如何求解常微分方程

合集下载

常微分方程的解法

常微分方程的解法

常微分方程的解法什么是常微分方程?在数学中,常微分方程是描述自变量与一个或多个函数的导数之间关系的方程。

常微分方程是许多科学和工程问题的数学模型的基础,因此对其解法的研究具有重要意义。

常微分方程的分类常微分方程可以根据阶数、线性性质、系数类型等进行分类,主要包括一阶常微分方程、二阶常微分方程、线性常微分方程、非线性常微分方程等。

不同类型的微分方程需要采用不同的解法进行求解。

常微分方程的解法1. 分离变量法当常微分方程可以化为变量分离后,可以采用分离变量法进行求解。

这种方法适用于一阶可分离变量的常微分方程,基本思想是将未知函数的导数与自变量分离到不同的方程两边,通过积分来求解。

2. 特征方程法特征方程法适用于线性常系数齐次微分方程,通过找到相应的特征方程并求得特征根,再根据特征根的不同情况得到通解形式。

特征方程法是解决二阶及以上线性齐次微分方程最常用的方法之一。

3. 变易参数法对于二阶非齐次线性微分方程,可以采用变易参数法求解。

该方法通过猜测一个特解形式,并代入原微分方程得到特解,再加上对应齐次线性微分方程的通解得到原非齐次微分方程的通解。

4. 拉普拉斯变换法拉普拉斯变换法主要适用于线性时不变系统稳态和暂态响应问题,通过将微分方程转化为代数方程,从而得到更容易求解的结果。

常微分方程的应用常微分方程广泛应用于物理、生物、经济、工程等领域。

例如,弹簧振动系统、放射性衰变过程、人口增长模型等都可以用常微分方程进行建模和求解,因此对常微分方程的深入理解及其解法的掌握对于实际问题具有重要意义。

总结通过本文简要介绍了常微分方程及其分类,并详细讨论了常微分方程的几种常用解法。

同时也指出了常微分方程在现实生活中的重要应用。

在实际问题中,掌握不同类型常微分方程的解法,并能灵活运用于实际问题中,对于深化对其理论和应用的理解具有重要意义。

希望本文对读者进一步理解和掌握常微分方程及其解法有所帮助。

常微分方程的常见解法

常微分方程的常见解法

# 定义网格密度
arrows=LINE,
# 定义线段类型
axes=NORMAL);
# 定义坐标系类型
在MATLAB的向量场命令为 quiver(x,y,px,py)
回车后Maple就在1 1 的网格点上画出了向量场
44
的图形,并给出了过点(-2, 2) (-2 ,1) (-2,2) 的三
条积分曲线,见下图
M (x,y)co x s2xye , y
N (x,y)co x s2xye x
M(x,y)N(x,y)
y
x
所以方程为全微分方程。
由公式F (x ,y ) 0M (s ,y )d s 0N (0 ,s )d s
x(yc o ss 2 se y)d sy2 d s
0
0
ysinxx2ey2y

x
y
F (x ,y )x 0M (s ,y ) d s y 0N (x 0 ,s ) d
s
例:验证方程
( y c o s x 2 x e y ) d x ( s i n x x 2 e y 2 ) d y 0
是全微分方程,并求它的通解。 解:由于 M (x ,y ) y c o sx 2 x e yN (x ,y ) s in x x 2 e y 2
dx
令 zy1n,则 dz(1n)yndy
dx
dx
d z (1 n )P (x )z (1 n )Q (x )
d x
求出此方程通解后, 换回原变量即得伯努利方程的通解。
例 湖泊的污染
设一个化工厂每立方米的废水中含有3.08kg盐酸, 这些废水流入一个湖泊中,废水流入的速率20 立方米每小时. 开始湖中有水400000立方米. 河水 中流入不含盐酸的水是1000立方米每小时, 湖泊 中混合均匀的水的流出的速率是1000立方米每小 时,求该厂排污1年时, 湖泊水中盐酸的含量。 解: 设t时刻湖泊中所含盐酸的数量为 x ( t )

