江苏省2018高二期末试卷数学(无附加题)含答案
2018年江苏省高二下学期期末考试_数学(文)_Word版

2018学年江苏高二下学期期末考试数学(文科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题..卡相应位置上....... 1.已知集合A ={1,3},B ={1,4,5},则A ∪B = ▲ . 2.已知复数z =(4+3i)2(i 为虚数单位),则z 的实部为 ▲ .3. 一个原命题的逆否命题是“若x =1,则x 2-2x <0”,那么该原命题是 ▲ 命题.(填“真”或“假”).4.函数f (x )=5-4x -x 2的定义域是 ▲ .5.以双曲线x 22-y 2=1的左焦点为焦点的抛物线的标准方程为 ▲ .6.函数f (x )=2x (0<x <1),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是 ▲ .7.某地区为了了解居民每天的饮水状况,采用分层抽样的方法随机抽取100名年龄在[10,20),[20,30),…,[50,60]年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,则[30,40)年龄段应抽取的人数为 ▲ .8.如图所示的程序框图,运行相应的程序,输出的s 值等于 ▲ .9.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 8+b 8NY第7题 第7题第8题开始k <4结束k ←1,s ←1s ←2s-k k ←k+1输出s等于 ▲ .10.从集合A ={-2,-1,1,2}中随机取一个数为m ,从集合B ={-1,1,2,3}中随机取一个数为n ,则方程x 2m +y 2n =1表示双曲线的概率为 ▲ .11.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=θ,若cos θ=13,则椭圆C 的离心率为 ▲ .12.函数f (x )满足f (x +2)=f (x )(x ∈R ),且在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧2sin πx 3,﹣1≤x ≤0x +3,0<x <1,则f (f (2019))= ▲ .13.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -1|+|x -2|-3).若函数g (x )=f (x ) -ax 恰有三个不同的零点,则实数a 的取值范围为 ▲ .14.已知函数f (x )=|x |e x (x ∈R ),其中e 为自然对数的底数,g (x )=-x 2+2ax -2(a ∈R ),若A ={x |f (g (x ))>e}=R ,则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分。
2018年江苏省高二下学期期末考试 数学(理) Word版

2018年江苏高二下学期期末考试数学(理科)参考公式:方差2211()ni i s x x n ==-∑一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡...相应位置上...... 1.设i 为虚数单位,复数2iz i+=,则z 的模||z = ▲ . 2.一根木棍长为5米,若将其任意锯为两段,则锯成的两段木棍的长度都大于2米的概率为 ▲ . 3.命题“若0a =,则复数(,)z a bi a b R =+∈为纯虚数”的逆命题...是 ▲ 命题.(填“真”或“假”) 4.已知一组数据为2,3,4,5,6,则这组数据的方差为 ▲ .5.将一颗骰子抛掷两次,用m 表示向上点数之和,则10m ≥的概率为 ▲ .6.用分层抽样的方法从某校学生中抽取1个容量为45的样本,其中高一年级抽20人,高三年级抽10人.已知该校高二年级共有学生300人,则该校学生总数为 ▲ . 7.函数()y f x =在点(1,)P m 处切线方程为60x y +-=,则(1)(1)f f '+= ▲ . 8.若21(2)nx x -的展开式中所有二项式系数和为64,则展开式中的常数项是 ▲ . 9.根据如图所示的伪代码可知,输出的结果为 ▲ . 10.若2624101201256(2)x a a x a x a x a x +=+++++ , 则0246a a a a +++= ▲ .11.已知m ∈R ,设命题P :2,10x R mx mx ∀∈++>; 命题Q :函数32()31f x x x m =-+-只有一个零点. 则使“P ∨Q ”为假命题的实数m 的取值范围为 ▲ .i ←1 S ←0 While i<8 S ←3i+S i ←i+2 End While Print S 第9题……222222(7)(3)(2)(6)(5)(1)-+-+-=-+-+-222222045126++=++ 222222*********++=++ 222222141819151620++=++……12.有编号分别为1,2,3,4,5的5个黑色小球和编号分别为1,2,3,4,5的5个白色小球,若选取的4个小球中既有1号球又有白色小球,则有 ▲ 种不同的选法.13.观察下列等式:请你归纳出一般性结论 ▲ .14.乒乓球比赛,三局二胜制.任一局甲胜的概率是(01)p p <<,甲赢得比赛的概率是q ,则q p -的最大值为 ▲ .二、解答题:本大题共6小题,共计90分。
2018年江苏省高二下学期期末考试 数学(文) Word版

2018学年江苏高二下学期期末考试数学(文科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题..卡相应位置上....... 1.已知集合A ={1,3},B ={1,4,5},则A ∪B = ▲ . 2.已知复数z =(4+3i)2(i 为虚数单位),则z 的实部为 ▲ .3. 一个原命题的逆否命题是“若x =1,则x 2-2x <0”,那么该原命题是 ▲ 命题.(填“真”或“假”).4.函数f (x )=5-4x -x 2的定义域是 ▲ .5.以双曲线x 22-y 2=1的左焦点为焦点的抛物线的标准方程为 ▲ .6.函数f (x )=2x (0<x <1),其值域为D ,在区间(-1,2)上随机取一个数x ,则x ∈D 的概率是 ▲ .7.某地区为了了解居民每天的饮水状况,采用分层抽样的方法随机抽取100名年龄在[10,20),[20,30),…,[50,60]年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,则[30,40)年龄段应抽取的人数为 ▲ .8.如图所示的程序框图,运行相应的程序,输出的s 值等于 ▲ .9.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 8+b 8NY第7题 第7题第8题开始k <4结束k ←1,s ←1s ←2s-k k ←k+1输出s等于 ▲ .10.从集合A ={-2,-1,1,2}中随机取一个数为m ,从集合B ={-1,1,2,3}中随机取一个数为n ,则方程x 2m +y 2n =1表示双曲线的概率为 ▲ .11.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=θ,若cos θ=13,则椭圆C 的离心率为 ▲ .12.函数f (x )满足f (x +2)=f (x )(x ∈R ),且在区间[-1,1)上,f (x )=⎩⎪⎨⎪⎧2sin πx 3,﹣1≤x ≤0x +3,0<x <1,则f (f (2019))= ▲ .13.已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -1|+|x -2|-3).若函数g (x )=f (x ) -ax 恰有三个不同的零点,则实数a 的取值范围为 ▲ .14.已知函数f (x )=|x |e x (x ∈R ),其中e 为自然对数的底数,g (x )=-x 2+2ax -2(a ∈R ),若A ={x |f (g (x ))>e}=R ,则a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分。
