自适应滤波实验报告

合集下载

自适应中值滤波器

自适应中值滤波器

姓名:郝伟杰学号:201120112012 导师:郭蔚数字图像处理(实验二)实验名称:自适应中值滤波器实验目的:验证自适应中值滤波器的祛除噪声效果。

此算法分为两个层次:A层为A1=Zmed —Zmin,,A2=Zmed—Zmax,如果A1>0且A2<0,则转到B层;否则增大窗口尺寸,如果窗口尺寸<=Smax则重复A层,否则输出Zmed。

B层为B1=Zxy—Zmin,B2=Zxy—Zmax,如果B1>0且B2<0,则输出Zxy,否则输出Zmed。

实验结果:自适应中值滤波器7*7自适应中值滤波器9*9自适应中值滤波器11*11结果分析:自适应中值滤波器能够很好的处理图像的细节和边缘,使图像更加细腻,清晰,给人以良好的视觉冲击,但是我做的程序运行起来比较慢,大约三十多秒,所以有待很好的优化,而且模板我限制到了11*11的之后才达到了课本上的效果,究其原因,我认为是图像的差异造成了结果上的差异。

实验程序:function ZSY1zhongzhi(a,n1) %自适应中值滤波器(此算法感觉较为合理!!!!!!!!!!)%椒盐噪声subplot(2,2,1),imshow(a,[]),title('原图像')a=double(a);[m,n]=size(a);n2=n1-1;n3=(n1-1)/2;b=zeros(m+n2,n+n2);for i=1:mfor j=1:nb(i+n3,j+n3)=a(i,j);endendsubplot(2,2,2),imshow(b,[]),title('扩充后的图像')for i=n3+1:m+n3for j=n3+1:n+n3for m1=3:2:n1m2=(m1-1)/2;c=b(i-m2:i+m2,j-m2:j+m2);%使用7*7的滤波器 Zmed=median(median(c));Zmin=min(min(c));Zmax=max(max(c));A1=Zmed-Zmin;A2=Zmed-Zmax;if(A1>0&&A2<0)B1=b(i,j)-Zmin;B2=b(i,j)-Zmax;if(B1>0&&B2<0)b(i,j)=b(i,j);elseb(i,j)=Zmed;end%elsecontinue;endendendendsubplot(2,2,3),imshow(b,[]),title('中值后的图像') d=ones(m,n);for i=1:mfor j=1:nd(i,j)=b(i+m2,j+m2);endendsubplot(2,2,4),imshow(d,[]),title('处理好的图像')。

核自适应滤波总结报告

核自适应滤波总结报告

一、研究背景及意义:传统的线性自适应滤波算法在处理非线性问题时,相应的性能效果并不理想。

在信号预测、系统识别、信道均衡等领域的实际问题中,如果某种复杂的非线性关系存在于系统的输入输出之间,传统的线性方法难以处理这类非线性问题。

现有的非线性自适应滤波方法有基于非线性差分方程的递归多项式模型、径向基函数(RBF, Radial Basis Function)、神经网络、基于Volterra级数展开的非递归多项式模型、多层感知(MLP,Multilayer Perception)、神经网络等,这些方法在处理非线性问题时有较好的性能,但是它们当中存在的缺点有:很高的计算复杂度、存在不稳定性、收敛速度不理想、难以确定合理的阶数、非凸最优化解等等。

而基于核方法(Kernel Method)构造的自适应算法具有很强的非线性信号的处理能力。

二、常见的核自适应滤波方法:(1)把线性最小均方算法和核方法相结合,提出了核最小均方算法KLMS。

(2)通过核方法将仿射投影算法应用到非线性系统中,提出了核仿射投影算法KAPA。

(3)核递归最小二乘算法KRLS及扩展的核递归最小二乘算法EKRLS。

(4)将核方法与梯度下降法相结合提出的核ADALINE算法及NORMA算法。

(5)将核方法与最小平均混合数算法结合提出的核最小平均混合数算法KLMMN。

三、核方法思想:(1)核函数:)'(>=Φxx TΦx=<(κ)ΦΦ(()x)'(x,x'),其中X、,Φ是输入空间X到向量空间F的映射。

x'x∈(2)再生核希尔伯特空间(RKHS):如果一个核函数满足这两个条件:①对任意的x∈X,)κ作为向量'x的函数归属于向量空间F;x(',x②满足可再生性,即对由核κ(x,.)组成的关于x的函数生成的空间F中的函数)((.)g ,1⋅κ=∑=i l i i c a ,对于所有的R i ∈,X c i ∈,有)(),(),(,1x g x c a x g i li i =κ>=⋅κ<∑=。

