低通滤波器设计实验报告

合集下载

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

微波实验报告_微带短截线低通滤波器的设计、仿真与测试综合课程设计实验报告课程名称:微波方向综合课程设计实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院专业班级:姓名:学号:指导教师:2011年12月22日1/13一、实验目的和要求1、目的:通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。

最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。

2、要求:从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。

(器件的工作频率和学号相关)1)3dB微带功率分配器;2)微带短截线滤波器3)3dB微带定向耦合器PCB板采用介电常数为4.5,厚度为1mm的FR4基片;电路尺寸必须按照自己相应的MWO设计结果绘制;电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm;每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。

二、实验内容和原理1、内容:在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。

2、原理:2/13(1)Richards变换:集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。

在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards提出了一种变换方法,这种变换可以将集总元件变换成传输线段。

如图1所示,电感L可等效为长为λ/8,特性阻抗为L的短路线;电容C可等效为长为λ/8,特性阻抗为1/C的开路线。

低通滤波器实验报告

低通滤波器实验报告

竭诚为您提供优质文档/双击可除低通滤波器实验报告篇一:绝对经典的低通滤波器设计报告经典无源低通滤波器的设计团队:梦知队团结奋进,求知创新,追求卓越,放飞梦想队员:日期:20XX.12.10目录第一章一阶无源Rc低通滤波电路的构建 (3)1.1理论分析 (3)1.2电路组成 (4)1.3一阶无源Rc低通滤波电路性能测试 (5)1.3.1正弦信号源仿真与实测 (5)1.3.2三角信号源仿真与实测 (10)1.3.3方波信号源仿真与实测 (15)第二章二阶无源Lc低通滤波电路的构建 (21)2.1理论分析 (21)2.2电路组成 (22)2.3二阶无源Lc带通滤波电路性能测试 (23)2.3.1正弦信号源仿真与实测 (23)2.3.2三角信号源仿真与实测 (28)2.3.3方波信号源仿真与实测 (33)第三章结论与误差分析 (39)3.1结论 (39)3.2误差分析 (40)第一章一阶无源Rc低通滤波电路的构建1.1理论分析滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。

也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。

低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。

图1Rc低通滤波器基本原理图当输入是直流时,输出电压等于输入电压,因为xc无限大。

当输入频率增加时,xc减小,也导致Vout逐渐减小,直到xc=R。

此时的频率为滤波器的特征频率fc。

解出,得:在任何频率下,应用分压公式可得输出电压大小为:因为在=为:时,xc=R,特征频率下的输出电压用分压公式可以表述这些计算说明当xc=R时,输出为输入的70.7%。

按照定义,此时的频率称为特征频率。

1.2电路组成图2-一阶Rc电路multisim仿真电路原理图图3-一阶Rc实物电路原理图电路参数:c=1.0μFR1=50ΩR2=50ΩR3=20ΩR4=20ΩR5=20Ω1.3一阶无源Rc滤波器电路性能测试1.3.1正弦信号仿真与实测对于一阶无源Rc滤波器电路,我们用100hz、1000hz、10000hz三种不同正弦频率信号检测,其仿真与实测电路图如下:篇二:低通滤波器的设计沈阳航空航天大学课程设计(说明书)班级/学号学生姓名指导教师沈阳航空航天大学课程名称电子技术综合课程设计院(系)专业班级学号姓名课程设计题目低通滤波器的设计课程设计时间:年月日至年月1日课程设计的内容及要求:一、设计说明设计一个低通滤波器。