2017-2018学年江苏省苏州市高二(下)期末数学试卷(理科)(解析版)

2017-2018学年江苏省苏州市高二(下)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答卷卡相应的位置.1.(5分)已知复数(i为虚数单位),则|z|=.2.(5分)双曲线的离心率是.3.(5分)函数y=2x﹣ln(x﹣1)的极值点为x0,则x0=.4.(5分)“x>1”是“x>3”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)5.(5分)现有5个人排成一排,则甲恰在正中间的排法有种.(用数字作答)6.(5分)抛物线y2=4x上位于第一象限内的一点到焦点的距离是3,则该点坐标是.7.(5分)若离散型随机变量X的分布列为则X的数学期望E(X)=.8.(5分)若(m为正整数且m≥4),则m=.9.(5分)已知,则a1+a2+…+a5的值是.10.(5分)已知圆C的圆心在直线2x﹣y=0上,且经过A(6,2),B(4,8)两点,则圆C的标准方程是.11.(5分)如图,在体积为V1的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为V2,则=.12.(5分)若函数在其定义域上单调递减,则称函数f(x)是“L函数”.已知f (x)=ax2+2是“L函数”,则实数a的取值范围是.13.(5分)过曲线y=2|x﹣a|+x﹣a上的点P向圆O:x2+y2=1作两条切线P A,PB,切点为A,B,且∠APB=60°,若这样的点P有且只有两个,则实数a的取值范围是.14.(5分)已知a≠0,函数f(x)=ae x,g(x)=alnx+b,若存在一条直线与曲线y=f(x)和y=g(x)均相切,则使不等式恒成立的最小整数m的值是.二、解答题:本大题共6小题,共90分.请在答题卡区域内作答,解答应写出文字说明、证明过程或演算步骤.15.(15分)如图,在三棱锥P﹣ABC中,△P AB是正三角形,D,E分别为AB,AC的中点,∠ABC=90°.求证:(1)DE∥平面PBC;(2)AB⊥PE.16.(15分)某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.(1)求小张在这次活动中获得的奖金数X的概率分布及数学期望;(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.17.(15分)已知,n∈N*.(1)当a=1时,求f5(x)展开式中的常数项;(2)若二项式f n(x)的展开式中含有x7的项,当n取最小值时,展开式中含x的正整数次幂的项的系数之和为10,求实数a的值.18.(15分)如图,在正三棱柱ABC﹣A1B1C1中,底面ABC的边长为2,侧棱长为4,M是线段AA1上一点,O是线段BC的中点,D为B1C1的中点.以为正交基底,建立如图所示的空间直角坐标系O﹣xyz.(1)若AM=MA1,求直线B1C1和平面BMC1所成角的正弦值;(2)若二面角M﹣BC1﹣B1的正弦值为,求AM的长.19.(15分)如图,在平面直角坐标系xOy中,椭圆C:的离心率为,焦点到相应准线的距离为,A,B分别为椭圆的左顶点和下顶点,P为椭圆C 上位于第一象限内的一点,P A交y轴于点E,PB交x轴于点D.(1)求椭圆C的标准方程;(2)若,求的值;(3)求证:四边形ABDE的面积为定值.20.(15分)已知函数f(x)=x3﹣3x2+(2﹣t)x,f'(x)为f(x)的导函数,其中t∈R.(1)当t=2时,求函数f(x)的单调区间;(2)若方程f(x)=0有三个互不相同的根0,α,β,其中α<β.①是否存在实数t,使得成立?若存在,求出t的值;若不存在,说明理由.②若对任意的x∈[α,β],不等式f(x)≤16﹣t恒成立,求t的取值范围.理科附加A组(选修4-2:矩阵与变换)21.若圆C:x2+y2=1在矩阵对应的变换下变成椭圆E:.(1)求a,b的值;(2)求矩阵A的逆矩阵A﹣1.22.已知,为矩阵的两个特征向量.(1)求矩阵M;(2)若,求M10β.B组(选修4-4:坐标系与参数方程)23.在平面直角坐标系xOy中,直线l的参数方程为(其中t为参数).在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,圆C的方程为ρ=4cosθ.(1)分别写出直线l的普通方程和圆C的直角坐标方程;(2)若直线l与圆C相切,求实数a的值.24.在平面直角坐标系xOy中,曲线C1的参数方程是(其中φ为参数,0≤φ≤π).在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=2,等边△ABC的顶点都在C2上,且点A,B,C依逆时针次序排列,点A的极角为.(1)求点A,B,C的直角坐标;(2)设P为C1上任意一点,求点P到直线BC距离的取值范围.2017-2018学年江苏省苏州市高二(下)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答卷卡相应的位置.1.【解答】解:复数z====1+i,则|z|=.故答案为:.2.【解答】解:∵双曲线中,a2=1且b2=3∴a=1,b=,可得c==2因此双曲线的离心率e==2故答案为:23.【解答】解:函数y=2x﹣ln(x﹣1),可得y′=2﹣,令2﹣=0可得x=,当x∈(1,)时,y′<0,当x时,y′>0,所以x=是函数的极值点.故答案为:.4.【解答】解:由x>3,一定有x>1,反之,x>1,不一定有x>3.所以,“x>1”是“x>3”成立的必要不充分条件.故答案为:必要不充分.5.【解答】解:甲必须在中间,则其他4人对应其他4个位置,有A44=24种情况,故答案为:24.6.【解答】解:抛物线y2=4x的准线方程为x=﹣1,∵抛物线y2=4x上一点到其焦点距离为3,则该点到抛物线的准线的距离为3,∴所求点的横坐标为2,代入y2=4x,得y=±2 .抛物线y2=4x上位于第一象限内的一点为:(2,2)故答案为:(2,2).7.【解答】解:离散型随机变量X的分布列可知:a+2a+=1,解得a=,所以离散型随机变量X的分布列为则X的数学期望E(X)==.故答案为:.8.【解答】解:(m为正整数且m≥4),即为=+=,即有m+1=7,解得m=6,故答案为:6.9.【解答】解:(x+1)2(x+2)3=(x2+2x+1)(x3+6x2+12x+8)=x5+2x4+x3+6x4+12x3+6x2+12x3+24x2+12x+8x2+16x+8=8+28x+38x2+25x3+8x4+x5,∴a1+a2+…+a5=28+38+25+8+1=100.故答案为:100.10.【解答】解:∵圆C的圆心在直线2x﹣y=0上,可设圆心C(a,2a),∵圆经过A(6,2),B(4,8)两点,则CA=CB,∴(a﹣6)2+(2a﹣2)2=(a﹣4)2+(2a﹣8)2,求得a=2,故圆心坐标C(2,4),半径CA==2,则圆C的标准方程是(x﹣2)2+(y﹣4)2=20,故答案为:(x﹣2)2+(y﹣4)2=20.11.【解答】解:设圆锥与圆柱的底面面积为s,高为h,所以V1=sh,V2=sh﹣sh=.则=.故答案为:.12.【解答】解:由题意得:y=在R递减,∵y′=,∴﹣ax2+2ax﹣2≤0,即ax2﹣2ax+2≥0,∴a=0或,解得:0≤a≤2,故答案为:[0,2].13.