浙江省台州市温岭市2019年中考数学一模试卷(含答案解析)

合集下载

浙江省台州市2019-2020学年中考数学一模试卷含解析

浙江省台州市2019-2020学年中考数学一模试卷含解析

浙江省台州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( )A .0.135×106B .1.35×105C .13.5×104D .135×1032.已知二次函数2()y x h =-(h 为常数),当自变量x 的值满足13x -剟时,与其对应的函数值y 的最小值为4,则h 的值为( )A .1或5B .5-或3C .3-或1D .3-或53.如图,右侧立体图形的俯视图是( )A .B .C .D .4.如图,半径为5的A e 中,弦BC ,ED 所对的圆心角分别是BAC ∠,EAD ∠,若6DE =,180BAC EAD ∠+∠=︒,则弦BC 的长等于( )A .8B .10C .11D .125.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )A .B .C .D .6.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;147.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=1008.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+19.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.10.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x11.如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③12.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知OP 平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是_________.14.分解因式:2a2﹣2=_____.15.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.16.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.17.分解因式:9x3﹣18x2+9x= .18.(11·湖州)如图,已知A、B是反比例函数(k>0,x<0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=2x﹣1与直线y=mx+2互相垂直,则m的值是____;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.20.(6分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是 ,众数是 ;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?21.(6分)如图,一位测量人员,要测量池塘的宽度 AB 的长,他过 A B 、 两点画两条相交于点 O 的射线,在射线上取两点 D E 、 ,使 13OD OE OB OA == ,若测得 37.2DE = 米,他能求出 A B 、 之间的距离吗?若能,请你帮他算出来;若不能,请你帮他设计一个可行方案.22.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?23.(8分)一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.甲,乙两公司单独完成此项工程,各需多少天?若让一个公司单独完成这项工程,哪个公司的施工费较少?24.(10分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.25.(10分)计算:2﹣1+|﹣3|+12+2cos30°26.(12分)解方程组4311, 213.x yx y-=⎧⎨+=⎩①②27.(12分)如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=42,求DF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.D【解析】【分析】由解析式可知该函数在x h =时取得最小值0,抛物线开口向上,当x h >时,y 随x 的增大而增大;当x h<时,y 随x 的增大而减小;根据13x -≤≤时,函数的最小值为4可分如下三种情况:①若13h x <-≤≤,1x =-时,y 取得最小值4;②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4;③若13x h -≤≤<,当x=3时,y 取得最小值4,分别列出关于h 的方程求解即可.【详解】解:∵当x >h 时,y 随x 的增大而增大,当x h <时,y 随x 的增大而减小,并且抛物线开口向上, ∴①若13h x <-≤≤,当1x =-时,y 取得最小值4,可得:24(1)h =--4,解得3h =-或1h =(舍去);②若-1<h <3时,当x=h 时,y 取得最小值为0,不是4,∴此种情况不符合题意,舍去;③若-1≤x≤3<h ,当x=3时,y 取得最小值4,可得:24(3)h =-,解得:h=5或h=1(舍).综上所述,h 的值为-3或5,故选:D .【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.3.A【解析】 试题分析:从上边看立体图形得到俯视图即可得右侧立体图形的俯视图是,故选A.考点:简单组合体的三视图.4.A【解析】作AH ⊥BC 于H ,作直径CF ,连结BF ,先利用等角的补角相等得到∠DAE=∠BAF ,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,由AH ⊥BC ,根据垂径定理得CH=BH ,易得AH 为△CBF的中位线,然后根据三角形中位线性质得到AH=12BF=1,从而求解.解:作AH⊥BC于H,作直径CF,连结BF,如图,∵∠BAC+∠EAD=120°,而∠BAC+∠BAF=120°,∴∠DAE=∠BAF,∴弧DE=弧BF,∴DE=BF=6,∵AH⊥BC,∴CH=BH,∵CA=AF,∴AH为△CBF的中位线,∴AH=12BF=1.∴2222534BH AB AH=-=-=,∴BC=2BH=2.故选A.“点睛”本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.5.B【解析】【分析】根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.【详解】解:主视图,如图所示:.故选B.【点睛】本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数.6.C【解析】【分析】根据统计图,利用众数与中位数的概念即可得出答案.【详解】从统计图中可以得出这一周的气温分别是:12,15,14,10,13,14,11所以众数为14;将气温按从低到高的顺序排列为:10,11,12,13,14,14,15所以中位数为13故选:C.【点睛】本题主要考查中位数和众数,掌握中位数和众数的求法是解题的关键.7.B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 ﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.8.B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.9.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.10.C【解析】【分析】由双曲线中k的几何意义可知12AOCS kV,据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答. 【详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;11.D【解析】【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【详解】分两种情况讨论:①当点P顺时针旋转时,BP的长从增加到2,再降到0,图象③符合;②当点P逆时针旋转时,BP降到0,再增加到2,图象①符合.故答案为①或③.故选D.【点睛】本题考查了动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.12.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.二、填空题:(本大题共6个小题,每小题4分,共24分.)133【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】∵OP 平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP ∥OA ,∴∠AOP=∠CPO ,∴∠COP=∠CPO ,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE ⊥OB ,∴∠CPE=30°, ∴112CE CP ==,∴PE ==∴2OP PE ==∵PD ⊥OA ,点M 是OP 的中点,∴12DM OP ==【点睛】此题考查了等腰三角形的性质与判定、含 30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,属于中考常见题型,求出 OP 的长是解题关键.14.2(a+1)(a ﹣1).