LMS算法实验报告

LMS算法实验报告

LMS算法实验报告LMS(Least Mean Squares)算法是一种基于梯度下降的自适应滤波算法,常用于信号处理、通信系统等领域。

本实验通过实现LMS算法并对其性能进行评估,探究其在自适应滤波中的应用。

1.实验背景自适应滤波在许多领域中被广泛应用,如信号降噪、语音增强、通信频谱感知等。

自适应滤波的核心思想是根据输入信号的特性自动调整滤波器的系数,以实现信号的最佳重构或增强。

2.实验目的本实验旨在通过实现LMS算法并对其性能进行评估,探究其在自适应滤波中的应用。

具体目的如下:1)了解LMS算法的基本原理和实现步骤;2)实现LMS算法,完成自适应滤波任务;3)评估LMS算法的性能,分析其在不同情况下的表现;4)对比LMS算法和其他自适应滤波算法的优缺点。

3.实验步骤本实验的实现步骤如下:1)理解LMS算法的基本原理和数学模型;2)根据LMS算法的更新规则,实现算法的代码;3)根据自适应滤波的具体任务需求,选择合适的输入信号和期望输出;4)根据实验需求,设置合适的参数(如学习率、滤波器长度等);5)使用LMS算法对输入信号进行滤波,并计算输出信号的均方误差;6)根据实验结果,评估LMS算法的性能,并进行分析。

4.实验结果根据以上步骤,完成了LMS算法的实现和性能评估。

实验结果显示,LMS算法能够有效地调整滤波器的权值,实现输入信号的滤波和增强。

随着学习率的增加,LMS算法的收敛速度较快,但容易发生震荡现象。

而学习率过小,则会导致算法收敛速度慢,需要更多的迭代次数才能达到较小的均方误差。

此外,在不同噪声情况下,LMS算法的性能表现也有所差异。

在信噪比较低的情况下,LMS算法的滤波效果明显,能够有效抑制噪声并实现信号增强。

然而,在信噪比较高的情况下,LMS算法的性能受到一定影响,可能会出现性能下降或收敛困难的情况。

5.总结与分析通过本实验,深入了解了LMS算法的原理和实现步骤,并对其性能进行了评估。

哈工大-自适应信号处理_LMS自适应滤波器实验报告

哈工大-自适应信号处理_LMS自适应滤波器实验报告

.Harbin Institute of Technology自适应平衡器计算机实验课程名称:自适应信号处理院系:电子与信息工程学院姓名:学号:授课教师:**哈尔滨工业大学一、实验目的:1. 深入掌握自适应平衡器的理论基础和以及它的可能用途。

2. 理解最小均方自适应算法的适用条件,以及最小均方自适应算法的理论推导。

3. 改变特征值扩散度)(R χ与步长参数μ,观察实验结果,深入理解理解这些参数对实验结果的重要性。

4. 探究在线性色散信道中使用最小均方自适应算法引起的失真问题。

二、实验内容:在此次实验中我们研究LMS 算法自适应均衡引起未知失真的线性色散信道问题。

假设数据是实数,图2.1表示用来进行该项研究的系统框图。

自适应均衡器用来纠正存在白噪声的信道的畸变。

通过随机数发生器1产生用来探测信道的测试信号n x ;通过随机数发生器2来产生干扰信道输出的白噪声源()v n 。

这两个发生器是相互独立的。

经过适当延迟,随机数发生器1页提供用作训练序列的自适应均衡器的期望相应。

加到信道输入的随机序列{}n x 由伯努利序列组成,其中1n x =±,随机变量n x 具有零均值和单位方差。

信道的单位脉冲响应应用升余弦表示为20.5[1cos((2))]1,2,30n n n h Wπ⎧+-=⎪=⎨⎪⎩,其他 (2-1)等价地,参数W 控制均衡器抽头输入的相关矩阵的特征值分布()χR ,并且特征值分布随着W 的增大而扩大。