【解答】解:根据题意,若经过点P作圆O:x2+y2=1的两条切线,切点为A,B,且∠APB=60°,则∠OAP=30°,则有|PO|=2|AO|=2,则P的轨迹为x2+y2=4,y=2|x﹣a|+x﹣a=,当x≤a时,曲线为x+y﹣a=0,(x≤a),当x≥a时,曲线为3x﹣y﹣3a=0,(x≥a),当a<0时,若这样的点P有且只有两个,必有<2,即﹣<2,解可得a>﹣,当a=0时,曲线为y=2|x|+x=,符合题意,当a>0时,若这样的点P有且只有两个,必有<2,解可得a<2,则a的取值范围为(﹣,2);故答案为:(﹣,2).14.【解答】解:函数f(x)=ae x,g(x)=alnx+b,导数为f′(x)=ae x,g′(x)=,设切点分别为(t,ae t),(n,alnn+b),与y=f(x),y=g(x)相切的直线方程为y﹣ae t=ae t(x﹣t),y﹣alnn﹣b=(x﹣n),由题意可得ae t=,且﹣a+b+alnn=(1﹣t)ae t,可得n=e﹣t,b=a+(1﹣t)ae t+ta,则=1+t+(1﹣t)e t,由y=1+t+(1﹣t)e t导数为y′=1﹣te t,由y=e t与y=的交点只有一个,且t>0,可得e t=,即有=1+t+=t+∈[2,3),且t=1时,取得等号,则m>2,可得最小整数m=3.故答案为:3.二、解答题:本大题共6小题,共90分.请在答题卡区域内作答,解答应写出文字说明、证明过程或演算步骤.15.【解答】证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC.(2)连结PD,因为DE∥BC,又∠ABC=90°,所以DE⊥AB.又P A=PB,D为AB的中点,所以PD⊥AB,又PD∩DE=D,所以AB⊥平面PDE.因为PE⊂平面PDE,所以AB⊥PE.16.【解答】解:(1)小张在这次活动中获得的奖金数X的所有可能取值为100,200,300.,,,(或P(X=100)=1﹣P(X=200)﹣P(X=300)=)所以奖金数X的概率分布为奖金数X的数学期望=140(元).(2)设3个人中获二等奖的人数为Y,则,所以(k=0,1,2,3),设该公司某部门3个人中至少有2个人获二等奖为事件A,则P(A)=P(Y=2)+P(Y=3)=.答:该公司某部门3个人中至少有2个人获二等奖的概率为.17.【解答】解:(1)二项式的展开式通项为(r=0,1,2,…,n),当n=5,a=1时,f5(x)的展开式的常数项为.(2)令2n﹣5r=7,则,所以n的最小值为6,当n=6时,二项式的展开式通项为(r=0,1,2,…,6),则展开式中含x的正整数次幂的项为T1,T2,T3,它们的系数之和为,即15a2+2a﹣1=0,解得或a=.故实数a的值为﹣或.18.【解答】解:根据题意得B(1,0,0),B1(1,4,0),C1(﹣1,4,0),所以,,(1)当M是线段AA1的中点时,,,设平面BMC1的一个法向量为,则,得,即,取y=1,得,设B1C1和平面BMC1所成角为θ,则=,所以B1C1和平面BMC1所成角的正弦值为.(2)设AM=a(0≤a≤4),则,,设平面BMC1的一个法向量为,则,得,即,取y=1,得,显然是平面BC1B1的一个法向量,设二面角M﹣BC1﹣B1的大小为φ,则,所以=,解得a=1或3,所以AM的长为1或3.19.【解答】解:(1)设右焦点F(c,0),因为椭圆C的离心率为,所以,①又因为右焦点F到右准线的距离为,所以,②由①②得,a=2,,b=1,所以椭圆C的标准方程是.(2)因为,所以,直线AE的方程为,由,得,解得x=﹣2(舍)或,可得,直线PB的方程为,令y=0,得,所以.(3)设P(x0,y0)(x0>0,y0>0),则,即.直线AP的方程为,令x=0,得.直线BP的方程为,令y=0,得.所以四边形ABDE的面积===为定值.20.【解答】解:(1)当t=2时,f'(x)=3x2﹣6x,令f'(x)=3x2﹣6x>0,得x>2或x<0,所以f(x)的单调增区间为(﹣∞,0)和(2,+∞);令f'(x)=3x2﹣6x<0,得0<x<2,所以f(x)的单调减区间为(0,2).(2)①由题意知α,β是方程x2﹣3x+(2﹣t)=0的两个实根,所以,得.且α+β=3,αβ=2﹣t,α2+β2=5+2t,由成立得,αf'(α)=βf'(β),化简得3(α2+αβ+β2)﹣6(α+β)+(2﹣t)=0,代入得3(5+2t+2﹣t)﹣6×3+(2﹣t)=0,即5+2t=0,解得,因为,所以这样的实数t不存在.②因为对任意的x∈[α,β],f(x)≤16﹣t恒成立.由α+β=3,αβ=2﹣t,且α<β,当时,有0<α<β,所以对x∈[α,β],f(x)≤0,所以0≤16﹣t,解得t≤16.所以.当t>2时,有α<0<β,f'(x)=3x2﹣6x+(2﹣t),其判别式△=(﹣6)2﹣12(2﹣t)=12(t+1)>0.由f'(x)>0,得或,此时f(x)存在极大值点x1∈(α,0),且.由题得,将代入化简得,解得t≤11.因此2<t≤11.综上,t的取值范围是.理科附加A组(选修4-2:矩阵与变换)21.【解答】解:(1)设点P(x,y)为圆C:x2+y2=1上任意一点,经过矩阵A变换后对应点为P'(x',y'),则,所以,代入椭圆方程得,又圆方程为x2+y2=1,故,即,又a>0,b>0,所以a=2,.(2)设,则,即,所以,解得,所以.22.【解答】解:(1)设矩阵M的特征向量对应的特征值为λ1,特征向量对应的特征值为λ2,则由,得,即,解得m=0,n=1,λ1=2,λ2=1,所以.(2)因为,所以=.B组(选修4-4:坐标系与参数方程)23.【解答】解:(1)直线l的参数方程为(其中t为参数).所以:直线l的直角坐标系方程是2x+y﹣a﹣2=0,圆C的方程为ρ=4cosθ.所以圆C的直角坐标方程是(x﹣2)2+y2=4.(2)由(1)知圆心为C(2,0),半径r=2,设圆心到直线的距离为d,因为直线与圆相切,所以,解得.24.【解答】解:(1)由x=ρcosθ,y=ρsinθ可得点A的直角坐标,由已知,B点的极坐标为,可得点B的直角坐标为,C点的极坐标为,可得点C的直角坐标为C(0,﹣2);(2)由直线方程的两点式可得直线BC的方程为,设点P(cosφ,2sinφ)(0≤φ≤π),则点P到直线BC的距离=(其中,),∵0≤φ≤π,∴θ≤φ+θ≤π+θ,则,∴.。
【高二数学试题精选】2018江苏扬州高二数学第二学期期末试题(带答案理科)

2018江苏扬州高二数学第二学期期末试题(带答案理科)
c 1,4),
,
又;……8分
⑵由⑴可知,得点c 即,
取c中点F,连结DF,因为弧cD为半圆弧,所以,
即,则圆弧段造价预算为万元,
中,,则直线段cD造价预算为万元,
所以步行道造价预算,.……13分
由得当时,,
当时,,即在上单调递增;
当时,,即在上单调递减
所以在时取极大值,也即造价预算最大值为()万元. (16)
分
19⑴因为,所以,
因为的值域为,所以,……3分
所以,所以,
所以;……5分
⑵因为是偶函数,所以,
又,所以,……8分
因为,不妨设,则,又,所以,
此时,
所以;……10分
⑶因为,所以,又,则,
因为,所以
则原不等式证明等价于证明“对任意实数,” ,
即……12分
先研究,再研究
① 记,,令,得,。
江苏省南京市中学2018年高二数学理期末试卷含解析