常微分方程的解法总结总结

常微分方程的解法总结总结

常微分方程的解法总结前言常微分方程(Ordinary Differential Equation,ODE)是研究一阶或高阶导数与未知函数之间关系的数学方程。

在物理学、工程学和计算机科学等领域,常微分方程扮演着重要的角色。

解决常微分方程是这些领域中许多问题的关键。

本文将总结常用的常微分方程解法方法,帮助读者加深对常微分方程的理解并提供解决问题的思路。

一、可分离变量法可分离变量法是一种常见且简单的求解常微分方程的方法。

它适用于形如dy/dx = f(x)g(y)的一阶常微分方程。

解题思路:1.将方程写成dy/g(y) = f(x)dx的形式,将变量进行分离。

2.两边同时积分得到∫(1/g(y))dy = ∫f(x)dx。

3.求出积分后的表达式,并整理得到解 y 的表达式。

使用这种方法解决常微分方程的步骤相对简单,但要注意确认分母不为零以及选取合适的积分常数。

二、特殊方程类型的求解除了可分离变量法,常微分方程还存在一些特殊的方程类型,它们可以通过特定的方法进行解决。

1. 齐次方程齐次方程是指形如dy/dx = F(y/x)的方程。

其中,F(t) 是一个只有一个变量的函数。

解题思路:1.令 v = y/x,即 y = vx。

将方程转化为dy/dx = F(v)。

2.对于dv/dx = F(v)/x这个方程,可以使用分离变量法进行求解。

3.求出 v(x) 后,将其代入 y = vx 得到完整的解。

2. 齐次线性方程齐次线性方程是指形如dy/dx + P(x)y = 0的方程。

解题思路:1.使用积分因子法求解,将方程乘以一个积分因子,使得左边变成一个可积的形式。

2.求积分因子的方法是根据公式μ = e^(∫P(x)dx),其中 P(x) 是已知的函数。

3.通过乘积的方式求解完整的方程。

3. 一阶线性常微分方程一阶线性常微分方程是指形如dy/dx + P(x)y = Q(x)的方程。

解题思路:1.使用积分因子法,将方程乘以一个积分因子,使得左边变成一个可积的形式。

如何求解常微分方程

如何求解常微分方程

如何求解常微分方程?常数变易法、积分因子法,函数变换法。

大致与微积分同时产生。

事实上,求y′=f(x)的原函数问题便是最简单的微分方程。

I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。

他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。

用现在叫做“首次积分”的办法,完全解决了它的求解问题。

17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。

但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

常微分方程解法总结

常微分方程解法总结

常微分方程解法总结引言在数学领域中,常微分方程是一类以函数与其导数之间关系为描述对象的方程。

它广泛应用于物理、化学、生物等自然科学的建模和解决问题中。

常微分方程的求解有许多方法,本文将对其中一些常见的解法进行总结和讨论。

一、分离变量法分离变量法是求解常微分方程中常用的一种方法。

它的基本思想是将方程中的变量分离,将含有未知函数的项移到方程的一侧,含有自变量的项移到方程的另一侧,然后对两边同时积分,从而得到最终的解析解。

例如,考虑一阶常微分方程dy/dx = f(x)g(y),可以将此方程改写为1/g(y)dy = f(x)dx,然后对两边同时积分得到∫1/g(y)dy =∫f(x)dx。