【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a 2﹣2,=2(a 2﹣1),=2(a+1)(a ﹣1).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.m=8或【解析】【分析】求出抛物线的对称轴分三种情况进行讨论即可.【详解】抛物线的对称轴,抛物线开口向下,当,即时,抛物线在-1≤x≤2时,随的增大而减小,在时取得最大值,即解得符合题意.当即时,抛物线在-1≤x≤2时,在时取得最大值,即无解.当,即时,抛物线在-1≤x≤2时,随的增大而增大,在时取得最大值,即解得符合题意.综上所述,m的值为8或故答案为:8或【点睛】考查二次函数的图象与性质,注意分类讨论,不要漏解.16.1【解析】【分析】根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得2,BC=1,在求得点G到EF2sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE .又∵S △BIC =1,∠BIC=90°, ∴12BI•IC=1, ∴BI=IC=2,∴BC=22BI IC +=1,∵EF=BC=1,FG=EH=BI=2,∴点G 到EF 的距离为:22⨯, ∴平行四边形EFGH 的面积=EF•22⨯=12×22=1. 故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.17.9x 2(1)x -【解析】试题分析:首先提取公因式9x ,然后利用完全平方公式进行因式分解.原式=9x (2x -2x+1)=9x 2(1)x -.考点:因式分解18.A【解析】试题分析:①当点P 在OA 上运动时,OP=t ,S=OM•PM=tcosα•tsinα,α角度固定,因此S 是以y 轴为对称轴的二次函数,开口向上;②当点P 在AB 上运动时,设P 点坐标为(x ,y ),则S=xy=k ,为定值,故B 、D 选项错误; ③当点P 在BC 上运动时,S 随t 的增大而逐渐减小,故C 选项错误.故选A .考点:1.反比例函数综合题;2.动点问题的函数图象.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y =﹣12x 2+12x+1;(2)①-12;②点P 的坐标(6,﹣14)(4,﹣5);(3. 【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA ,PB 的解析式,根据解方程组,可得P 点坐标;(3)根据垂直于x 的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值【详解】解:(1)将A ,B 点坐标代入,得 10(1)11(2)a b a b -+=⎧⎨++=⎩, 解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩, 抛物线的解析式为y =211x x 122-++; (2)①由直线y =2x ﹣1与直线y =mx+2互相垂直,得2m =﹣1,即m =﹣12; 故答案为﹣12; ②AB 的解析式为1122y x =+ 当PA ⊥AB 时,PA 的解析式为y =﹣2x ﹣2,联立PA 与抛物线,得21112222y x x y x ⎧=++⎪⎨⎪=--⎩, 解得10x y =-⎧⎨=⎩(舍),614x y =⎧⎨=-⎩, 即P (6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得21112223y x xy x⎧=++⎪⎨⎪=-+⎩,解得11xy=⎧⎨=⎩(舍)45xy=⎧⎨=-⎩,即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图:,∵M(t,﹣12t2+12t+1),Q(t,12t+12),∴MQ=﹣12t2+12S△MAB=12MQ|x B﹣x A|=12(﹣12t2+12)×2=﹣12t2+12,当t=0时,S取最大值12,即M(0,1).由勾股定理,得AB2221+5设M到AB的距离为h,由三角形的面积,得h55.点M到直线AB 5.【点睛】本题考查了二次函数综合题,涉及到抛物线的解析式求法,两直线垂直,解一元二次方程组,及点到直线的最大距离,需要注意的是必要的辅助线法是解题的关键20. (1) 7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】【分析】(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9, ∴中位数为7+72=7,众数是7和8, 故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为52+73+83+910⨯⨯⨯=7(次), ∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】 本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.21.可以求出A 、B 之间的距离为111.6米.【解析】【分析】 根据OD OE OB OA=,AOB EOD ∠=∠(对顶角相等),即可判定AOB EOD V V ∽,根据相似三角形的性质得到13DE OE AB OA ==,即可求解. 【详解】解:∵OD OE OB OA=,AOB EOD ∠=∠(对顶角相等), ∴AOB EOD V V ∽,∴13 DE OEAB OA==,∴37.213 AB=,解得111.6AB=米.所以,可以求出A、B之间的距离为111.6米【点睛】考查相似三角形的应用,掌握相似三角形的判定方法和性质是解题的关键.22.(1)每行驶1千米纯用电的费用为0.26元.(2)至少需用电行驶74千米.【解析】【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【详解】(1)设每行驶1千米纯用电的费用为x元,根据题意得:760.5 x+= 26 x解得:x=0.26经检验,x=0.26是原分式方程的解,答:每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,得:0.26y+(260.26﹣y)×(0.26+0.50)≤39解得:y≥74,即至少用电行驶74千米.23.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得111x 1.5x12 +=,解得x=1.经检验,x=1是方程的解且符合题意.1.5 x=2.∴甲,乙两公司单独完成此项工程,各需1天,2天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=10100解得y=5000,甲公司单独完成此项工程所需的施工费:1×5000=100000(元);乙公司单独完成此项工程所需的施工费:2×(5000﹣1500)=105000(元);∴让一个公司单独完成这项工程,甲公司的施工费较少.【解析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.24.(1)15人;(2)补图见解析.(3).【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.25.12 【解析】【分析】原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.【详解】原式=12+2×2=12 【点睛】本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.26.53x y =⎧⎨=⎩【解析】【分析】将②×3,再联立①②消未知数即可计算. 【详解】解:②3⨯得:6339x y += ③①+③得:1050x =5x =把5x =代入③得10339y +=3y =∴方程组的解为53x y =⎧⎨=⎩【点睛】本题考查二元一次方程组解法,关键是掌握消元法.27.(1)证明见解析;(2)1.【解析】【分析】(1)先证明出△CEF ≌△BED ,得出CF=BD 即可证明四边形CDBF 是平行四边形;(2)作EM⊥DB于点M,根据平行四边形的性质求出BE,DF的值,再根据三角函数值求出EM的值,∠EDM=30°,由此可得出结论.【详解】解:(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF≌△BED.∴CF=BD.∴四边形CDBF是平行四边形.(2)解:如图,作EM⊥DB于点M,∵四边形CDBF是平行四边形,BC=42∴1222BE BC==DF=2DE.在Rt△EMB中,EM=BE•sin∠ABC=2,在Rt△EMD中,∵∠EDM=30°,∴DE=2EM=4,∴DF=2DE=1.【点睛】本题考查了平行四边形的判定与全等三角形的判定与性质,解题的关键是熟练的掌握平行四边形的判定与全等三角形的判定与性质.。