江苏省南京市中学2018年高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知某物体的运动方程是S=t+t3,则当t=3s时的瞬时速度是()A.10m/s B.9m/s C.4m/s D.3m/s参考答案:C【考点】导数的运算.【专题】计算题.【分析】求出位移的导数;将t=3代入;利用位移的导数值为瞬时速度;求出当t=3s时的瞬时速度.【解答】解:根据题意,S=t+t3,则s′=1+t2将t=3代入得s′(3)=4;故选C【点评】本题考查导数在物理中的应用:位移的导数值为瞬时速度.2. 将数列按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34949 B. 34950 C.34951 D.35049参考答案:B略3. 已知点,若直线过点与线段相交,则直线的斜率的取值范围是()A. B. C. D.参考答案:C 解析:4. 某程序框图如图所示,若输出的S=57,则判断框内为()(A) k>4? (B)k>5? (C)k>6? (D)k>7?参考答案:A略5. 已知二项分布ξ~B(4,),则该分布列的方差Dξ值为()A.4 B.3 C.1 D.2参考答案:C【考点】CH:离散型随机变量的期望与方差;CN:二项分布与n次独立重复试验的模型.【分析】根据比例符合二项分布,根据所给的二项分布的表示式,把n,p,q的结果代入方差的公式,做出要求的方差的值.【解答】解:∵二项分布ξ~B(4,),∴该分布列的方差Dξ=npq=4××(1﹣)=1故选:C.6. 设曲线在点(1,1)处的切线与轴的交点的横坐标为,则的值为A. B.C. D. 1参考答案:C略7. 三棱锥A﹣BCD的所有棱长均为6,点P在AC上,且AP=2PC,过P作四面体的截面,使截面平行于直线AB和CD,则该截面的周长为()A.16 B.12 C.10 D.8参考答案:B【考点】棱锥的结构特征.【分析】作PH∥CD,交AD于H,过H作HF∥AB,交BD于F,过FE∥CD,交BC于E,连结PE,则四边形PEFH是过P作四面体的截面,且截面平行于直线AB和CD,由AP=2PC,三棱锥A﹣BCD的所有棱长均为6,能求出该截面的周长.【解答】解:∵三棱锥A﹣BCD的所有棱长均为6,点P在AC上,且AP=2PC,过P作四面体的截面,使截面平行于直线AB和CD,作PH∥CD,交AD于H,过H作HF∥AB,交BD于F,过FE∥CD,交BC于E,连结PE,则四边形PEFH是过P作四面体的截面,且截面平行于直线AB和CD,∵AP=2PC,三棱锥A﹣BCD的所有棱长均为6,∴PH=EF=,HF=PE=,∴该截面PEFH的周长为:4+4+2+2=12.故选:B.【点评】本题考查截面的周长的求法,是中档题,解题时要认真审题,注意空间培养.8. 已知复数满足,则的实部()A.不小于B.不大于C.大于D.小于参考答案:B1. 已知集合,,则=A. B. C. D.参考答案:D略10. 设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p 的值分别是()A.50, B.60, C.50, D.60,参考答案:B由得二、填空题:本大题共7小题,每小题4分,共28分11. 已知正三角形内圆的半径是高的,若把这个结论推广到空间正四面体,则正四面体的内切球的半径是高的___________.参考答案:略12. 若是正数,且满足,用表示中的最大者,则的最小值为___ _______参考答案:略13. 已知点,,则向量的坐标为▲.参考答案:(-5,6,-1)略14. 已知圆C的圆心与点P(﹣2,1)关于直线y=x+1对称.直线3x+4y﹣11=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为.参考答案:x2+(y+1)2=18【考点】直线与圆的位置关系.【专题】计算题;压轴题.【分析】要求圆C的方程,先求圆心,设圆心坐标为(a,b),根据圆心与P关于直线y=x+1对称得到直线PC垂直与y=x+1且PC的中点在直线y=x+1上分别列出方程①②,联立求出a和b即可;再求半径,根据垂径定理得到|AB|、圆心到直线AB的距离及圆的半径成直角三角形,根据勾股定理求出半径.写出圆的方程即可.【解答】解:设圆心坐标C(a,b),根据圆心与P关于直线y=x+1对称得到直线CP与y=x+1垂直,而y=x+1的斜率为1,所以直线CP的斜率为﹣1即=﹣1化简得a+b+1=0①,再根据CP的中点在直线y=x+1上得到=+1化简得a﹣b﹣1=0②联立①②得到a=0,b=﹣1,所以圆心的坐标为(0,﹣1);圆心C到直线AB的距离d==3, |AB|=3所以根据勾股定理得到半径,所以圆的方程为x2+(y+1)2=18.故答案为:x2+(y+1)2=18【点评】此题是一道综合题,要求学生会求一个点关于直线的对称点,灵活运用垂径定理及点到直线的距离公式解决数学问题.会根据圆心和半径写出圆的方程.15. 已知,,且对任意的恒成立,则的最小值为__________.参考答案:3【分析】先令,用导数的方法求出其最大值,结合题中条件,得到,进而有,用导数方法求出的最大值,即可得出结果.【详解】因为,,且,令,则,令得,显然,所以当时,,单调递增;当时,,单调递减;因此;因为对任意的恒成立,所以;即,所以,因此,令,则,当时,,单调递增;当时,,单调递减;所以,故最小值为3,所以故答案为3【点睛】本题主要考查导数的应用,掌握导数的方法判断函数单调性,求函数最值即可,属于常考题型.16. 已知函数的导函数为,且满足,则= . 参考答案:略17. 将正整数1,2,3,…按照如图的规律排列,则100应在第列.参考答案:14【考点】归纳推理.【专题】推理和证明.【分析】先找到数的分布规律,求出第n列结束的时候一共出现的数的个数,每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,继而求出答案.【解答】解:由排列的规律可得,第n列结束的时候排了1+2+3+…+n﹣1=n(n+1)个数.每一列的数字都是从大大小按排列的,且每一列的数字个数等于列数,而第13列的第一个数字是13×(13+1)=91,第14列的第一个数字是14×(14+1)=105,故100应在第14列.故答案为:14【点评】此题主要考查了数字的变化规律,借助于一个三角形数阵考查数列的应用,是道基础题三、解答题:本大题共5小题,共72分。
2017-2018学年江苏省苏州市高二(下)期末数学试卷及答案(理科)

2017-2018学年江苏省苏州市高二(下)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答卷卡相应的位置.1.(5分)已知复数(i为虚数单位),则|z|=.2.(5分)双曲线的离心率是.3.(5分)函数y=2x﹣ln(x﹣1)的极值点为x0,则x0=.4.(5分)“x>1”是“x>3”的条件.(填“充分不必要”、“必要不充分”、“充分必要”、“既不充分也不必要”之一)5.(5分)现有5个人排成一排,则甲恰在正中间的排法有种.(用数字作答)6.(5分)抛物线y2=4x上位于第一象限内的一点到焦点的距离是3,则该点坐标是.7.(5分)若离散型随机变量X的分布列为则X的数学期望E(X)=.8.(5分)若(m为正整数且m≥4),则m=.9.(5分)已知,则a1+a2+…+a5的值是.10.(5分)已知圆C的圆心在直线2x﹣y=0上,且经过A(6,2),B(4,8)两点,则圆C的标准方程是.11.(5分)如图,在体积为V1的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为V2,则=.12.(5分)若函数在其定义域上单调递减,则称函数f(x)是“L函数”.已知f (x)=ax2+2是“L函数”,则实数a的取值范围是.13.(5分)过曲线y=2|x﹣a|+x﹣a上的点P向圆O:x2+y2=1作两条切线P A,PB,切点为A,B,且∠APB=60°,若这样的点P有且只有两个,则实数a的取值范围是.14.(5分)已知a≠0,函数f(x)=ae x,g(x)=alnx+b,若存在一条直线与曲线y=f(x)和y=g(x)均相切,则使不等式恒成立的最小整数m的值是.二、解答题:本大题共6小题,共90分.请在答题卡区域内作答,解答应写出文字说明、证明过程或演算步骤.15.(15分)如图,在三棱锥P﹣ABC中,△P AB是正三角形,D,E分别为AB,AC的中点,∠ABC=90°.求证:(1)DE∥平面PBC;(2)AB⊥PE.16.(15分)某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中一次摸出3个小球,若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.(1)求小张在这次活动中获得的奖金数X的概率分布及数学期望;(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.17.