在对两边积分后,通过求解不定积分得到y的解析表达式。

二、常系数线性齐次微分方程常系数线性齐次微分方程是另一类常见的常微分方程。

它具有形如dy/dx + ay = 0的标准形式,其中a为常数。

这类方程的解法基于线性代数中的特征值和特征向量理论。

对于形如dy/dx + ay = 0的一阶常微分方程,可以假设其解具有形式y = e^(rx),其中r为待定常数。

带入方程,解得a的值为r,于是解的通解即为y = Ce^(rx),其中C为任意常数。

通过特定的初值条件,可以确定常数C的值,得到方程的特解。

三、变量分离法变量分离法是一种适用于某些特殊形式常微分方程的解法。

其基本思想是将方程中的变量进行适当的变换,从而将方程化为分离变量的形式。

例如,考虑一阶非齐次线性微分方程dy/dx = f(x)/g(y),其中f(x)和g(y)为已知函数。

通常情况下,变量分离法需要对方程变形,将含有未知函数和自变量的项进行合并处理。

假设存在一个新的变量z(x) = g(y),则dy/dx = (dy/dz)*(dz/dx) = (1/g'(y))*(dz/dx)。

将dy/dx和f(x)分别代入原方程,进而可以求得dz/dx。

对dz/dx进行积分后,可以得到z(x)的解析表达式。

常微分方程解法大全

常微分方程解法大全

常微分方程解法大全在数学和物理学中,常微分方程是一个重要而广泛应用的概念。

常微分方程描述连续的变化,解决了许多实际问题和科学领域中的模型。

解常微分方程可以揭示系统的行为并预测未来情况。

在本文中,我们将探讨常微分方程的各种解法,包括常见的常系数线性微分方程、变速微分方程、欧拉方程等各类形式。

常系数线性微分方程一阶线性微分方程对于形如 $\\frac{dy}{dt} + ay = f(t)$ 的一阶线性微分方程,可以利用积分因子法求解。

首先找到积分因子 $I(t) = e^{\\int a dt}$,然后将方程乘以积分因子得到$e^{\\int a dt}\\frac{dy}{dt} + ae^{\\int a dt}y = e^{\\int a dt}f(t)$,进而写成$\\frac{d}{dt}(e^{\\int a dt}y) = e^{\\int a dt}f(t)$。

对两边积分即可得到 $y = e^{-\\int a dt}\\int e^{\\int a dt}f(t)dt + Ce^{-\\int a dt}$。

高阶线性微分方程对于形如 $y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \\ldots + a_1y'(t) + a_0y(t) =f(t)$ 的 n 阶线性微分方程,可以利用特征根法求解。

首先找到特征方程$\\lambda^n + a_{n-1}\\lambda^{n-1} + \\ldots + a_1\\lambda + a_0 = 0$ 的根$\\lambda_1, \\ldots, \\lambda_n$,然后通解可表示为 $y(t) = c_1e^{\\lambda_1t} + \\ldots + c_ne^{\\lambda_nt} + y_p(t)$,其中y p(t)为特解。

