2.1图像滤波方法的比较实验报告
2.1图像滤波方法的比较实验报告

课程大作业实验报告2.1 图像滤波方法的比较课程名称:数字图像处理组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2班(ppt 制作,数据整理)成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2班(实验报告,编程)成员二:余嘉俊学号:200830460231年级专业班级: 08 自动化 2班(编程,程序整理)指导教师邓继忠报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日目录1项目要求 (3)2项目开发环境 (3)3系统分析·························································3 3.1系统的主要功能分析 (3)3.2 系统的基本原理 (4)3.1 系统的关键问题及解决方法 (9)4系统设计························································10 4.1程序流程图及说明····························· (10)4.2 程序主要模块功能介绍 (11)5实验结果与分析··················································11 5.1 实验结果····························· (11)5.2 项目的创新之处 (15)5.3 存在问题及改进设想 (15)6心得体会························································15 6.1系统开发的体会····························· (15)6.2 对本门课程的改进意见或建议 (15)1项目要求1.1 基本要求:1)通过课本和网上查找资料,了解各种图像滤波的基本原理。
多媒体实验图像滤波

多媒体实验报告——图像滤波一、实验目的通过本章的课程设计,加深对数字图像滤波知识的理解,并获得如何处理图像的实际经验,达到以下目的1、熟练使用matlab进行图像的读取和显示;2、了解各种图像滤波的方法;3、掌握图像滤波的编程方法。
二、实验内容1、完成实验指导书5.2节的内容,掌握图像滤波的方法;2、在以上基础上完成下列程序的编写:练习1:完成p122页程序,将程序命名为threshold.m。
(注:lena图像在本版本matlab中没有,本实验的索引图像可采用'trees.tif')程序如下:k=0.15;[x,map]=imread('trees.tif');I=ind2gray(x,map);I=double(I);Imax=max(max(I));Imin=min(min(I));Idelta=Imax-Imin;level1=k*Idelta+Imin;level2=2*k*Idelta+Imin;level3=3*k*Idelta+Imin;TI1=max(I,level1.*ones(size(I)));TI2=max(I,level2.*ones(size(I)));TI3=max(I,level3.*ones(size(I)));subplot(2,2,1);imshow(I,[]);Xlabel('(a)原始图像','FontSize',14,'FontName','隶书','color','b');subplot(2,2,2);imshow(TI1,[]);Xlabel('(b)15%的阈差图像','FontSize',14,'FontName','隶书','color','b');subplot(2,2,3);imshow(TI2,[]);Xlabel('(c)30%的阈差图像','FontSize',14,'FontName','隶书','color','b');subplot(2,2,4);imshow(TI3,[]);Xlabel('(d)45%的阈差图像','FontSize',14,'FontName','隶书','color','b');Matlab图像读取如下:练习2:改写练习1的程序,本次处理的图像为灰度图像。
数字图像处理滤波报告

2010年4月一,实验目的。
1.了解在数字图像处理中滤波的概念和意义。
2.掌握数字图像处理滤波程序。
二,实验原理。
图像的中值滤波是一种非线性的图像处理方法,它通过对邻域内像素按灰度排序的结果决定中心像素的灰度。
图像的中值滤波是统计排序滤波器的一种常见应用,它是通过对邻域内采样数据进行排序并取得中值来决定中心像素灰度的一种处理手段,图像的中值滤波在少量离散杂点的消除方面效果显著。