(15分)已知,n∈N*.(1)当a=1时,求f5(x)展开式中的常数项;(2)若二项式f n(x)的展开式中含有x7的项,当n取最小值时,展开式中含x的正整数次幂的项的系数之和为10,求实数a的值.18.(15分)如图,在正三棱柱ABC﹣A1B1C1中,底面ABC的边长为2,侧棱长为4,M是线段AA1上一点,O是线段BC的中点,D为B1C1的中点.以为正交基底,建立如图所示的空间直角坐标系O﹣xyz.(1)若AM=MA1,求直线B1C1和平面BMC1所成角的正弦值;(2)若二面角M﹣BC1﹣B1的正弦值为,求AM的长.19.(15分)如图,在平面直角坐标系xOy中,椭圆C:的离心率为,焦点到相应准线的距离为,A,B分别为椭圆的左顶点和下顶点,P为椭圆C 上位于第一象限内的一点,P A交y轴于点E,PB交x轴于点D.(1)求椭圆C的标准方程;(2)若,求的值;(3)求证:四边形ABDE的面积为定值.20.(15分)已知函数f(x)=x3﹣3x2+(2﹣t)x,f'(x)为f(x)的导函数,其中t∈R.(1)当t=2时,求函数f(x)的单调区间;(2)若方程f(x)=0有三个互不相同的根0,α,β,其中α<β.①是否存在实数t,使得成立?若存在,求出t的值;若不存在,说明理由.②若对任意的x∈[α,β],不等式f(x)≤16﹣t恒成立,求t的取值范围.理科附加A组(选修4-2:矩阵与变换)21.若圆C:x2+y2=1在矩阵对应的变换下变成椭圆E:.(1)求a,b的值;(2)求矩阵A的逆矩阵A﹣1.22.已知,为矩阵的两个特征向量.(1)求矩阵M;(2)若,求M10β.B组(选修4-4:坐标系与参数方程)23.在平面直角坐标系xOy中,直线l的参数方程为(其中t为参数).在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,圆C的方程为ρ=4cosθ.(1)分别写出直线l的普通方程和圆C的直角坐标方程;(2)若直线l与圆C相切,求实数a的值.24.在平面直角坐标系xOy中,曲线C1的参数方程是(其中φ为参数,0≤φ≤π).在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程是ρ=2,等边△ABC的顶点都在C2上,且点A,B,C依逆时针次序排列,点A的极角为.(1)求点A,B,C的直角坐标;(2)设P为C1上任意一点,求点P到直线BC距离的取值范围.2017-2018学年江苏省苏州市高二(下)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答卷卡相应的位置.1.【考点】A8:复数的模.【解答】解:复数z====1+i,则|z|=.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.2.【考点】KC:双曲线的性质.【解答】解:∵双曲线中,a2=1且b2=3∴a=1,b=,可得c==2因此双曲线的离心率e==2故答案为:2【点评】本题给出双曲线的方程,求双曲线的离心率.着重考查了双曲线的标准方程与基本概念的知识,属于基础题.3.【考点】6D:利用导数研究函数的极值.【解答】解:函数y=2x﹣ln(x﹣1),可得y′=2﹣,令2﹣=0可得x=,当x∈(1,)时,y′<0,当x时,y′>0,所以x=是函数的极值点.故答案为:.【点评】本题考查函数的极值的求法,考查计算能力.4.【考点】29:充分条件、必要条件、充要条件.【解答】解:由x>3,一定有x>1,反之,x>1,不一定有x>3.所以,“x>1”是“x>3”成立的必要不充分条件.故答案为:必要不充分.【点评】本题考查必要条件、充分条件与充要条件.判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.5.【考点】D9:排列、组合及简单计数问题.【解答】解:甲必须在中间,则其他4人对应其他4个位置,有A44=24种情况,故答案为:24.【点评】本题考查排列、组合的运用,一般要先处理特殊(受到限制的)元素.6.【考点】K8:抛物线的性质.【解答】解:抛物线y2=4x的准线方程为x=﹣1,∵抛物线y2=4x上一点到其焦点距离为3,则该点到抛物线的准线的距离为3,∴所求点的横坐标为2,代入y2=4x,得y=±2 .抛物线y2=4x上位于第一象限内的一点为:(2,2)故答案为:(2,2).【点评】本题主要考查了抛物线的简单性质.在涉及焦点弦和关于焦点的问题时常用抛物线的定义来解决,是中档题.7.【考点】CH:离散型随机变量的期望与方差.【解答】解:离散型随机变量X的分布列可知:a+2a+=1,解得a=,所以离散型随机变量X的分布列为则X的数学期望E(X)==.故答案为:.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.8.【考点】D5:组合及组合数公式.【解答】解:(m为正整数且m≥4),即为=+=,即有m+1=7,解得m=6,故答案为:6.【点评】本题考查组合数公式和运用,考查方程思想和运算能力,属于基础题.9.【考点】DA:二项式定理.【解答】解:(x+1)2(x+2)3=(x2+2x+1)(x3+6x2+12x+8)=x5+2x4+x3+6x4+12x3+6x2+12x3+24x2+12x+8x2+16x+8=8+28x+38x2+25x3+8x4+x5,∴a1+a2+…+a5=28+38+25+8+1=100.故答案为:100.【点评】本题考查二项展开式中系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.10.【考点】J1:圆的标准方程.【解答】解:∵圆C的圆心在直线2x﹣y=0上,可设圆心C(a,2a),∵圆经过A(6,2),B(4,8)两点,则CA=CB,∴(a﹣6)2+(2a﹣2)2=(a﹣4)2+(2a﹣8)2,求得a=2,故圆心坐标C(2,4),半径CA==2,则圆C的标准方程是(x﹣2)2+(y﹣4)2=20,故答案为:(x﹣2)2+(y﹣4)2=20.【点评】本题主要考查求圆的标准方程的方法,关键是求圆心和半径,属于中档题.11.【考点】L5:旋转体(圆柱、圆锥、圆台).【解答】解:设圆锥与圆柱的底面面积为s,高为h,所以V1=sh,V2=sh﹣sh=.则=.故答案为:.【点评】本题考查几何体的体积的求法,考查空间想象能力以及计算能力.12.【考点】3K:函数奇偶性的性质与判断.【解答】解:由题意得:y=在R递减,∵y′=,∴﹣ax2+2ax﹣2≤0,即ax2﹣2ax+2≥0,∴a=0或,解得:0≤a≤2,故答案为:[0,2].【点评】本题考查了函数的单调性问题,考查导数的应用以及二次函数的性质,是一道中档题.13.【考点】5B:分段函数的应用;JE:直线和圆的方程的应用.【解答】解:根据题意,若经过点P作圆O:x2+y2=1的两条切线,切点为A,B,且∠APB=60°,则∠OP A=30°,则有|PO|=2|AO|=2,则P的轨迹为x2+y2=4,y=2|x﹣a|+x﹣a=,当x≤a时,曲线为x+y﹣a=0,(x≤a),当x≥a时,曲线为3x﹣y﹣3a=0,(x≥a),当a<0时,若这样的点P有且只有两个,必有<2,即﹣<2,解可得a>﹣,当a=0时,曲线为y=2|x|+x=,符合题意,当a>0时,若这样的点P有且只有两个,必有<2,解可得a<2,则a的取值范围为(﹣,2);故答案为:(﹣,2).【点评】本题考查直线与圆的位置关系,涉及分段函数的图象,关键是分析曲线的图象,属于综合题.14.【考点】6H:利用导数研究曲线上某点切线方程.【解答】解:函数f(x)=ae x,g(x)=alnx+b,导数为f′(x)=ae x,g′(x)=,设切点分别为(t,ae t),(n,alnn+b),与y=f(x),y=g(x)相切的直线方程为y﹣ae t=ae t(x﹣t),y﹣alnn﹣b=(x﹣n),由题意可得ae t=,且﹣a+b+alnn=(1﹣t)ae t,可得n=e﹣t,b=a+(1﹣t)ae t+ta,则=1+t+(1﹣t)e t,由y=1+t+(1﹣t)e t导数为y′=1﹣te t,由y=e t与y=的交点只有一个,且t>0,可得e t=,即有=1+t+=t+∈[2,3),且t=1时,取得等号,则m>2,可得最小整数m=3.