【附20套中考模拟试题】浙江省台州市温岭市2019-2020学年中考数学模拟试卷含解析

【附20套中考模拟试题】浙江省台州市温岭市2019-2020学年中考数学模拟试卷含解析
21.(6分)如图,AB=AD,AC=AE,BC=DE,点E在BC上.
求证:△ABC≌△ADE;(2)求证:∠EAC=∠DEB.
22.(8分)先化简 ,然后从﹣ <x< 的范围内选取一个合适的整数作为x的值代入求值.
23.(8分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点DBD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.
A. B. C. D.
7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确的是( )
A.若这5次成绩的中位数为8,则x=8
B.若这5次成绩的众数是8,则x=8
C.若这5次成绩的方差为8,则x=8
D.若这5次成绩的平均成绩是8,则x=8
8.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()
收费出口编号
通过小客车数量(辆)
260
330
300
360
240
在 五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.
17.分解因式:a3-a=
18.已知反比例函数y= ,当x>0时,y随x增大而减小,则m的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
14.在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是.
15.如图,在平行四边形纸片上做随机扎针实验,则针头扎在阴影区域的概率为__________.

2019年浙江省台州市中考数学第一次模拟考试试卷附解析

2019年浙江省台州市中考数学第一次模拟考试试卷附解析

2019年浙江省台州市中考数学第一次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为 r ,圆心0到直线l 的距离为 d. 若直线l 与⊙O 有交点,则下列结论正确的是( )A .d=rB .d ≤rC . d ≥rD . d <r 2.已知线段 AB=3cm ,⊙O 经过点A 和点B ,则⊙O 的半径( ) A .等于3 cm B .等于1.5 cm C .小于3 cmD .不小于1.5 cm 3.矩形、菱形、正方形都具有的性质是( ) A .每一条对角线平分一组对角 B .对角线相等C .对角线互相平分D .对角线互相垂直4.顺次连结矩形ABCD 各边中点所得的四边形是( ) A .平行四边形 B .矩形 C .菱形D .不能确定 5.一个四边形如果有锐角,那么它的锐角的个数最多有( )A .4个B .3个C .2个D .1个 6.一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①k<0;③a>0;③当3x <时,12y y <中,正确的个数是( )A .0个B .1个C . 2个D .3个7.在某城市,80%的家庭年收入不小于2.5万元,下面一定不小于2.5万元的是( )A .年收入的平均数B .年收入的众数C .年收入的中位数D .年收入的平均数和众数 8.若2540x y z ++=,370x y z +-=,则x y z +-的值是( )A . 0B . 2C . 1D . 不能确定 9.观察图1,在A 、B 、C 、D 四幅图案中,能通过图1平移得到的是( )图1 A . B . C . D .10.下列运算正确的是( )A .y y x y x y =----B .2233x y x y +=+C .22x y x y x y +=++ D .221y x x y x y -=--- 11.如图所示,已知AB=A ′B ′,∠A=∠A ′,若△ABC ≌△A ′B ′C ′,还需要( ) A .∠B=∠B ′ B .∠C=∠C ′ C .AC=A ′C ′D .以上均可12.如图所示,在直角三角形ABC 中,AC ≠AB ,AD 是斜边BC 上的高,DE ⊥AC ,DF ⊥AB ,垂足分别是E ,F ,则 图中与∠C (除°C 外)相等的角的个数是( )A .2个B .3个C .4个D .5个13.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有 ( )A .2个B .3个C .4个D .5个二、填空题14.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD =120°,OE =3厘米,则OD = 厘米.15.如图,是一个圆形转盘,现按1:2:3:4分成四个部分,分别涂上红,黄,蓝,绿四种颜色,自由转动转盘,停止后指针落在绿色区域的概率为 .16.如果抛物线21y x ax =-+的对称轴是y 轴,那么a 的值为 .17.已知下列函数①2y x =;②32y x =-+;③1(0)y x x=->;④2(0)y x x =<;⑤2321y x x =-+-.其中y 随x 增大而减少的 (填序号). 18.某青年棒球队14名队员的年龄如下表:1年龄(岁) 1920 21 22 1人数(人) 3 7 2 2 则出现次数最多的年龄是 .19.如果等腰三角形两边长分别为3和6,那么第三边的长是__ ___.20.如图,∠1 =40°,∠2=40°,那么直线a 与b 的位置关系是 ,理由是 .21.ΔA ′B ′C ′是ΔABC 经相似变换所得的像,AB=1, A ′B ′=3,△ABC 的周长是ΔA ′B ′C ′的周长的 倍,ΔABC 的面积是ΔA ′B ′C ′面积的 倍.22.两个数的积是-1,其中一个数是135-,则另一个数是 .23.方程x 2-2x -4=0的根是 .24.已知x+y=4,xy=3,则x 2+y 2= . 三、解答题25.已知关于x 的一次函数y=mx+3n 和反比例函数25m n y x+=的图象都经过(1,一2), 求一次函数和反比例函数的解析式.26.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x 元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.27.将进货单价为40元的商品按50元出售时,能卖出500个,已知这样商品每个涨价1元,其销售量就减少10个,则为了较快赚得8000元利润,售价应是为多少?28.已知关于x的一次函数y=(m+1)x-m-5.求:(1)当m为何值时,直线y=(m+1)x-m-5交y轴于正半轴;(2)当m为何值时,直线y=(m+1)x-m-5交y轴于负半轴;(3)当m为何值时,直线y=(m+1)x-m-5经过原点.29.解下列不等式组,并把臃在轴上表示出来.(1)122(1)1x xx x-≤⎧⎨++>⎩(2)132(2) 2165()75xxx x +⎧->-⎪⎪⎨⎪--≥-⎪⎩30.桌上放着两个物体,它的三视图如图,你知道这两个物体是什么吗?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.C4.C5.B6.B7.C8.A9.C10.D11.D12.B13.C二、填空题14.615.5216.17.⑤④18.20岁19.620.a∥b;同位角相等,两直线平行21.3,922.51623.51±24.10三、解答题25.把(1,一2)代入,得23225m nm n-=+⎧⎨-=+⎩,解得42mn=⎧⎨=-⎩,∴一次函数的解析式为46y x=-,反比例函数的解析式为2yx-=.26.(1)x -20;200+(40-x )×20;(2)(x -20)(1000-20x )=4500,x =35. 27.60.28.(1)m<-5;(2)m>-5且m ≠-l ;(3)m=-529.(1)1x ≥-,在数轴上表示略 (2)712x -≤<,在数轴上表示略 30.一个长方体,一个圆柱体(答案不唯一)。