随机数发生器2产生的序列是零均值,方差20.001v σ=。

随机噪声发生器(1)信道随机噪声发生器(2)延迟∑自适应横向滤波器∑nx nv +-ne图2.1 自适应均衡实验框图这里均衡器具有11M =个抽头。

由于信道的脉冲响应n h 关于2n =时对称,均衡器的最优抽头权值on w 在5n =时对称。

因此信道的输入n x 被延时了=∆2+5=7个样值,以便提供均衡器的期望响应。

通过选择匹配横向均衡器中点的合适延时Δ,LMS 算法能够提供信道响应的最小相位分量和非最小相位分量之逆。

自适应性滤波实验报告材料

自适应性滤波实验报告材料

DSP课程设计实验报告自适应滤波的DSP实现学院:电子信息工程学院老师:钱满义老师班级:通信0606设计者:张健亮学号:06211181张萌学号:06211183电话:51689510DSP课程设计——自适滤波的DSP实现一、DSP课程设计目的(1)学习、掌握5402DSP片上外设直接存储器访问控制器DMA的结构与配置;(2)了解DSPLIB中的DLMS自适应滤波的使用,并学会调用54xdsp库中现有的常用函数;(3)了解自适应滤波器的原理,熟悉LMS算法;(4)了解DSP对自适应滤波器的设计及编程方法;(5)学会实时采集数据和信号提取方法;(6)熟悉对自适应滤波器的软件和硬件调试方法。

二、DSP课程设计要求及目标利用DSP实时地对信号进行自适应滤波。

DSP利用直接存储器访问方式DMA采集数据时不打扰CPU,CPU可以对信号进行实时地滤波。

本设计要求利用DSP的DMA方式进行信号采集和信号输出,同时对外部输入的信号进行数字滤波。

首先完成自适应滤波器需要使用自适应算法(LMS算法)的编程与实现,通过对未知系统传递函数的建模,识别该未知系统,并对该系统进行噪声滤波。

实际中利用信号发生器产生一个或几个带噪声的正弦信号,其信号的频率、幅值以及相位都是变化的,通过自适应算法,实时跟踪该信号的变化,并将噪声滤去。

设计要求及目标如下:(1)对DMA进行初始化;(2)对A/D、D/A进行初始化;(3)编写DMA通道传输程序,实现数据实时采集和实时地输出;(4)设计子自适应滤波算法,或调用DSPLIB中的自适应函数,实现对信号的自适应波;(5)滤波后信号实时输出的同时,将数据存放在数据文件中;(6)利用自适应滤波实现语音信号回波对消。

三、自适应滤波原理1、自适应滤波概述:数字信号处理(DSP)是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们所需要的信号形式。

自适应性滤波实验报告

自适应性滤波实验报告

DSP课程设计实验报告自适应滤波的DSP实现学院:电子信息工程学院老师:钱满义老师班级:通信0606设计者:张健亮学号:06211181张萌学号:06211183电话:51689510DSP课程设计——自适滤波的DSP实现一、DSP课程设计目的(1)学习、掌握5402DSP片上外设直接存储器访问控制器DMA的结构与配置;(2)了解DSPLIB中的DLMS自适应滤波的使用,并学会调用54xdsp库中现有的常用函数;(3)了解自适应滤波器的原理,熟悉LMS算法;(4)了解DSP对自适应滤波器的设计及编程方法;(5)学会实时采集数据和信号提取方法;(6)熟悉对自适应滤波器的软件和硬件调试方法。