故答案为:3.【点评】本题考查导数的运用:求切线方程,考查基本不等式的运用,以及运算能力和推理能力,属于中档题.二、解答题:本大题共6小题,共90分.请在答题卡区域内作答,解答应写出文字说明、证明过程或演算步骤.15.【考点】LS:直线与平面平行;LW:直线与平面垂直.【解答】证明:(1)因为D,E分别为AB,AC的中点,所以DE∥BC,又DE⊄平面PBC,BC⊂平面PBC,所以DE∥平面PBC.(2)连结PD,因为DE∥BC,又∠ABC=90°,所以DE⊥AB.又P A=PB,D为AB的中点,所以PD⊥AB,又PD∩DE=D,所以AB⊥平面PDE.因为PE⊂平面PDE,所以AB⊥PE.【点评】本题考查线面平行、线线垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.16.【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【解答】解:(1)小张在这次活动中获得的奖金数X的所有可能取值为100,200,300.,,,(或P(X=100)=1﹣P(X=200)﹣P(X=300)=)所以奖金数X的概率分布为奖金数X的数学期望=140(元).(2)设3个人中获二等奖的人数为Y,则,所以(k=0,1,2,3),设该公司某部门3个人中至少有2个人获二等奖为事件A,则P(A)=P(Y=2)+P(Y=3)=.答:该公司某部门3个人中至少有2个人获二等奖的概率为.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.17.【考点】DA:二项式定理.【解答】解:(1)二项式的展开式通项为(r=0,1,2,…,n),当n=5,a=1时,f5(x)的展开式的常数项为.(2)令2n﹣5r=7,则,所以n的最小值为6,当n=6时,二项式的展开式通项为(r=0,1,2,…,6),则展开式中含x的正整数次幂的项为T1,T2,T3,它们的系数之和为,即15a2+2a﹣1=0,解得或a=.故实数a的值为﹣或.【点评】本题考查二项展开式中常数项的求法,考查实数值的求法,考查二项式定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.18.【考点】MI:直线与平面所成的角;MJ:二面角的平面角及求法.【解答】解:根据题意得B(1,0,0),B1(1,4,0),C1(﹣1,4,0),所以,,(1)当M是线段AA1的中点时,,,设平面BMC1的一个法向量为,则,得,即,取y=1,得,设B1C1和平面BMC1所成角为θ,则=,所以B1C1和平面BMC1所成角的正弦值为.(2)设AM=a(0≤a≤4),则,,设平面BMC1的一个法向量为,则,得,即,取y=1,得,显然是平面BC1B1的一个法向量,设二面角M﹣BC1﹣B1的大小为φ,则,所以=,解得a=1或3,所以AM的长为1或3.【点评】本题考查直线与平面以及平面与平面所成角的求法,考查空间向量的数量积的应用,考查计算能力.19.【考点】KL:直线与椭圆的综合.【解答】解:(1)设右焦点F(c,0),因为椭圆C的离心率为,所以,①又因为右焦点F到右准线的距离为,所以,②由①②得,a=2,,b=1,所以椭圆C的标准方程是.(2)因为,所以,直线AE的方程为,由,得,解得x=﹣2(舍)或,可得,直线PB的方程为,令y=0,得,所以.(3)设P(x0,y0)(x0>0,y0>0),则,即.直线AP的方程为,令x=0,得.直线BP的方程为,令y=0,得.所以四边形ABDE的面积===为定值.【点评】本题考查椭圆方程的求法,考查四边形的面积为定值的证明,是中档题,解题时要认真审题,注意椭圆性质、韦达定理、直线与椭圆位置关系等知识点的合理运用20.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【解答】解:(1)当t=2时,f'(x)=3x2﹣6x,令f'(x)=3x2﹣6x>0,得x>2或x<0,所以f(x)的单调增区间为(﹣∞,0)和(2,+∞);令f'(x)=3x2﹣6x<0,得0<x<2,所以f(x)的单调减区间为(0,2).(2)①由题意知α,β是方程x2﹣3x+(2﹣t)=0的两个实根,所以,得.且α+β=3,αβ=2﹣t,α2+β2=5+2t,由成立得,αf'(α)=βf'(β),化简得3(α2+αβ+β2)﹣6(α+β)+(2﹣t)=0,代入得3(5+2t+2﹣t)﹣6×3+(2﹣t)=0,即5+2t=0,解得,因为,所以这样的实数t不存在.②因为对任意的x∈[α,β],f(x)≤16﹣t恒成立.由α+β=3,αβ=2﹣t,且α<β,当时,有0<α<β,所以对x∈[α,β],f(x)≤0,所以0≤16﹣t,解得t≤16.所以.当t>2时,有α<0<β,f'(x)=3x2﹣6x+(2﹣t),其判别式△=(﹣6)2﹣12(2﹣t)=12(t+1)>0.由f'(x)>0,得或,此时f(x)存在极大值点x1∈(α,0),且.由题得,将代入化简得,解得t≤11.因此2<t≤11.综上,t的取值范围是.【点评】本题考查了函数的单调性,最值问题,考查韦达定理的应用以及参数问题,考查转化思想,是一道综合题.理科附加A组(选修4-2:矩阵与变换)21.【考点】OH:逆变换与逆矩阵.【解答】解:(1)设点P(x,y)为圆C:x2+y2=1上任意一点,经过矩阵A变换后对应点为P'(x',y'),则,所以,代入椭圆方程得,又圆方程为x2+y2=1,故,即,又a>0,b>0,所以a=2,.(2)设,则,即,所以,解得,所以.【点评】本题考查实数值的求法,考查矩阵的逆矩阵的求法,考查矩阵的变换、矩阵的乘法法则等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.22.【考点】OV:特征值与特征向量的计算.【解答】解:(1)设矩阵M的特征向量对应的特征值为λ1,特征向量对应的特征值为λ2,则由,得,即,解得m=0,n=1,λ1=2,λ2=1,所以.(2)因为,所以=.【点评】本题考查矩阵的求法,考查矩阵的特征方程、待征向量、矩阵的乘法法则等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.B组(选修4-4:坐标系与参数方程)23.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【解答】解:(1)直线l的参数方程为(其中t为参数).所以:直线l的直角坐标系方程是2x+y﹣a﹣2=0,圆C的方程为ρ=4cosθ.所以圆C的直角坐标方程是(x﹣2)2+y2=4.(2)由(1)知圆心为C(2,0),半径r=2,设圆心到直线的距离为d,因为直线与圆相切,所以,解得.【点评】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,点到直线距离公式的应用.24.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【解答】解:(1)由x=ρcosθ,y=ρsinθ可得点A的直角坐标,由已知,B点的极坐标为,可得点B的直角坐标为,C点的极坐标为,可得点C的直角坐标为C(0,﹣2);(2)由直线方程的两点式可得直线BC的方程为,设点P(cosφ,2sinφ)(0≤φ≤π),则点P到直线BC的距离=(其中,),∵0≤φ≤π,∴θ≤φ+θ≤π+θ,则,∴.【点评】本题考查简单曲线的极坐标方程,考查极坐标与直角坐标的互化,考查点到直线距离公式的应用,是基础题.。
最新-宿迁市2018年下学期高二期末考试数学(附答案) 精