2019年浙江省中考数学一模试卷附解析

2019年浙江省中考数学一模试卷附解析

2019年浙江省中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能2. 如图是一些相同的小\正方体构成的几何体的三视图:主视图 左视图 俯视图这些相同的小正方体的个数有( )A .4 个B .5 个C .6 个D .7 个 3.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( )A .1B .12C .13D .234.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )A .11000B .1200C .12D .155.如图,以正方形 ABCD 各边为直径在正方形内画半圆,计算所围成的图形 ( 阴影部分)的面积,正确的方法是( )A .三个半圆的面积减去正方形的面积B . 四个半圆的面积减去正方形的面积C . 正方形的面积减去两个半圆的面积D . 正方形的面积减去三个半圆的面积6.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.下列可作为证明命题“直角三角形至少有一个锐角大于45°”是假命题的反例是()8.一个几何体的三视图如下图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体9.两条直线被第三条直线所截,必有()A.同位角相等B.内错角相等C.同旁内角互补D.以上都不对10.两个偶数的平方差一定是()A.2 B.4 C.8 D. 4 的倍数11.已知623m⋅(m 是小于 10 的自然数),则()⨯⋅⨯⋅⨯=10n(810)(510)(210)A. m=8 , n= 11 B. m=8 , n= 12 C. m= 5 , n= 12 D. m= 8 , n= 3612.如图,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,那么树的高度为()A.4.8 m B.6.4 m C.8 m D.10 m13.一根长为3.8 m的铁丝被分成两段,各围成一个正方形和长方形,已知正方形的边长比长方形的长少0.1 m,长方形的长和宽之比为2:1,则正方形和长方形的面积分别是()A.2.5 m2和1.8 m2 B.0.25 m2和0.18 m2C.1.6 m2和2 m2 D.0.16 m2和0.2 m2二、填空题14.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= .(2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .15.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则 BP= .16.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x17.如果一个多边形的每一个外角都相等,且小于45°,那么这个多边形的边数最少是 .18.如图 ,在△ABC 中,∠ACB=90°,角平分线 AD 、BE 交于点F ,则∠AFB= .19.某单位内线电话号码由3个数字组成,每个数字可以是1、2、3中的任一个,•如果不知道某人的内线电话号码,任意拨一个号码能接通的概率是 .20.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张?答: .21.一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成.三、解答题22.如图,△ABC 中,∠C=90°,0 是 AB 上的点,以 0为圆心,OB 为半径的圆与 AB 相交于点 E ,与 AC 相切于点 D ,已知 AD=2,AE= 1,求 BC.23.如图所示,锐角α的顶点在坐标原点,一边在x 轴的正半轴上,另一边上有一点 P(2,y),若sin α=35,的值.24.已知n m ,是实数,且155+-+-=n n m ,求n m 32-的值.25.如图,用长为120 m 的铁丝一边靠墙围成一个长方形,墙的长度 AB =100 m ,要使靠墙的一边不小于 42 m ,那么不靠墙的一边(垂直于墙的边)应取多少?26.如图所示,先画出线段AB 关于直线1l 对称的线段A ′B ′,再画出线段A ′B ′关于直线2l 对称的线段A ″B ″,看看线段AB 和线段A ″B ″之间有怎样的位置关系.把线段AB 换成三角形试试看.27.求下列各数的立方根:0,-125, -343,0. 064,-1,1,338,21628.如图,从建筑物顶端A 处拉一条宣传标语条幅到地面C 处,为了测量条幅AC 的长,在地面另一处选一点D ,使D 、C 、B (B 为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC 的度数.29.随着人民生活水平懂得提高,购房者对居住面积的要求有了新的变化.现从某区近期卖出的不同户型的商品房中随机抽取1000套进行统计,并根据统计结果绘出如图所示的统计图,请结合统计图提供的信息,解答下列问题:(1)卖出面积为60~80平方米的商品房多少套?据此补全统计图.(2)面积在什么范围内的住房卖出的最多?约占全部卖出住房的百分之几?(3)假如你是房地产开发商,根据以上信息,你将会多建面积在哪些范围内的住房?请简要说明理由:A BC D30.个正方形的边长为 a(cm),若边长增加6 cm,则新正方形的面积增加了多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.B6.C7.B8.A9.B10.D11.B12.C13.B二、填空题14.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443215.35-16. 17.918.135°19.27120.第一张方块421.32三、解答题22.连结OD.∵ 圆 0切 AC 于点D ,∴∠ODA=90°,设⊙O 的半径为 r ,则222()AD OD AE EO +=+,则r= 1.5,且OD AO BC AB=, 2.4BC =. 23.过点P 作x 轴的垂线段,M 为垂足,∵ PM=y ,OM= 2,∴24OP y =+3sin 5PM a OP ==,∴2354y y =+,∴32y ⋅=± ∵y>0 ,∴32y =. 24.-1325.不靠墙的一边应取不小于10 m 且不大于39 m 26.略27.依次为 0,-5,-7,0.4, -1, 1 ,32-,6 28.40°29.(1)350套;(2)80~100m 2,占48%;(3)60~80m 2和80~1OOm 2.理由:购房者对面积在这两个范围内的住房需求量最高 30.22(6)1236a a a +-=+(cm 2)。