二阶低通滤波器实验报告

二阶低通滤波器实验报告

二阶低通滤波器实验报告二阶低通滤波器实验报告引言:在电子领域中,滤波器是一种用于处理信号的重要工具。

滤波器的作用是根据信号的频率特性,选择性地通过或抑制特定的频率分量。

本次实验旨在研究和探索二阶低通滤波器的工作原理和性能。

一、实验目的本次实验的主要目的是:1. 理解二阶低通滤波器的基本原理;2. 掌握二阶低通滤波器的设计和调试方法;3. 通过实验验证滤波器的性能和频率响应。

二、实验原理1. 二阶低通滤波器的基本原理二阶低通滤波器是一种常见的滤波器类型,其主要功能是通过滤除高于截止频率的信号分量,使得信号在低频范围内得到保留。

该滤波器由电容和电感组成,通过调整电容和电感的数值,可以改变截止频率和滤波器的斜率。

2. 二阶低通滤波器的设计方法二阶低通滤波器的设计需要确定截止频率和滤波器的品质因数Q。

截止频率决定了滤波器的频率响应范围,而品质因数Q则决定了滤波器的斜率和幅频特性。

根据所需的滤波器性能,可以选择合适的电容和电感数值,并通过计算和模拟验证其设计是否满足要求。

三、实验装置与步骤1. 实验装置本次实验所需的装置包括信号发生器、二阶低通滤波器电路、示波器等。

2. 实验步骤(1)根据设计要求,选择合适的电容和电感数值,并连接电路。

(2)将信号发生器连接到滤波器的输入端,调节信号发生器的频率和幅度。

(3)将示波器连接到滤波器的输出端,观察输出信号的波形和频率响应。

(4)通过调节电容和电感数值,优化滤波器的性能和频率响应。

(5)记录实验数据,并进行分析和总结。

四、实验结果与分析在实验中,我们根据设计要求选择了合适的电容和电感数值,并连接了二阶低通滤波器电路。

通过调节信号发生器的频率和幅度,我们观察到滤波器输出信号的波形和频率响应。

根据实验数据,我们可以绘制出滤波器的幅频特性曲线和相频特性曲线,并分析其性能和频率响应。

五、实验总结与心得通过本次实验,我们深入了解了二阶低通滤波器的工作原理和性能。

实验中,我们通过调节电容和电感数值,优化了滤波器的性能和频率响应。

设计滤波器实验报告

设计滤波器实验报告

设计滤波器实验报告设计滤波器实验报告引言:滤波器是信号处理中常用的工具,它可以通过选择性地传递或抑制特定频率的信号,对信号进行滤波。

本实验旨在设计并实现一个滤波器,通过对不同类型的信号进行滤波,验证滤波器的性能和效果。

一、实验目的本实验的主要目的是:1. 了解滤波器的基本原理和分类;2. 掌握滤波器的设计方法和实现技巧;3. 验证滤波器的性能和效果。

二、实验原理滤波器根据其频率响应特性可分为低通、高通、带通和带阻滤波器。

低通滤波器能够通过低频信号,抑制高频信号。

高通滤波器则相反,能够通过高频信号,抑制低频信号。

带通滤波器则能够通过一定范围内的频率信号,抑制其他频率信号。

带阻滤波器则相反,能够抑制一定范围内的频率信号,通过其他频率信号。

三、实验步骤1. 确定滤波器类型和频率响应特性;2. 根据所选滤波器类型和频率响应特性,设计滤波器的传递函数;3. 根据传递函数,计算滤波器的电路参数;4. 根据计算结果,搭建滤波器电路;5. 连接信号源和示波器,输入信号;6. 调节信号源的频率,并观察示波器上的输出信号;7. 对比输入信号和输出信号的频谱特性,验证滤波器的性能和效果。

四、实验结果与分析在实验中,我们设计了一个低通滤波器,频率响应特性为通过0-1 kHz的低频信号,抑制1 kHz以上的高频信号。

通过计算和搭建电路,我们成功实现了滤波器的设计。

在实验中,我们输入了不同频率的信号,并观察了输出信号的频谱特性。

结果显示,当输入信号的频率低于1 kHz时,输出信号基本保持不变;当输入信号的频率高于1 kHz时,输出信号的幅度逐渐减小,直至完全抑制。

通过对比输入信号和输出信号的频谱特性,我们可以清楚地看到滤波器对高频信号的抑制效果。

这表明我们设计的滤波器能够有效地滤除高频噪声,保留低频信号。

五、实验总结本实验通过设计滤波器并验证其性能,使我们更加深入地了解了滤波器的原理和应用。

通过实际操作,我们掌握了滤波器的设计方法和实现技巧。

FIR滤波器设计实验报告

FIR滤波器设计实验报告

FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。

二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。

根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。

三、实验步骤:1.确定滤波器的阶数和截止频率。

2.选择适当的窗口函数,如汉明窗。

3.计算出理想低通滤波器的冲激响应。

4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。

5.得到FIR滤波器的冲激响应。

四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。

1.选择汉明窗作为窗口函数。

2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。

假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。

3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。

具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。

4.计算得到FIR滤波器的冲激响应序列。

五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。

掌握了FIR滤波器的设计方法和调试技巧。

通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。

【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。

(完整版)fir低通滤波器设计(完整版)