宿迁市2018-2018学年度第二学期期末试卷高二数学本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分总分:150分 考试时间:120分钟第I 卷(选择题:共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、函数f(x)=2的导数是 ( )A. 2B. 1 C . 0 D. 2x.2、在棱长为1的正方体ABCD-A 1B 1C 1D 1中,异面直线AB 与CD 1之间的距离是 ( )A.2B.3C. 1D.3、高二年级12个班共有580人,要采用分层抽样的方法从高二年级的全体学生中抽取一个容量为60的样本,已知某班有58名学生,那么从该班抽取的学生数是 ( )A. 5B. 6C. 10D. 12. 4、已知直线l ,m ,n 及平面α,下列命题中的假命题...是 ( ) A.若l ∥m ,m ∥n ,则l ∥nB.若l ⊥α,m ∥α,则l ⊥mC.若l ⊥m ,m ∥n ,则l ⊥nD.若l ∥α,n ∥α,则l ∥n.5、已知球面上两点的球面距离为1cm ,过这两点的球半径所成的角3π,则球的半径为 ()A.1πcm B.3πcm C. πcm D. 3πcm .6、已知函数f(x)=13x 3+12x 2+tx 是R 上的单调增函数,则t 的值可能是( )A. t=1B. t=0C. t = -1D. 不存在.7、一个半径为R 的球与体对角线长为l 的正方体的六个面都相切,则R 与l 的关系是 ( )A. l =3RB. l =23RC. l =2RD. 2R=3l. 8、函数y=f(x)在 [a ,b]上( )A.极大值一定比极小值大B.极大值一定是最大值C.最大值一定是极大值D.最大值一定大于极小值. 9、5名工人分别要在3天中选择1天休息,不同方法的种数有( )A. 53B. 35C. 35CD. 35A .10、正三棱锥侧面均为直角三角形,其体积为32,则底面边长是 ( )A. 1B. 2C. 3 D 4.11、4名学生参加数、理、化竞赛,每门学科至少有1人参加,则不同的参赛方案有()A. 12种B. 24种C. 36种D. 48种.12、已知函数y=f(x)的导函数y=f ' (x)的图象如图所示,则y=f(x)的图象可能是下图中的()二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上)13、已知曲线y =13x3+43,则过点P(2,4)的切线方程是.14、空间有3个平面,其中没有两个互相平行,则一共有________条交线.15、如图,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,则将ΔABC沿DE、EF、FD折成三棱锥后,GH与IJ所在直线所成的角的大小为.16、杨辉是我国南宋著名的数学家,“杨辉三角”是杨辉的一大重要研究成果,其中蕴含了许多优美的规律(如图),“杨辉三角”中第14行从左到右第10与第11个数的比值为__________.第1行1 1第2行1 2 1第3行133 1第4行 1 4 6 4 1第5行1 5 10 10 5 1宿迁市高二年级2018-2018学年度第二学期期末试卷第Ⅱ卷(选择题:共60分)一、选择题:(共12题,每题5分)二、填空题:(共4题,每题4分)13 ;14 ;15 ;16 .三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分12分)将5盆名花排成一列展览,(Ⅰ)牡丹花恰好放在正中间的概率;(Ⅱ)牡丹花、玫瑰花恰放在两端的概率.如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BC∥AD,且AB=AD=2BC,E,F分别是PB、PD 的中点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学期末试卷方差s 2=1n i =1∑n (x i --x )2,其中-x =1n i =1∑n x i ;锥体的体积公式:V =13Sh ;柱体的体积公式:V =Sh .一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上) 1. 已知集合{}0,1,2M =,集合{}2,N x x a a M ==∈,则M N = .2. 复数z =1-i ,则1z z+的实部是________. 3. 某射击运动员在五次射击中,分别打出了 9,8,10,8,x 环的成绩,且这组数据的平均数为 9,则这组数据的方差是.4.函数()f x =定义域为 .5. 若双曲线2214x y m m +=-的虚轴长为2,则实数m 的值为 . 6. 根据右面的伪代码,最后输出的T 值为 .7. 将甲、乙两个球随机放入编号为1,2,3的3个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有1个球的概率为 .8. 记棱长都为1的正三棱锥的体积为1V ,棱长都为1的正三棱柱的体积为2V ,则12=VV .9. 若直线y =2x +b 是曲线e 2x y =-的切线,则实数b = .10.任取两个小于1的正数,x y ,那么,,1x y 恰好为一个钝角三角形三边长的概率为 . 11.已知tan()1αβ+=,tan()2αβ-=,则sin 2cos2αβ的值为 .12.已知函数2()23()f x x ax ab bc ac =++-++(其中a ,b ,c 为正实数)的值域为[0,)+∞,则2a b c++的最小值为 .13.已知等边ABC ∆的边长为2,点P 在线段AC 上,若满足210PA PB λ⋅-+=的点P 恰有两个,则实数λ的取值范围是 .14.已知各项均为整数的数列{}n a 满足:91a =-,134a =,且前12项依次成等差数列,从第11项起依次成等比数列.若129129m m m m m m m m a a a a a a a a ++++++++++=⋅⋅⋅⋅,则正整数m = .二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分14分)已知A ,B ,C 是△ABC 的三个内角,向量 m =(1,3),n =(1-cos A ,sin A ),且∥m n .(1)求A 的值;(2)若1+sin 2Bcos2B=-3,求tan C 的值.16.(本小题满分14分)一副直角三角板(如图1)拼接,将△BCD 折起,得到三棱锥A -BCD (如图2). (1)若E ,F 分别为AB ,BC 的中点,求证:EF ∥平面ACD ; (2)若平面ABC ⊥平面BCD ,求证:平面ABD ⊥平面ACD .AB C D C B A DFE (第16题图1)(第16题图2)1392Pr int T For I Form TO Step T T I End ForT ←←⨯17.(本小题满分14分)如图,A ,B ,C 三个警亭有直道相通,已知A 在B 的正北方向6千米处,C 在B 的正东方向63千米处.(1)警员甲从C 出发,沿CA 行至点P 处,此时∠CBP =45°,求PB 的距离;(2)警员甲从C 出发沿CA 前往A ,警员乙从A 出发沿AB 前往B ,两人同时出发,甲的速度为3千米/小时,乙的速度为6千米/小时.两人通过专用对讲机保持联系,乙到达B 后原地等待,直到甲到达A 时任务结束.若对讲机的有效通话距离不超过9千米,试求两人通过对讲机能保持联系的总时长.18.(本小题满分16分) 19.(本小题满分16分)已知各项均为正数的数列{}n a 满足:11a =,2121n n n n a a a a λμ+++=+,n ∈N *.(1)当λ=2,μ=0 时,求证:数列{}n a 为等比数列; (2)若数列{}n a 是等差数列,求λ+μ的值;(3)若λ=1,μ为正常数,无穷项等比数列{b n }满足 a 1≤b n ≤a n .求{b n }的通项公式. 20.(本小题满分16分)已知函数32()(,,)f x ax bx c a b c =++∈R .