二、DSP课程设计要求及目标利用DSP实时地对信号进行自适应滤波。

DSP利用直接存储器访问方式DMA采集数据时不打扰CPU,CPU可以对信号进行实时地滤波。

本设计要求利用DSP的DMA方式进行信号采集和信号输出,同时对外部输入的信号进行数字滤波。

首先完成自适应滤波器需要使用自适应算法(LMS算法)的编程与实现,通过对未知系统传递函数的建模,识别该未知系统,并对该系统进行噪声滤波。

实际中利用信号发生器产生一个或几个带噪声的正弦信号,其信号的频率、幅值以及相位都是变化的,通过自适应算法,实时跟踪该信号的变化,并将噪声滤去。

设计要求及目标如下:(1)对DMA进行初始化;(2)对A/D、D/A进行初始化;(3)编写DMA通道传输程序,实现数据实时采集和实时地输出;(4)设计子自适应滤波算法,或调用DSPLIB中的自适应函数,实现对信号的自适应波;(5)滤波后信号实时输出的同时,将数据存放在数据文件中;(6)利用自适应滤波实现语音信号回波对消。

三、自适应滤波原理1、自适应滤波概述:数字信号处理(DSP)是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们所需要的信号形式。

自适应滤波实验报告

自适应滤波实验报告

LMS 自适应滤波实验报告姓名: 学号: 日期:2015.12.2实验内容:利用自适应滤波法研究从宽带信号中提取单频信号的方法。

设()()()()t f B t f A t s t x 212cos 2cos πϕπ+++=,()t s 是宽带信号,A ,B ,1f ,2f ,ϕ任选(1)要求提取两个单频信号;(2)设f f f ∆+=12,要求提取单频信号()t f 22cos π,研究f ∆的大小对提取单频信号的影响。

1. 自适应滤波器原理自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。

自适应滤波器在信号处理中属于随机信号处理的范畴。

在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。

(1) 自适应横向滤波器所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。

自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。

自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示:实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式:()()()∑-=-=1N m m n x m w n y这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成∑==Ni ij i j x w y 1这里i w 也称为滤波器加权系数。

用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。

自适应滤波实验报告

自适应滤波实验报告

自适应滤波实验报告一、实验目的1.了解自适应滤波的原理和应用。

2.通过实验,验证自适应滤波算法在信号处理中的有效性。

二、实验器材与设备1.计算机2.数学软件MATLAB三、实验原理\[ W(k+1) = W(k) + \mu \cdot e(k) \cdot X(k) \]其中,W(k+1)为更新后的滤波器权值,W(k)为上一次的滤波器权值,μ为步长,e(k)为期望输出信号与实际输出信号的误差,X(k)为输入信号。