_浙江省台州市温岭市、天台县2019届数学中考一模试卷_

_浙江省台州市温岭市、天台县2019届数学中考一模试卷_

第1页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………浙江省台州市温岭市、天台县2019届数学中考一模试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共8题)“正负术”的注文指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数,如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为( )A . ﹣1B . ﹣2C . ﹣3D . ﹣42. 不等式4﹣2x≥0的解集在数轴上表示为( )A .B .C .D .答案第2页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………3. 如图,锐角△ABC 中,BC >AB >AC ,求作一点P ,使得△BPC 与△A 互补,甲、乙两人作法分别如下:甲:以B 为圆心,AB 长为半径画弧交AC 于P 点,则P 即为所求. 乙:作BC 的垂直平分线和△BAC 的平分线,两线交于P 点,则P 即为所求. 对于甲、乙两人的作法,下列叙述正确的是( )A . 两人皆正确B . 甲正确,乙错误C . 甲错误,乙正确D . 两人皆错误4. 下列计算正确的是( )A . a 3+a 4=a 7B . a 4•a 5=a 9C . 4m •5m =9mD . a 3+a 3=2a 65. 测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是( ) A . 中位数 B . 平均数 C . 方差 D . 极差6. 将抛物线y =x 2﹣2x ﹣3沿x 轴折得到的新抛物线的解析式为( )A . y =﹣x 2+2x+3B . y =﹣x 2﹣2x ﹣3C . y =x 2+2x ﹣3D . y =x 2﹣2x+37. 下列四个几何体中,主视图是三角形的是( )A .B .C .D .8. 如图,在△ABC 中,点D 是AB 边上的一点,若△ACD =△ B.AD =1,AC =2,△ADC 的面积为S ,则△BCD 的面积为( )A . SB . 2SC . 3SD . 4S第3页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第Ⅱ卷 主观题第Ⅱ卷的注释评卷人 得分一、填空题(共8题)1. 因式分解:a 2﹣4= .2. 将一把直尺和一块含30°和60°角的三角板ABC 按如图所示的位置放置,如果△CDE =40°,那么△CAF 的大小为 .3. 如图,AB 是△O 的弦,半径OA =5,sinA = ,则弦AB 的长为 .4. 在矩形ABCD 中,AB =3,BC =4,点E 、F 分别在BC 与CD 上,且△EAF =45°.如图甲,若EA =EF ,则EF = ;如图乙,若CE =CF ,则EF = .5. 如图是反比例函数 和 在第一象限的图象,在 上取点M ,分别作两坐标轴的垂线交于点A 、B ,连按OA 、OB ,则图中阴影部分面积为 .答案第4页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 一项工程,先由甲独做,后乙加入合作直至完成,工程剩余工作量y 与甲工作时间x (天)的函数关系如图所示,若要使工程提前4天完成,那么乙应该在甲工作第 天后加入合作.7. 在一个不透明的盒子里有20个除颜色外均相同的小球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后,发现摸到红球的频率稳定在0.4,由此估计盒子中红球的个数为 .8. 如图,先将边长为6m 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△AB′C′,当两个三角形重叠部分的面积为8cm 2时,它移动的距离AA′等于 cm.评卷人得分二、计算题(共1题)第5页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)计算: ;(2)化简:﹣2(a ﹣3)+(a+1)2 评卷人 得分三、解答题(共2题)10. 如图,已知D 、E 两点在线段BC 上,AB =AC ,AD =AE .证明:BD =CE .11. 某地下车库出口处安装了“两段式栏杆”,如图1所示,点A 是栏杆转动的支点,点E 是栏杆;两段的联结点.当车辆经过时,栏杆AEF 最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF 长度远大于车辆宽度),其中AB△BC ,EF△BC ,△AEF =143°,AB =AE =1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)评卷人 得分四、综合题(共5题)140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克)甲种 58 乙种 913(1)若该水果店预计进货款为1000元,则这两种水果各购进多少千克?答案第6页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)若该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?13. 如图,在Rt△ABC 中,△C =90°,BD 平分△ABC ,点O 在AB 上,以点O 为圆心,OB 为半径的圆经过点D ,交BC 于点E(1)求证:AC 是△O 的切线;(2)若OB =2,CD =,求图中阴影部分的面积(结果保留 ).14. 从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6亿人,比上一年增加约1亿人.(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是 ; A . 对某学校的全体同学进行问卷调查 B . 对某小区的住户进行问卷调查C . 在全市里的不同区县,选取部分市民进行问卷调查第7页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.骑共享年龄段(岁) 频数 频率12≤x <162 0.02 16≤x <203 0.03 20≤x <2415 a 24≤x <2825 0.25 28≤x <32b 0.30 32≤x <3625 0.25 根据以上信息解答下列问题:①统计表中的a = ;b = ; ②补全频数分布直方图;③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有多少人? 15. 如图1,平面内有一点P 到△ABC 的三个顶点的距离分别为PA 、PB 、PC ,若有PA 2=PB 2+PC 2则称点P 为△ABC 关于点A 的勾股点.(1)如图2,在4×5的网格中,每个小正方形的长均为1,点A 、B 、C 、D 、E 、F 、G 均在小正方形的顶点上,则点D 是△ABC 关于点 的勾股点;在点E 、F 、G 三点中只有点 是△ABC 关于点A 的勾股点.(2)如图3,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点, ①求证:CE =CD ;②若DA =DE ,△AEC =120°,求△ADE 的度数.答案第8页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)矩形ABCD 中,AB =5,BC =6,E 是矩形ABCD 内一点,且点C 是△ABE 关于点A 的勾股点, ①若△ADE 是等腰三角形,求AE 的长;②直接写出AE+ BE 的最小值.16. 如图1,AB 是曲线,BC 是线段,点P 从点A 出发以不变的速度沿A ﹣B ﹣C 运动,到终点C 停止,过点P 分别作x 轴、y 轴的垂线分别交x 轴、y 轴于点M 、点N ,设矩形MONP 的面积为S 运动时间为(秒),S 与t 的函数关系如图2所示,(FD 为平行x 轴的线段)(1)直接写出k 、a 的值.(2)求曲线AB 的长l.(3)求当2≤t≤5时关于的函数解析式.参数答案第9页,总26页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………1.【答案】:【解释】: 2.【答案】: 【解释】: 3.【答案】: 【解释】:答案第10页,总26页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………4.【答案】:【解释】: 5.【答案】: 【解释】: 6.【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………7.【答案】:【解释】:8.【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】: 【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】: 【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】: 【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○……………………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:(3)【答案】:【解释】:。

2019年浙江省台州市中考数学试卷(含参考答案与试题解析)

2019年浙江省台州市中考数学试卷(含参考答案与试题解析)