前面介绍过图像简单平滑和高斯平滑,以这两种算法为代表的平滑线性滤波算法在消除离散型杂点方面,都采取的是将杂点的干扰分摊到整个邻域中的每个像素,以减少杂点的影响,然而这样做的代价就是图像清晰度的大量损失。
如图11-14所示,a表示一个5×5邻域的像素灰度,其中中点位置的像素为孤立的杂点,b为对a进行一次简单平滑处理的结果,c 为对b进行简单平滑的结果,从图中可看出简单平滑将杂点对图像的影响分担到了邻域的其他像素。
图11-14 孤立杂点的简单平滑从图11-14中可以发现简单平滑对于孤立的杂点消除较为有效,而对于稍大的杂点或是密集的杂点,图像简单平滑的效果就不够理想。
如图11-15所示,其中a表示一个5×5邻域的像素灰度,其中灰度为0的点为杂点,b为对a进行简单平滑的结果,从图中可以看出简单平滑使画面质量严重下降,并且并没有很好地去除杂点影响。
图11-15 稍大杂点的简单平滑分析原因,可以发现平滑线性滤波器的工作原理可以比喻为用水冲洗桌面上的污点,冲洗的结果污点并没有消失,只是被淡化,如果污点较大较密集,则冲洗的结果是整个桌面都被污点所影响。
尝试换一种思路,如果不采取冲淡污点的办法而是将污点直接去除,这样就可以避免污点数量较多时难以去除的困难,这也就是中值滤波的基本思想。
在中值滤波算法中,对于孤立像素的属性并不非常关注,而是认为图像中的每个像素都跟邻域内其他像素有着密切的关系,对于每一个邻域,算法都会在采样得到的若干像素中,选择一个最有可能代表当前邻域特征的像素的灰度作为中心像素灰度,这样就有效避免了离散型杂点对图像的影响。
图像的平滑滤波---数字图像处理实验报告南昌大学

实验报告三姓名:胡文松学号:6103413007 班级:生物医学工程131 实验日期:2016/5/11 实验成绩:实验题目:图像的平滑滤波一.实验目的(1)熟练掌握空域平滑滤波的原理、方法及其MATLAB实现。
(2)分析模板大小对空域平滑滤波的影响,线性和非线性方法对空域平滑滤波增强效果的影响,比较不同滤波器的处理效果,分析其优缺点。
二.实验原理(1)线性空间滤波函数imfilter来实现线性空间滤波,语法为:g = imfilter(f, w, filtering_mode, boundary_options, size_options)其中,f是输入图像,w为滤波模板,g为滤波结果,filtering_mode用于指定在滤波过程中是使用相关运算(‘corr’)还是卷积运算(‘conv’),相关就是按模板在图像上逐步移动运算的过程,卷积则是先将模板旋转180度,再在图像上逐步移动的过程。
(2)非线性滤波器数字图像处理中最著名的统计排序滤波器是中值滤波器,MATLAB工具箱提供了二维中值滤波函数medfilt2,语法为:g = medfilt2(f, [m n], padopt)矩阵[m n]定义了一个大小为m×n的邻域,中值就在该邻域上计算;而参数padopt指定了三个可能的边界填充选项:’zeros’(默认值,赋零),’symmetric’按照镜像反射方式对称地沿延其边界扩展,’indexed’,若f是double类图像,则以1来填充图像,否则以0来填充图像。
(3)线性空间滤波器MATLAB工具箱支持一些预定义的二维线性空间滤波器,这些空间滤波器可通过函数fspecial实现。
生成滤波模板的函数fspecial的语法为:w = fspecial(‘type’, parameters) ;其中,’type’表示滤波器类型,parameters进一步定义了指定的滤波器。
fspecial(‘laplacian’, alpha) 一个大小为3×3的拉普拉斯滤波器,其形状由alpha指定,alpha是范围[0, 1]的数。
(按模板)实验三 图像的平滑滤波比较实验目的及原理(2017年春)

班级:姓名:学号:实验三图像的平滑滤波比较目的1、理解图像滤波的基本定义及目的;2、掌握空域滤波的基本原理及方法;3、掌握用MATLAB语言进行图像的空域滤波的方法。
原理一、多次相加求平均降噪1.完成人为的往一幅图像中加入噪声,并通过多次相加求平均的方法消除所加入的噪声。
在MATLAB中提供了给图像加入噪声的函数imnoiseimnoise的语法格式为J = imnoise(I,type)J = imnoise(I,type,parameters)其中J = imnoise(I,type)返回对原始图像I添加典型噪声的有噪图像J。
参数type和parameters用于确定噪声的类型和相应的参数。