变速微分方程变速微分方程描述的是系统参数随时间变化的情况,通常包含随时间变化的系数。

如何求解常微分方程

如何求解常微分方程

如何求解常微分方程求解常微分方程是微积分中的重要内容,常微分方程是描述未知函数与其导数之间关系的方程。

常微分方程的求解方法有多种,下面我将从多个角度进行全面的回答。

1. 分离变量法,对于可分离变量的一阶常微分方程,可以通过将变量分离并进行积分来求解。

首先将方程中的未知函数和导数分离到方程的两侧,然后进行变量的移项和积分,最后得到未知函数的表达式。

2. 齐次方程法,对于一阶常微分方程,如果可以通过变量的替换将其转化为齐次方程,即方程中的未知函数和导数的比值只与自变量有关,可以使用齐次方程法求解。

通过引入新的变量替换和代换,将齐次方程转化为可分离变量的形式,然后进行求解。

3. 线性方程法,对于一阶线性常微分方程,可以使用线性方程法求解。

线性方程的特点是未知函数和其导数的一次项系数是常数,通过引入一个积分因子,将线性方程转化为可积分的形式,然后进行求解。

4. 变量替换法,对于某些形式复杂的常微分方程,可以通过引入新的变量替换,将其转化为更简单的形式,然后进行求解。

常见的变量替换包括令导数等于新的变量,令未知函数等于新的变量的幂函数等。

5. 微分方程的特殊解法,对于一些特殊的常微分方程,可以使用特殊解法求解。

例如,对于一些常见的一阶常微分方程,如指数函数、对数函数、三角函数等形式,可以直接猜测其特殊解,然后验证是否满足原方程。

6. 数值解法,对于一些无法通过解析方法求解的常微分方程,可以使用数值解法进行近似求解。

常见的数值解法包括欧拉法、改进的欧拉法、龙格-库塔法等,这些方法将微分方程转化为差分方程,通过迭代计算得到近似解。

总结起来,求解常微分方程的方法包括分离变量法、齐次方程法、线性方程法、变量替换法、特殊解法和数值解法。

根据不同的常微分方程形式和条件,选择合适的方法进行求解。

希望这些解答对你有帮助。

常微分方程的常见解法

常微分方程的常见解法

实例解析
实例1
求解一阶线性常微分方程 $y' + p(x)y = q(x)$,通过引入参数 $lambda$,可以将方程转化为 $lambda y = q(x)$,从而简化求解过程。
实例2
求解二阶常微分方程 $y'' + y' + y = 0$,通过引入参数 $lambda$,可以将方程转化为 $lambda^2 + lambda + 1 = 0$,从而求解出 $lambda$ 的值,进一步得到原方程的解。
当 (M(x)) 和 (N(x)) 均为非零函数时,该方法适用。
实例解析
1. 确定积分因子
选择积分因子为 (e^x)
5. 解出原方程
将 (e^x y = frac{1}{3} e^{3x} + C) 代入 原方程,解得 (y = frac{1}{3} x^2 + Ce^{-x})
4. 解方程
对两边积分,得到 (e^x y = frac{1}{3} e^{3x} + C)
04 积分因子法
定义与特点
定义
积分因子法是一种通过引入一个因子来简化微分方程的方法。
特点
通过乘以一个适当的因子,可以将微分方程转化为可分离变量的形式,从而简化求解过程。
适用范围
适用于形如 (M(x)y' + N(x)y = f(x)) 的线性微分方程,其中 (M(x)) 和 (N(x)) 是 已知函数,(f(x)) 是给定的函数。
实例2
考虑一阶常微分方程 (dy/dx = xy),其中 (x > 0) 且 (y > 0)。通过分离变量法, 我们可以得到 (dy/y = xdx),进一步求解得到 (ln|y| = frac{1}{2}x^2 + C),其 中 (C) 是积分常数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如何求解常微分方程?
常数变易法、积分因子法,函数变换法。

大致与微积分同时产生。

事实上,求y′=f(x)的原函数问题便是最简单的微分方程。

I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。

他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。

用现在叫做“首次积分”的办法,完全解决了它的求解问题。

17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。

总之,力学、天文学、几何学等领域的许多问题都导致微分方程。

在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。

因而微分方程的研究是与人类社会密切相关的。

当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。

但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。

这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。

比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。

也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。

但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。

在数学上,解这类方程,要用到微分和导数的知识。

因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。

微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。

牛顿在建立微积分的同时,对简单的微分方程用级数来求解。

后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。

常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。

数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。

后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。

这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。

微分方程也就成了最有生命力的数学分支。

[编辑本段]常微分方程的内容
如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。

一般地说,n 阶微分方程的解含有n个任意常数。

也就是说,微分方程的解中含有任意常数的个数和方程的阶数数相同,这种解叫做微分方程的通解。

通解构成一个函数族。

如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。

对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。

常微分方程的特点
常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。

下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。

也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。

当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。

因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。

因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。

当然,这个近似解的精确程度是比较高的。

另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。

这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。

应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

[编辑本段]二阶常系数齐次线性微分方程解法
见大学课本《微积分》。

特征根法是解常系数齐次线性微分方程的一种通用方法。

设特征方程r*r+p*r+q=0两根为r1,r2。

1 若实根r1不等于r2
y=c1*e^(r1x)+c2*e^(r2x).
2 若实根r1=r2
y=(c1+c2x)*e^(r1x)。

相关文档
最新文档