2019年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)(2019•台州)计算23a a -,结果正确的是( )A .1-B .1C .a -D .a2.(4分)(2019•台州)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .圆柱D .球3.(4分)(2019•台州)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( )A .115.95210⨯B .1059.5210⨯C .125.95210⨯D .9595210⨯4.(4分)(2019•台州)下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,115.(4分)(2019•台州)方差是刻画数据波动程度的量.对于一组数据1x ,2x ,3x ,⋯,n x ,可用如下算式计算方差:222221231[(5)(5)(5)(5)]n s x x x x n=-+-+-+⋯+-,其中“5”是这组数据的( )A .最小值B .平均数C .中位数D .众数6.(4分)(2019•台州)一道来自课本的习题: 从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需54min ,从乙地到甲地需42min .甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程543460x y +=,则另一个方程正确的是( ) A .424360x y += B .425460x y += C .424560x y += D .423460x y += 7.(4分)(2019•台州)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则O e 的半径为( )A .23B .3C .4D .43-8.(4分)(2019•台州)如图,有两张矩形纸片ABCD 和EFGH ,2AB EF cm ==,8BC FG cm ==.把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角a 最小时,tan α等于( )A .14B .12C .817D .8159.(4分)(2019•台州)已知某函数的图象C 与函数3y x =的图象关于直线2y =对称.下列命题:①图象C 与函数3y x =的图象交于点3(2,2);②点1(2,2)-在图象C 上;③图象C 上的点的纵坐标都小于4;④1(A x ,1)y ,2(B x ,2)y 是图象C 上任意两点,若12x x >,则12y y >.其中真命题是( )A .①②B .①③④C .②③④D .①②③④10.(4分)(2019•台州)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为( )A .2:1B .3:2C .3:1D .2:2二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2019•台州)分解因式:22ax ay -= .12.(5分)(2019•台州)若一个数的平方等于5,则这个数等于 .13.(5分)(2019•台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 .14.(5分)(2019•台州)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE .若64ABC ∠=︒,则BAE ∠的度数为 .15.(5分)(2019•台州)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,⋯,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,⋯,接着把编号是3的整数倍的“金蛋”全部砸碎⋯⋯按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个.16.(5分)(2019•台州)如图,直线123////l l l ,A ,B ,C 分别为直线1l ,2l ,3l 上的动点,连接AB ,BC ,AC ,线段AC 交直线2l 于点D .设直线1l ,2l 之间的距离为m ,直线2l ,3l 之间的距离为n ,若90ABC ∠=︒,4BD =,且32m n =,则m n +的最大值为 .三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)(2019•台州)计算:12|13|(1)+---.18.(8分)(2019•台州)先化简,再求值:22332121x x x x x --+-+,其中12x =. 19.(8分)(2019•台州)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角70ABC ∠=︒,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75)︒≈.20.(8分)(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:)m 与下行时间x (单位:)s 之间具有函数关系3610h x =-+,乙离一楼地面的高度y (单位:)m 与下行时间x (单位:)s 的函数关系如图2所示.(1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.(10分)(2019•台州)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY22.(12分)(2019•台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC AD BE BD CE====,求证:五边形ABCDE是正五边形;②如图2,若AC BE CE==,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC CE EA==,则六边形ABCDEF是正六边形;()②若AD BE CF==,则六边形ABCDEF是正六边形.()23.(12分)(2019•台州)已知函数2(y x bx c b =++,c 为常数)的图象经过点(2,4)-.(1)求b ,c 满足的关系式;(2)设该函数图象的顶点坐标是(,)m n ,当b 的值变化时,求n 关于m 的函数解析式;(3)若该函数的图象不经过第三象限,当51x -剟时,函数的最大值与最小值之差为16,求b 的值.24.(14分)(2019•台州)如图,正方形ABCD 的边长为2,E 为AB 的中点,P 是BA 延长线上的一点,连接PC 交AD 于点F ,AP FD =.(1)求AF AP的值; (2)如图1,连接EC ,在线段EC 上取一点M ,使EM EB =,连接MF ,求证:MF PF =;(3)如图2,过点E 作EN CD ⊥于点N ,在线段EN 上取一点Q ,使AQ AP =,连接BQ ,BN .将AQB ∆绕点A 旋转,使点Q 旋转后的对应点Q '落在边AD 上.请判断点B 旋转后的对应点B '是否落在线段BN 上,并说明理由.2019年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选、错选,均不给分)1.(4分)计算23a a -,结果正确的是( )A .1-B .1C .a -D .a【考点】35:合并同类项【分析】根据合并同类项法则合并即可.【解答】解:23a a a -=-,故选:C .2.(4分)如图是某几何体的三视图,则该几何体是( )A .长方体B .正方体C .圆柱D .球【考点】3U :由三视图判断几何体【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:Q 几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又Q 俯视图是一个圆,故该几何体是一个圆柱,故选:C .3.(4分)2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( )A .115.95210⨯B .1059.5210⨯C .125.95210⨯D .9595210⨯【考点】1I :科学记数法-表示较大的数【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:数字595200000000科学记数法可表示为115.95210⨯元.故选:A .4.(4分)下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,11【考点】6K :三角形三边关系【分析】根据三角形的三边关系即可求【解答】解:A 选项,3478+=<,两边之和小于第三边,故不能组成三角形B 选项,561110+=>,1056-<,两边之各大于第三边,两边之差小于第三边,故能组成三角形C 选项,551011+=<,两边之和小于第三边,故不能组成三角形D 选项,5611+=,两边之和不大于第三边,故不能组成三角形故选:B .5.(4分)方差是刻画数据波动程度的量.对于一组数据1x ,2x ,3x ,⋯,n x ,可用如下算式计算方差:222221231[(5)(5)(5)(5)]n s x x x x n=-+-+-+⋯+-,其中“5”是这组数据的( )A .最小值B .平均数C .中位数D .众数【考点】5W :众数;7W :方差;1W :算术平均数;4W :中位数【分析】根据方差的定义可得答案.