下面的命令是对图像eight.tif分别加入高斯噪声、椒盐噪声和乘性噪声,其结果如图所示:例:I=imread('eight.tif');J1=imnoise(I,'gaussian',0,0.02);J2=imnoise(I,'salt & pepper',0.02);J3=imnoise(I,'speckle',0.02);subplot(2,2,1),imshow(I),title('原图像');subplot(2,2,2),imshow(J1),title('加高斯噪声');subplot(2,2,3),imshow(J2),title('加椒盐噪声');subplot(2,2,4),imshow(J3),title('加乘性噪声');代数运算中需要有若干幅带有随机噪声的图像数据,在这里我们运用MATLAB 中的FOR循环语句来完成产生多幅带有噪声的图像数据及将这些图像数据进行相加运算。
MATLAB中FOR END循环的用法如下:for end循环这种循环允许一组命令以固定的和预定的次数重复,循环的一般形式为:for variable = expressionstatementsend2、均值滤波模块系数都是1,为保持灰度值范围(算得R后要将其除以系数总个数)在MATLAB图像处理工具箱中,提供了medfilt2函数用于实现中值滤波。
关于图形图像处理实训报告总结【九篇】

关于图形图像处理实训报告总结【九篇】实训报告总结:图形图像处理实训图形图像处理实训是计算机科学与技术专业的基础课程之一。
通过本次实训课程,我深入了解了图形图像处理的基本概念、方法和技术,并通过实际操作来提升了自己的实践能力。
下面是对本次实训的九篇报告总结:1. 实验一:图像读取与显示本次实验主要是学习如何读取和显示图像,以及使用Matplotlib库进行图像展示。
通过实验,我掌握了图像读取和显示的基本方法,并学会了基本的图像处理操作。
2. 实验二:图像的灰度变换实验二主要是学习图像的灰度变换,包括线性变换和非线性变换。
我学会了如何使用不同的灰度变换函数来调整图像的亮度和对比度,进一步提升图像的质量。
3. 实验三:图像的空间域滤波本次实验主要是学习图像的空间域滤波技术,包括均值滤波、中值滤波和高斯滤波等。
通过实验,我掌握了不同滤波方法的原理和实现方式,并学会了如何选择合适的滤波方法来降噪和模糊图像。
4. 实验四:图像的频域滤波实验四主要是学习图像的频域滤波技术,包括傅里叶变换和频域滤波等。
通过实验,我了解了傅里叶变换的原理和应用,并学会了如何使用频域滤波来实现图像的锐化和平滑。
5. 实验五:图像的形态学处理本次实验主要是学习图像的形态学处理技术,包括腐蚀、膨胀、开运算和闭运算等。
通过实验,我学会了如何使用形态学操作来改变图像的形状和结构,进一步改善图像的质量。
6. 实验六:图像的边缘检测实验六主要是学习图像的边缘检测技术,包括Sobel算子、Laplacian算子和Canny算子等。
通过实验,我了解了不同边缘检测方法的原理和应用,并学会了如何使用边缘检测来提取图像的轮廓和特征。
7. 实验七:图像的分割与聚类本次实验主要是学习图像的分割与聚类技术,包括阈值分割、区域生长和K均值聚类等。
通过实验,我掌握了不同分割与聚类方法的原理和应用,并学会了如何使用分割与聚类来识别和分析图像中的目标和区域。
8. 实验八:图像的特征提取与描述子实验八主要是学习图像的特征提取和描述子技术,包括尺度不变特征变换(SIFT)和方向梯度直方图(HOG)等。
实验报告3:图像的线性与非线性空间滤波

实验报告3:图像的线性与非线性空间滤波一.浮雕效果的实现方式----线性滤波1.浮雕效果的原理描述实现图像浮雕效果的原理是将图像上每个像素点与其对角线的像素点形成差值,使相似颜色值淡化,不同颜色值突出,将图像中灰度值变换较大的部分的像素突出出来,并将灰度值变换不大的部分淡化,从而产生纵深感,达到类似浮雕的效果。
而产生浮雕效果的函数是线性滤波函数filter2(),该函数是一个对二维图像使用的线性滤波器;使用该函数时输入一个算子模块,并生成卷积算子,通过选择合适的滤波算子就能使得图像产生近似于相似色块内对比度加强的浮雕效果。
具体的做法是取主对角线除右下角外的各点之和的平均值,减去右下角点的值,再加上填充背景色,再加上一个背景常数(一般为128)而成,会形成类似浮雕的效果。
2.浮雕特效的效果对比:原图:对比图:、可以看出,原图作为一副彩色图片,其颜色分明的部分的轮廓被很好地保留了下来,并加强了对比度。
本图片右下角有水印,因此水印作为外框黑色填充黄色的图形,被和背景叠加在了一起,并且边界对比度也得到了加强,然而原图是彩色图,画出的浮雕图形是黑白的,因为灰度图像显示彩色图像的浮雕效果更有真实感和立体感。