(完整版)fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告(实验)课程名称数字信号处理电子科技大学教务处制表电 子 科 技 大 学实 验 报 告学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理:1. FIR 滤波器FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。

M 阶FIR 滤波器的系统函数H(z)为()[]Mkk H z h k z-==∑其中H(z)是kz-的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z平面原点z=0有M 个极点.FIR 滤波器的频率响应()j H e Ω为 0()[]Mj jk k H e h k e Ω-Ω==∑它的另外一种表示方法为()()()j j j H e H e e φΩΩΩ=其中()j H e Ω和()φΩ分别为系统的幅度响应和相位响应。

若系统的相位响应()φΩ满足下面的条件()φαΩ=-Ω即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。

由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。

如果一个离散系统的频率响应()j H e Ω可以表示为()()()j j H e A e αβΩ-Ω+=Ω其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。

如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为[][]h k h M k =±-当h[k]满足h[k]=h[M-k],称h[k]偶对称。

当h[k]满足h[k]=-h[M-k],称h[k]奇对称。

按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。

2. 窗函数法设计FIR 滤波器窗函数设计法又称为傅里叶级数法。

低通滤波器实验报告

低通滤波器实验报告

(科信学院)信息与电气工程学院电子电路仿真及设计CDIO三级项目设计说明书(2012/2013学年第二学期)题目: ____低通滤波器设计____ _____ _____ _专业班级:通信工程学生姓名:学号:指导教师:设计周数:2周2013年7月5日题目: ____低通滤波器设计____ _____ _____ _ (1)第一章、电源的设计 (2)1.1实验原理: (2)1.1.1设计原理连接图: (2)1. 2电路图 (5)第二章、振荡器的设计 (7)2.1 实验原理 (7)2.1.1 (7)2.1.2定性分析 (7)2.1.3定量分析 (8)2.2电路参数确定 (10)2.2.1确定R、C值 (10)2.2.2 电路图 (10)第三章、低通滤波器的设计 (12)3.1芯片介绍 (12)3.2巴特沃斯滤波器简介 (13)3.2.1滤波器简介 (13)3.2.2巴特沃斯滤波器的产生 (13)3.2.3常用滤波器的性能指标 (14)3.2.4实际滤波器的频率特性 (15)3.3设计方案 (17)3.3.1系统方案框图 (17)3.3.2元件参数选择 (18)3.4结果分析 (20)3.5误差分析 (23)第四章、课设总结 (24)第一章、电源的设计1.1实验原理:1.1.1设计原理连接图:整体电路由以下四部分构成:电源变压器:将交流电网电压U1变为合适的交流电压U2。

整流电路:将交流电压U2变为脉动的直流电压U3。

滤波电路:将脉动直流电压U3转变为平滑的直流电压U4。

稳压电路:当电网电压波动及负载变化时,保持输出电压Uo的稳定。

1)变压器变压220V交流电端子连一个降压变压器,把220V家用电压值降到9V左右。

2)整流电路桥式整流电路巧妙的利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通。

见变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载的电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

低通滤波器 实验报告

低通滤波器 实验报告

低通滤波器实验报告低通滤波器实验报告引言:低通滤波器是一种信号处理中常用的滤波器,它能够通过滤除高频信号,使得低频信号能够更好地传递。

在本次实验中,我们将通过搭建一个低通滤波器电路来验证其滤波效果,并探讨其在实际应用中的意义。

实验目的:1. 了解低通滤波器的基本原理和工作方式;2. 掌握低通滤波器的搭建方法;3. 验证低通滤波器的滤波效果;4. 探讨低通滤波器在音频处理、图像处理等领域的应用。