【解答】解:方差222221231[(5)(5)(5)(5)]n s x x x x n=-+-+-+⋯+-中“5”是这组数据的平均数,故选:B .6.(4分)一道来自课本的习题:小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程543460x y +=,则另一个方程正确的是( ) A .424360x y += B .425460x y += C .424560x y += D .423460x y += 【考点】9A :二元一次方程组的应用【分析】直接利用已知方程得出上坡的路程为x ,平路为y ,进而得出等式求出答案. 【解答】解:设未知数x ,y ,已经列出一个方程543460x y +=,则另一个方程正确的是:425460x y +=. 故选:B .7.(4分)如图,等边三角形ABC 的边长为8,以BC 上一点O 为圆心的圆分别与边AB ,AC 相切,则O e 的半径为( )A .23B .3C .4D .43【考点】KK :等边三角形的性质;MC :切线的性质【分析】设O e 与AC 的切点为E ,连接AO ,OE ,根据等边三角形的性质得到8AC =,60C BAC ∠=∠=︒,由切线的性质得到1302BAO CAO BAC ∠=∠=∠=︒,求得90AOC ∠=︒,解直角三角形即可得到结论.【解答】解:设O e 与AC 的切点为E ,连接AO ,OE ,Q 等边三角形ABC 的边长为8,8AC ∴=,60C BAC ∠=∠=︒,Q 圆分别与边AB ,AC 相切,1302BAO CAO BAC ∴∠=∠=∠=︒,90AOC ∴∠=︒, 142OC AC ∴==, OE AC ⊥Q ,323OE OC ∴==, O ∴e 的半径为23,故选:A .8.(4分)如图,有两张矩形纸片ABCD 和EFGH ,2AB EF cm ==,8BC FG cm ==.把纸片ABCD 交叉叠放在纸片EFGH 上,使重叠部分为平行四边形,且点D 与点G 重合.当两张纸片交叉所成的角a 最小时,tan α等于( )A .14B .12C .817D .815【考点】LB :矩形的性质;6L :平行四边形的判定;7T :解直角三角形【分析】由“ASA ”可证CDM HDN ∆≅∆,可证MD DN =,即可证四边形DNKM 是菱形,当点B 与点E 重合时,两张纸片交叉所成的角a 最小,可求154CM =,即可求tan α的值. 【解答】解:如图,90ADC HDF ∠=∠=︒QCDM NDH ∴∠=∠,且CD DH =,90H C ∠=∠=︒()CDM HDN ASA ∴∆≅∆MD ND ∴=,且四边形DNKM 是平行四边形∴四边形DNKM 是菱形KM DM ∴=sin sin CDDMC MDα=∠=Q ∴当点B 与点E 重合时,两张纸片交叉所成的角a 最小,设MD a BM ==,则8CM a =-, 222MD CD MC =+Q ,224(8)a a ∴=+-, 174a ∴=154CM ∴=8tan tan 15CD DMC MC α∴=∠== 故选:D .9.(4分)已知某函数的图象C 与函数3y x=的图象关于直线2y =对称.下列命题:①图象C 与函数3y x =的图象交于点3(2,2);②点1(2,2)-在图象C 上;③图象C 上的点的纵坐标都小于4;④1(A x ,1)y ,2(B x ,2)y 是图象C 上任意两点,若12x x >,则12y y >.其中真命题是( ) A .①②B .①③④C .②③④D .①②③④【考点】1O :命题与定理 【分析】函数3y x =的图象在第一、三象限,则关于直线2y =对称,点3(2,2)是图象C 与函数3y x=的图象交于点;①正确; 点1(2,2)-关于2y =对称的点为点1(2,6),在函数3y x =上,②正确;3y x =上任意一点为(,)x y ,则点(,)x y 与2y =对称点的纵坐标为34x-;③错误; 1(A x ,1)y ,2(B x ,2)y 关于2y =对称点为1(x ,14)y -,2(B x ,24)y -在函数3y x=上,可得1134y x -=,2234y x -=,当120x x >>或120x x >>,有12y y >;④不正确;【解答】解:Q 函数3y x=的图象在第一、三象限, 则关于直线2y =对称,点3(2,2)是图象C 与函数3y x =的图象交于点;∴①正确;点1(2,2)-关于2y =对称的点为点1(2,6),1(2Q ,6)在函数3y x =上,∴点1(2,2)-在图象C 上; ∴②正确;3y x=Q 中0y ≠,0x ≠, 取3y x=上任意一点为(,)x y , 则点(,)x y 与2y =对称点的纵坐标为34x-; ∴③错误;1(A x ,1)y ,2(B x ,2)y 关于2y =对称点为1(x ,14)y -,2(B x ,24)y -在函数3y x=上, 1134y x ∴-=,2234y x -=, 120x x >>Q 或120x x >>, 1244y y ∴-<-, 12y y ∴>;∴④不正确;故选:A .10.(4分)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比 为( )A .2:1B .3:2C.3:1D .2:2【考点】LE :正方形的性质;PC :图形的剪拼【分析】如图,作DC EF ⊥于C ,DK FH ⊥于K ,连接DF .求出DFN ∆与DNK ∆的面积比即可.【解答】解:如图,作DC EF ⊥于C ,DK FH ⊥于K ,连接DF . 由题意:四边形DCFK 是正方形,CDM MDF FDN NDK ∠=∠=∠=∠, 90CDK DKF ∴∠=∠=︒,DK FK =,2DF DK =,∴2DFN DNK S FN DFS NK DK∆∆===(角平分线的性质定理,可以用面积法证明), ∴222A DFNDNKB S S S S ∆∆==型型,∴图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为2:1,故选:A .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)分解因式:22ax ay -= ()()a x y x y +- . 【考点】55:提公因式法与公式法的综合运用【分析】应先提取公因式a ,再对余下的多项式利用平方差公式继续分解.【解答】解:22ax ay -,22()a x y =-, ()()a x y x y =+-.故答案为:()()a x y x y +-.12.(5分)若一个数的平方等于5,则这个数等于 5± . 【考点】21:平方根【分析】直接利用平方根的定义分析得出答案.【解答】解:若一个数的平方等于5,则这个数等于:5±. 故答案为:5±.13.(5分)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是49. 【考点】6X :列表法与树状图法【分析】画出树状图然后根据概率公式列式即可得解. 【解答】解:画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为49; 故答案为:49.14.(5分)如图,AC 是圆内接四边形ABCD 的一条对角线,点D 关于AC 的对称点E 在边BC 上,连接AE .若64ABC ∠=︒,则BAE ∠的度数为 52︒ .【考点】5M :圆周角定理;6M :圆内接四边形的性质;2P :轴对称的性质 【分析】直接利用圆内接四边形的性质结合三角形外角的性质得出答案. 【解答】解:Q 圆内接四边形ABCD , 180116D ABC ∴∠=︒-∠=︒,Q 点D 关于AC 的对称点E 在边BC 上,116D AEC ∴∠=∠=︒, 1166452BAE ∴∠=︒-︒=︒.故答案为:52︒.15.(5分)砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,⋯,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,⋯,接着把编号是3的整数倍的“金蛋”全部砸碎⋯⋯按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 3 个. 【考点】37:规律型:数字的变化类【分析】求出第一次编号中砸碎3的倍数的个数,得余下金蛋的个数,再求第二次编号中砸碎的3的倍数的个数,得余下金蛋的个数,依次推理便可得到操作过程中砸碎编号是“66”的“金蛋”总个数. 【解答】解:210370÷=Q ,∴第一次砸碎3的倍数的金蛋个数为70个,剩下21070140-=个金蛋,重新编号为1,2,3,⋯,140; 1403462÷=⋯Q ,∴第二次砸碎3的倍数的金蛋个数为46个,剩下1404694-=个金蛋,重新编号为1,2,3,⋯,94;943311÷=⋯Q ,∴第三次砸碎3的倍数的金蛋个数为31个,剩下943163-=个金蛋,6366<Q ,∴砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共有3个. 故答案为:3.16.(5分)如图,直线123////l l l ,A ,B ,C 分别为直线1l ,2l ,3l 上的动点,连接AB ,BC ,AC ,线段AC 交直线2l 于点D .设直线1l ,2l 之间的距离为m ,直线2l ,3l 之间的距离为n ,若90ABC ∠=︒,4BD =,且32m n =,则m n +的最大值为253.【考点】JC :平行线之间的距离【分析】过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =,得到4DM y =-,4DN x =-,根据相似三角形的性质得到xy mn =,3102y x =-+,由23m n =,得到32n m =,于是得到5()2m n m +=最大,然后根据二次函数的性质即可得到结论.