3.源代码:YT=imread(‘yuantu.jpg’);R=YT(:,:,1);G=YT(:,:,2);B=YT(:,:,3);h=[10-1;40-4;10-1];JR1=filter2(h,R);JG1=filter2(h,G);JB1=filter2(h,B);k=[410;10-1;0-1 -4];JR2=filter2(k,R);JG2=filter2(k,G);JB2=filter2(k,B);JR=JR1+JR2;JG=JG1+JG2;JB=JB1+JB2;J=JR+JG+JB;subplot(1,2,1),imshow(YT),title(‘原图’);subplot(1,2,2),imshow(J),title(‘浮雕效果图’);4.代码解释:代码首先用imread函数将图像写入,然后利用(x,y,1/2/3)的矩阵读取原图每个像素的RGB三个颜色的像素值。
图像增强和滤波实验

实验四图像增强和滤波实验一.实验目的:掌握基本的图像增强方法,观察图像增强的效果,加深对灰度直方图的理解。
掌握基本的图像滤波方法,观察图像滤波的效果。
二.实验内容:对比度增强,灰度变换,直方图均衡化,图像滤波对给定的灰度的数字图像(图像文件名分别为cameraman.tif,rice.tif和pout.tif)进行如下处理:(1)统计原图像的灰度直方图,并利用直方图均衡化处理进行图像增强,同屏显示处理前后图像及其灰度直方图,比较异同,并回答数字图像均衡化后其直方图分布情况。
(2)利用图像调整函数(直接灰度调整方法)进行图像增强,同屏显示处理前后图像及其灰度直方图,比较异同,并回答数字图像均衡化后其直方图分布情况。
(3)利用函数IMNOISE,在图像(LENA256.BMP)上分别叠加高斯噪声(gaussian)和椒盐噪声(salt&peppers),对比高斯低通滤波器和均值滤波器的性能。
三、实验原理1、图像增强技术;图像滤波技术介绍图像增强是将原来不清晰的图像变得清晰或强调某些关注的特征,抑制非关注的特征,使之改善图像质量、丰富信息量,加强图像判读和识别效果的图像处理方法。
按所处理的对象不同可分为灰度图像增强和彩色图像增强。
图像非常直观,易于理解,但在实际应用中得到的图像品质并不是那么好,或在图像采集过程中不可避免的加入了噪声,因此研究快速且有效地图像增强算法成为推动图像分析和图像理解领域发展的关键内容之一。
突出图像中目标物体的某些特点、从数字图像中提取目标物的特征参数等等,这些都有利于对图像中目标的识别、跟踪和理解。
图像增强并不要求忠实地反映原始图像相反,含有某种失真(例如突出轮廓线)的图像可能比无失真的原始图像更为清晰。
在力学应用中,液体流动双折射图像的处理,物体变形图像的处理等。
按照增强处理的空间不同可分为两类:空域增强,频率增强。
前者直接在图像所在的二维空间进行增强处理,即增强构成图像的像素,包括灰度变换增强,直方图增强,图像平滑和图像锐化等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程大作业实验报告2.1 图像滤波方法的比较课程名称:数字图像处理组长:张佳林学号:200830460232 年级专业班级: 08 自动化 2班(ppt 制作,数据整理)成员一:卢洪炬学号:200830460222 年级专业班级:08 自动化 2班(实验报告,编程)成员二:余嘉俊学号:200830460231年级专业班级: 08 自动化 2班(编程,程序整理)指导教师邓继忠报告提交日期2010 年 12 月 4 日项目答辩日期2010 年 12 月 5 日目录1项目要求 (3)2项目开发环境 (3)3系统分析·························································3 3.1系统的主要功能分析 (3)3.2 系统的基本原理 (4)3.1 系统的关键问题及解决方法 (9)4系统设计························································10 4.1程序流程图及说明····························· (10)4.2 程序主要模块功能介绍 (11)5实验结果与分析··················································11 5.1 实验结果····························· (11)5.2 项目的创新之处 (15)5.3 存在问题及改进设想 (15)6心得体会························································15 6.1系统开发的体会····························· (15)6.2 对本门课程的改进意见或建议 (15)1项目要求1.1 基本要求:1)通过课本和网上查找资料,了解各种图像滤波的基本原理。
2)从网上选择并下载一些 bmp 格式的图像,图像要对比度鲜明,色彩丰富。
3)设计算法并编写程序,实现图像滤波。
4)调试与验证程序。
5)对不同方法滤波后的图像进行比较。