(1)若1a =,函数()f x 与其导数()f x '在区间[1,)+∞上都为单调函数,且单调性一致,求实数b 的取值范围;(2)若1c =,且对x ∀∈R ,()()f x f x '>恒成立,求实数b 的取值范围;(3)若1a =,c =m -b (实数m 是与b 无关的常数),当函数()f x 有三个不同的零点时,b 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞U U ,求m 的值.1.{}0,1,2,4. 2.32. 3.45. 4.(0,10]. 5.3. 6.945. 7.29.8.提示:棱长为a3; 9.-2ln 2.提示:设切点00(,e 2)x P x -10.24π-.提示:几何概型,其中几何区域D 为0101x y <<⎧⎨<<⎩,几何区域d 为2211x y x y ⎧+<⎨+>⎩,且d D ⊆11.1.提示:由于展开繁琐,故进行角的整体变换,要么凑,要么换元,[][]sin ()()sin 2sin()cos()cos()sin()cos2cos ()()cos()cos()sin()sin()αβαβααβαβαβαββαβαβαβαβαβαβ++-+-++-==+--+-++-tan()tan()11tan()tan()αβαβαβαβ++-==++-. 12..提示:三板砖“减个元、换个元、变个形”,由0∆=得23a ab bc ac +++=,法1:由23a ab c a b --=+,得222323322()a ab a ab b a b c a b a b a b a b a b--+++++=++==+++++; 法2:∴()()3a a b c a b +++=,∴()()3a b a c ++=,由2()()a b c a b a c ++=+++得 13.3182λ<≤.提示:坐标法,以直线AB 为x 轴,AB 的垂直平分线为y 轴建立平面直角坐标系,法1:设P(x ,y),则有222x y λ+=,它表示圆O ,从而转化为圆O 与线段AC 有两个交点,画图观察知圆O 与直线AC 相交,且A 在圆O 外或圆O 上即可;法2:设(P x +,转化为当10x -≤≤时方程246320x x λ++-=有两个不等实根,参数分离,作图观察14.5.提示:求出公差1d =,可得前13项为-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,4,无论求和还是求积,从“0”入手最简单,注意到129,,,,m m m m a a a a +++为连续的10项, 若0在其中,从0向左右两边依次取项相加,直到和为0,可得5m =,若0不在其中,由于0前面只有9项,故10项都在0后面,显然这些数的积比和大,故无解15. (1) 因为∥m n 所以sin A +3cos A(2分)则sin ⎝⎛⎭⎫A+π3.(4分)又0<A<π ,所以A =π3.(6分)(2) 由题知 1+2sin Bcos Bcos 2B -sin 2B=-3,整理得sin 2B -sin Bcos B -2cos 2B =0.(8分) 又cos B ≠0 ,所以tan 2B -tan B -2=0,解得tan B =2或tan B =-1.(10分) 又当tan B =-1时cos 2B -sin 2B =0,不合题意舍去,所以tan B =2.(12分)故tan C =tan [π-(A +B)]=-tan (A +B)=-tan A +tan B 1-tan Atan B=8+5311. (14分)16.(1)因为E ,F 分别为AB ,BC 的中点,所以EF ∥AC . ………………2分又EF ⊄平面ACD ,AC ⊂平面ACD ,所以EF ∥平面ACD . …………………6分(2) 因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,CD ⊂平面BCD ,CD ⊥BC ,所以CD ⊥平面ABC . ……………………8分因为AB ⊂平面ABC ,所以CD ⊥AB . ……………………10分又因为AB ⊥AC ,AC ∩CD =C ,AC ⊂平面ACD ,CD ⊂平面ACD ,所以AB ⊥平面ACD . ……………………12分又AB ⊂平面ABD ,所以平面ABD ⊥平面ACD . ……………………14分17. (1) 在△ABC 中,AB =6,∠A =60°,∠APB =75°,由正弦定理,得AB sin ∠APB =BPsin A,即BP =6×322+64=1236+2=33(6-2),故PB 的距离是92-36千米. (4分)(2) 甲从C 到A ,需要4小时,乙从A 到B 需要1小时.设甲、乙之间的距离为f(t),要保持通话则需要f(t)≤9. ① 当0≤t ≤1时,f(t)=(6t )2+(12-3t )2-2·6t·(12-3t )cos 60°=37t 2-16t +16≤9,(6分)即7t 2-16t +7≤0,解得8-157≤t ≤8+157.又t ∈[0,1],所以8-157≤t ≤1,(8分)故两人通过对讲机保持联系的时长为15-17小时.② 当1<t ≤4时,f(t)=36+(12-3t )2-2·6(12-3t )cos 60°=3t 2-6t +12≤9,(10分) 即t 2-6t +3≤0,解得3-6≤t ≤3+ 6.又t ∈(1,4],所以1<t ≤4,(12分)故两人通过对讲机保持联系的时长为3小时.由①②可知,两人通过对讲机能保持联系的总时长为3+15-17=15+207(小时).答:两人通过对讲机能保持联系的总时长是15+207小时. (14分)(注:不答扣1分)18.(1)20解(1)法1:由题意,()2'32f x x bx =+233x x b ⎛⎫=+ ⎪⎝⎭,1︒当203b -=,即0b =时,()2'30f x x =…对x ∈R 恒成立, 故()f x 的单调递增区间为(),-∞+∞;2︒当203b ->,即0b <时,令()2'303f x x x b ⎛⎫=+> ⎪⎝⎭,则0x <或23x b >-, 所以()f x 的单调递增区间为(),0-∞和,23b ⎛⎫-+∞ ⎪⎝⎭,单调递减区间为30,2b ⎛⎫- ⎪⎝⎭;3︒当203b -<,即0b >时,令()2'303f x x x b ⎛⎫=+> ⎪⎝⎭,则23x b <-或0x >, 所以()f x 的单调递增区间为23,b ⎛⎫-∞- ⎪⎝⎭和()0,+∞,单调递减区间为023,b ⎛⎫- ⎪⎝⎭.又()f x '的单调递减区间为13,b ⎛⎫-∞- ⎪⎝⎭,单调增递区间为,13b ⎛⎫-+∞ ⎪⎝⎭.因为函数()f x 与其导数()f x '在区间[1,)+∞上都为单调函数,且单调性一致,所以23b ≥-法2(不严密):易知()2'32f x x bx =+在区间[1,)+∞上只能单调递增, 所以13b -≤,因为函数()f x 与其导数()f x '在区间[1,)+∞上都为单调函数,且单调性一致,所以对任意的1x ≥, ()2'320f x x bx =+≥恒成立,即32b x ≥-恒成立,所以23b ≥-,综上:23b ≥-;(2)由题意可得:记=)(x F 32(3)210ax b a x bx +--+>恒成立.若0a ≠,则三次函数()F x 至少有一个零点0x ,且在0x 左右两侧异号,不合题意;所以0a =,此时2()210F x bx bx =-+>恒成立等价于:b =0或者>0,010b b ∆⎧∴<⎨<⎩≤. (3)因c m b =-,故()32f x x bx m b =++-,由(1)得:1︒当0b =时,()f x 单调递增,故()f x 至多有一个零点,不满足题意;2︒当0b ≠时,若函数()f x 有三个不同的零点,则只需()203f f f b f ⎛⎫⋅=⋅ ⎪⎝-⎭极大极小()34027b m b m b ⎛⎫=+--< ⎪⎝⎭, 又实数b 的解集为()33,31,,22⎛⎫⎛⎫-∞-+∞ ⎪⎪⎝⎭⎝⎭, 因此13b =-,21b =,332b =是关于b 的方程()34027b m b m b ⎛⎫+--=⎪⎝⎭的三个实数根, 分别代入检验,可得1m =.第(3)问解答详见2015年江苏高考第19题。