实验装置和材料:1. 函数信号发生器;2. 电阻、电容、电感等元件;3. 示波器;4. 电源;5. 连接线等。

实验步骤:1. 搭建低通滤波器电路,根据实验要求选择合适的电阻、电容和电感等元件;2. 连接信号发生器的输出端与滤波器电路的输入端,连接示波器的输入端与滤波器电路的输出端;3. 调节信号发生器的频率和幅度,观察示波器上输出波形的变化;4. 记录实验数据,包括输入信号的频率和幅度,以及滤波器输出信号的频率和幅度;5. 分析实验结果,验证低通滤波器的滤波效果;6. 结合实际应用场景,探讨低通滤波器的应用意义。

实验结果与分析:通过实验观察和数据记录,我们可以得出以下结论:1. 当输入信号的频率超过低通滤波器的截止频率时,滤波器会滤除部分高频信号,使得输出信号的频率降低;2. 随着输入信号频率的逐渐增加,输出信号的幅度逐渐减小,表明低通滤波器对高频信号的衰减效果较好;3. 在滤波器的截止频率附近,输出信号的幅度变化较大,这是由于低通滤波器的频率响应特性所致。

实际应用:低通滤波器在实际应用中有着广泛的应用,下面以音频处理和图像处理为例进行说明。

音频处理:在音频处理中,低通滤波器可以用来消除噪声和杂音,提高音频信号的质量。

例如,在音乐录音过程中,为了保持原始音频信号的纯净度,可以使用低通滤波器滤除高频噪声,使得音频更加清晰。

图像处理:在图像处理中,低通滤波器可以用来平滑图像,去除图像中的高频细节,使得图像更加柔和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

低通滤波器设计实验报

Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】
低通滤波器设计
一、设计目的
1、学习对二阶有源RC 滤波器电路的设计与分析;
2、练习使用软件ORCAD (PISPICE )绘制滤波电路;
3、掌握在ORCAD (PISPICE )中仿真观察滤波电路的幅频特性与相频特性曲线 。

二、设计指标
1、设计低通滤波器截止频率为W=2*10^5rad/s;
2、品质因数Q=1/2;
三、设计步骤
1、考虑到原件分散性对整个电路灵敏度的影响,我们选择
R1=R2=R,C1=C2=C ,来减少原件分散性带来的问题;
2、考虑到电容种类比较少,我们先选择电容的值,选择电容
C=1nF;
3、由给定的Wp 值,求出R 12121C C R R Wp ==RC
1=2*10^5 解得:R=5K?
4、根据给定的Q ,求解K Q=2121C C R R /K)RC -(1+r2)C1+(R1=
K -31 解得:K=3-Q
1=
5、根据求出K 值,确定Ra 与Rb 的值
Ra=2
K=1+
Rb
Ra=Rb
这里取 Ra=Rb=10K?;
四、电路仿真
1、电路仿真图:
2、低通滤波器幅频特性曲线
3、低通滤波器相频特性曲线
注:改变电容的值:当C1=C2=C=10nF时
低通滤波器幅频特性曲线
低通滤波器相频特性曲线
五、参数分析
1、从幅频特性图看出:该低通滤波器的截止频率大约33KHz,
而我们指标要求设计截止频率
f= Wp/2?=
存在明显误差;
2、从幅频特性曲线看出,在截至频率附近出现凸起情况,这是二阶滤波器所特有的特性;
3、从相频特性曲线看出,该低通滤波器的相频特性相比比较好。

4、改变电容电阻的值,发现幅频特性曲线稍有不同,因此,我们在设计高精度低误差的滤波器时一定要注意原件参数的选择。

六、设计心得:
通过对给定参数指标的地滤波器的仿真设计,一方面学会了在PISPICE下绘制电路以及对电路的仿真,由于其他各种滤波器都是由低通滤波器变换而来,所以选择最基础的低通滤波器来设计。

在这里,滤波器的设计是按照BUTTERWORTH来设计,通过此次设计,可以对BUTTERWORTH型滤波器的设计步骤以及最终电路的归一化有了一定的掌握。

相关文档
最新文档