2项目开发环境计算机、 CVI 软件、待处理图片3系统分析3.1 系统的概念图像滤波,即在尽量保留图像细节特征的条件下对目标像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接响到后续图像处理和分析的有效性和可靠性。
由于成像系统、传输介质和记录设备等的不完善,数字图像在其形成、传输记录过程中往往会受到多种噪声的污染。
另外,在图像处理的某些环节当输入的像对象并不如预想时也会在结果图像中引入噪声。
这些噪声在图像上常表现为一引起较强视觉效果的孤立象素点或象素块。
一般,噪声信号与要研究的对象不相关它以无用的信息形式出现,扰乱图像的可观测信息。
对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像象素的真实灰度值上,在图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图识别等后继工作的进行。
要构造一种有效抑制噪声的滤波机必须考虑两个基本问题能有效地去除目标和背景中的噪声; 同时,能很好地护图像目标的形状、大小及特定的几何和拓扑结构特征。
3.2 系统的基本原理1)中值滤波:中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。
方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。
二维中值滤波输出为g ( x,y )=med{f(x-k,y-l),(k,l ∈W)} ,其中,f(x,y) ,g(x,y) 分别为原始图像和处理后图像。
W为二维模板,通常为2*2 ,3*3 区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。
2)均值滤波:均值滤波也称为线性滤波,其采用的主要方法为领域平均法。
线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点( x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点( x,y ),作为处理后图像在该点上的灰度个 g( x ,y ),即个g( x ,y) =1/m ∑ f ( x , y ) m 为该模板中包含当前像素在内的像素总个数。
3)高斯滤波:高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。
通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。
高斯滤波的具体操作是:用一个模板 ( 或称卷积、掩模 ) 扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。
若使用 3× 3 模板,则计算公式如下:g(x,y)={f(x-1,y-1)+f(x-1,y+1)+f(x+1,y-1)+f(x+1,y+1)+[f(x-1,y)+f(x,y-1)+f(x+1,y)+f(x,y+1)]*2+f(x,y)*4}/16;其中,f(x,y) 为图像中 (x,y) 点的灰度值, g(x,y) 为该点经过高斯滤波后的值。
4)梯度倒数加权平均法滤波:梯度倒数加权法平滑基于如下的假设:在一幅离散图像中,相邻区域的变化大于区域内部的变化,在同一区域中中间像素的变化小于边缘像素的变化。
梯度值正比于邻近像素灰度级差值,也就是说在图像变化缓慢区域,梯度值小,反之则大。
而取梯度倒数大小与梯度相反,因此,以梯度倒数作权重因子,则区域内部的邻点权重就大于边缘近旁或区域外的邻点。
即该种平滑其贡献上要来自区域内部的像素,平滑后图像的边缘和细节不会受到明显的损害。
建立归一化的权重矩阵窗口W,对 3*3 窗口, W 的组成为w( x 1, y 1)w(x 1, y) w( x 1, y 1)W w( x, y1) w( x, y) w(x, y 1) w( x 1, y 1)w(x 1, y) w( x 1, y 1)这里规定, w(x,y)= 1/2,其余8 个加权系数之和为 1/2。
并且定义除 w(x,y)外的其他权重矩阵元素为w( x p, y q)g ( x, y; p,q)1 12f ( x, y; p,q)p 1 q1g( x, y; p,q) 1p, y q) f (x, y)f ( x式中 p,q 分别为 -1,0,1,且 p,q 不能同时为零。
用矩阵窗口 W 与图像上以 f(x,y)为中心的同样大小窗口上对应像素灰度值分别相乘再求和,所得结果即为f(x,y) 点的平滑值 G(x,y )。
5)最大均匀性平滑滤波:最大均匀性平滑滤波是针对一些滤波方法在消除噪声时引起边缘退化的现象而提出的,其基本思想是,若图像中的一个区域含有边缘,它的灰度方差必定较大。