四、实验步骤1.准备实验所需的输入信号和期望输出信号。

通过MATLAB生成不同噪声水平的输入信号,并对其进行自适应滤波得到对应的期望输出信号。

2.设置自适应滤波算法的参数,包括滤波器的初始权值、步长等。

3.利用MATLAB实现自适应滤波算法,计算滤波器的权值。

4.将输入信号通过自适应滤波器,得到实际输出信号。

5.计算期望输出信号与实际输出信号之间的均方误差,并与预期结果进行比较。

五、实验结果与分析根据实验结果,期望输出信号与实际输出信号之间的均方误差随着迭代次数的增加逐渐减小,说明自适应滤波算法能够较好地逼近期望输出信号。

通过调整步长参数,可以控制自适应滤波算法的收敛速度和稳定性。

步长过大可能导致算法发散,步长过小可能导致算法收敛速度过慢。

因此,在应用自适应滤波算法时,需要根据具体情况选择合适的步长。

六、实验总结实验结果表明,自适应滤波算法能够有效地逼近期望输出信号,并能够通过调整步长参数来控制算法的收敛速度和稳定性。

在实际应用中,需要根据具体情况选择合适的步长参数,以达到最佳的滤波效果。

在今后的研究中,可以进一步探索其他自适应滤波算法,并通过实验验证其在信号处理中的有效性。

此外,还可以考虑将自适应滤波算法用于其他领域的信号处理问题,进一步拓展其应用范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.
%自适应滤波LMS算法
functionAdaptive_Filter_LMS(f1,Delte)%Delte为f2-f1
mu1=0.0001;mu2=0.00001;%步长
Ts=0.0001;%采样间隔
N=3000;%信号长度
M=50;%阶数
A=2;B=3;f2=f1+Delte;Phi=pi/3;%频率幅度相位设置
subplot(4,1,2);
plot(F2(1:N));ylim([-3 3]);title('单频信号波形F2');
subplot(4,1,3);
plot(F(1:N));title('无噪声两单频信号波形');
subplot(4,1,4);
plot(X(1:N));title('受宽带干扰的输入信号波形');
x=X(n:-1:n-M+1);%滤波器输入值
Y2(n)=W2*x';%滤波器输出值
e2(n)=F2(n)-Y2(n);%误差值
W2=W2+2*mu2.*e2(n).*x;%系数调整
end
figure(1)
subplot(4,1,1);
plot(F1(1:N));ylim([-2 2]);title('单频信号波形F1');
subplot(4,1,4);
plot(e2(1:N));title('提取单频信号波形F2误差');
4.
(1)
图1
图2
分析:从图中可以看出,该仿真提取出了两单频信号,随着对滤波器权系数的更新,误差慢慢减小。通过比较可以看出,提取结果存在误差,且 提取效果较差, 提取效果较好。
(2)
图3
图4
图5
图6
e1=zeros(1,N);e2=zeros(1,N);
%提取信号F1
forn=M:N
x=X(n:-1:n-M+1);%滤波器输入值
Y1(n)=W1*x';%滤波器输出值
e1(n)=F1(n)-Y1(n);%误差值
W1=W1+2*mu1.*e1(n).*x;%系数调整
end
%提取信号F2
forn=M:N
LMS
姓名:学号:日期:2015.12.2
实验内容:
利用自适应滤波法研究从宽带信号中提取单频信号的方法。
设 , 是宽带信号, , , , , 任选
(1)要求提取两个单频信号;
(2)设 ,要求提取单频信号 ,研究 的大小对提取单频信号的影响。
1.
自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。
式中
误差信号表示为

Widrow等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。
LMS算法的梯度估计值用一条样本曲线进行计算,公式如下:
因为
所以
FIR滤波器中的第 个权系数的计算公式为
2.
在本题目中,要求在受宽带信号干扰的输入信号中分别提取出两个单频信号,因此,可采用KLS自适应滤波方法提取。在仿真中设置如下:
figure(2)
subplot(4,1,1);
plot(Y1(1:N));title('提取的单频信号波形F1');
subplot(4,1,2);
plot(e1(1:N));title('提取单频信号波形F1误差');
subplot(4,1,3);
plot(Y2(1:N));title('提取的单频信号波形F2');
(1)单频信号幅度A=2,B=3,相位 ;
(2)调整步长分别设为mu1=0.0001,mu2=0.00001;
(3)滤波器阶数M=50;
(4)宽带信号设为均值为0,方差为1的白噪声;
(5)提取单频信号 ,设置期望信号为理想信号,即为 ;
(6)提取单频信号 ,设置期望信号为理想信号,即为 ;
然后,根据LMS算法,更新滤波器系数 。
s=1*randn(1,N);%宽带信号
k=1:N;
F1=A*cos(2*pi*f1*k*Ts+Phi);F2=B*cos(2*pi*f2*k*Ts);%两单频信号
F=F1+F2;X=s+F1+F2;
Y,N);
W1=zeros(1,M);W2=zeros(1,M);

所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。
分析:当两信号频差较大时,如本次仿真中 ,滤波器较好的提取出两信号,但频差较小时,滤波器的效果很差,不能很好的提取出两单频信号。
一个单输入的横向自适应滤波器的原理框图如图所示:
实际上这种单输入系统就是一个FIR网络结构,其输出 用滤波器单位脉冲响应表示成下式:
这里 称为滤波器单位脉冲响应,令: 用 表示,上式可以写成
这里 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR滤波器。将上式表示成矩阵形式:
相关文档
最新文档