催化剂进行酯交换反应。

碱催化法和酸催化法又被称为化学法。

3.脂肪酶或生物酶法:化学法合成生物柴油有以下缺点:工艺复杂、醇必须过量,后续工艺必须有相应的醇回收装置,能耗高;色泽深,由于脂肪中不饱和脂肪酸在高温下容易变质;酯化产物难于回收,成本高;生产过程有废碱液排放。

相关文档
最新文档