【解答】解:过B 作1BE l ⊥于E ,延长EB 交3l 于F ,过A 作2AN l ⊥于N ,过C 作2CM l ⊥于M ,设AE x =,CF y =,BN x =,BM y =,4BD =Q ,4DM y ∴=-,4DN x =-,90ABC AEB BFC CMD AND ∠=∠=∠=∠=∠=︒Q , 90EAB ABE ABE CBF ∴∠+∠=∠+∠=︒, EAB CBF ∴∠=∠, ABE BFC ∴∆∆∽,∴AE BEBF CF=,即x m n y =, xy mn ∴=,ADN CDM ∠=∠Q , CMD AND ∴∆∆∽,∴AN DNCM DM=,即4243m xn y-==-,3102y x∴=-+,Q23mn=,32n m∴=,5()2m n m∴+=最大,∴当m最大时,5()2m n m+=最大,22333(10)10222mn xy x x x x m==-+=-+=Q,∴当1010332()2x=-=⨯-时,250332mn m==最大,103m∴=最大,m n∴+的最大值为51025233⨯=.故答案为:253.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(812|13(1)+--.【考点】2C:实数的运算【分析】分别根据二次根式的性质、绝对值的性质化简即可求解.【解答】解:原式2331133=+=18.(8分)先化简,再求值:22332121xx x x x--+-+,其中12x=.【考点】6D:分式的化简求值【分析】根据分式的加减运算法则把原式化简,代入计算即可.【解答】解:22332121x x x x x --+-+ 23(1)(1)x x -=-31x =-, 当12x =时,原式36112==--. 19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB 长92cm ,车杆与脚踏板所成的角70ABC ∠=︒,前后轮子的半径均为6cm ,求把手A 离地面的高度(结果保留小数点后一位;参考数据:sin700.94︒≈,cos700.34︒≈,tan70 2.75)︒≈.【考点】8T :解直角三角形的应用【分析】过点A 作AD BC ⊥于点D ,延长AD 交地面于点E ,根据锐角三角函数的定义即可求出答案.【解答】解:过点A 作AD BC ⊥于点D ,延长AD 交地面于点E , sin ADABD AB∠=Q , 920.9486.48AD ∴=⨯≈, 6DE =Q ,92.5AE AD DE ∴=+=,∴把手A 离地面的高度为92.5cm .20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h (单位:)m 与下行时间x (单位:)s 之间具有函数关系3610h x =-+,乙离一楼地面的高度y (单位:)m 与下行时间x (单位:)s 的函数关系如图2所示. (1)求y 关于x 的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【考点】FH :一次函数的应用【分析】(1)根据函数图象中的数据可以得到y 关于x 的函数解析式; (2)分别令0h =和0y =求出相应的x 的值,然后比较大小即可解答本题. 【解答】解:(1)设y 关于x 的函数解析式是y kx b =+, 6153b k b =⎧⎨+=⎩,解得,156k b ⎧=-⎪⎨⎪=⎩, 即y 关于x 的函数解析式是165y x =-+;(2)当0h =时,30610x =-+,得20x =, 当0y =时,1065x =-+,得30x =,2030<Q ,∴甲先到达地面.21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY【考点】5V:用样本估计总体;VB:扇形统计图【分析】(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:510100%51%1000⨯=;(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万1775.311000⨯=万(人);(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:178100%8.9% 896702224178⨯=+++,活动前全市骑电瓶车“都不戴”安全帽的百分比:177100%17.7%1000⨯=,8.9%17.7%<,因此交警部门开展的宣传活动有效果.【解答】解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:510100%51% 1000⨯=;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万1775.311000⨯=万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:178100%8.9% 896702224178⨯=+++,活动前全市骑电瓶车“都不戴”安全帽的百分比:177100%17.7% 1000⨯=,8.9%17.7%<,因此交警部门开展的宣传活动有效果.22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE 的各条边都相等.①如图1,若AC AD BE BD CE ====,求证:五边形ABCDE 是正五边形;②如图2,若AC BE CE ==,请判断五边形ABCDE 是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假” )如图3,已知凸六边形ABCDEF 的各条边都相等.①若AC CE EA ==,则六边形ABCDEF 是正六边形;( 真 )②若AD BE CF ==,则六边形ABCDEF 是正六边形.( )【考点】LO :四边形综合题【分析】(1)①由SSS 证明ABC BCD CDE DEA EAB ∆≅∆≅∆≅∆≅得出ABC BCD CDE DEA EAB ∠=∠=∠=∠=∠,即可得出结论;②由SSS 证明ABE BCA DEC ∆≅∆≅∆得出BAE CBA EDC ∠=∠=∠,AEB ABE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠,由SSS 证明ACE BEC ∆≅∆得出ACE CEB ∠=∠,CEA CAE EBC ECB ∠=∠=∠=∠,由四边形ABCE 内角和为360︒得出180ABC ECB ∠+∠=︒,证出//AB CE ,由平行线的性质得出ABE BEC ∠=∠,BAC ACE ∠=∠,证出3BAE ABE ∠=∠,同理:3CBA D AED BCD ABE BAE ∠=∠=∠=∠=∠=∠,即可得出结论;(2)①证明AEF CAB ECD ∆≅∆≅∆得出F B D ∠=∠=∠,FEA FAE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠,由等边三角形的性质得出60EAC ECA AEC ∠=∠=∠=︒,设F B D y ∠=∠=∠=,FEA FAE BAC BCA DCE DEC x ∠=∠=∠=∠=∠=∠=,则2180y x +=︒①,260y x -=︒②,求出120y =︒,30x =︒,得出120F B D BAF BCD DEF ∠=∠=∠=∠=∠=∠=︒,即可得出结论;②证明BFE FBC ∆≅∆得出BFE FBC ∠=∠,证出AFE ABC ∠=∠,证明FAE BCA ∆≅∆得出AE CA =,同理:AE CE =,得出AE CA CE ==,由①得:六边形ABCDEF 是正六边形.【解答】(1)①证明:Q 凸五边形ABCDE 的各条边都相等,AB BC CD DE EA ∴====,在ABC ∆、BCD ∆、CDE ∆、DEA ∆、EAB 中,AB BC CD DE EA BC CD DE EA ABAC BD CE DA BE ====⎧⎪====⎨⎪====⎩,()ABC BCD CDE DEA EAB SSS ∴∆≅∆≅∆≅∆≅,ABC BCD CDE DEA EAB ∴∠=∠=∠=∠=∠,∴五边形ABCDE 是正五边形;②解:若AC BE CE ==,五边形ABCDE 是正五边形,理由如下:在ABE ∆、BCA ∆和DEC ∆中,AE BA DC AB BC DEBE AC CE ==⎧⎪==⎨⎪==⎩,()ABE BCA DEC SSS ∴∆≅∆≅∆,BAE CBA EDC ∴∠=∠=∠,AEB ABE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠,在ACE ∆和BEC ∆中,AE BC CE BEAC CE =⎧⎪=⎨⎪=⎩,()ACE BEC SSS ∴∆≅∆,ACE CEB ∴∠=∠,CEA CAE EBC ECB ∠=∠=∠=∠,Q 四边形ABCE 内角和为360︒,180ABC ECB ∴∠+∠=︒,//AB CE ∴,ABE BEC ∴∠=∠,BAC ACE ∠=∠,2CAE CEA ABE ∴∠=∠=∠,3BAE ABE ∴∠=∠,同理:3CBA D AED BCD ABE BAE ∠=∠=∠=∠=∠=∠,∴五边形ABCDE 是正五边形;(2)解:①若AC CE EA ==,如图3所示:则六边形ABCDEF 是正六边形;真命题;理由如下:Q 凸六边形ABCDEF 的各条边都相等,AB BC CD DE EF EA ∴=====,在AEF ∆、CAB ∆和ECD ∆中,EF AB CD AF CB EDAE CA EC ==⎧⎪==⎨⎪==⎩,()AEF CAB ECD SSS ∴∆≅∆≅∆,F B D ∴∠=∠=∠,FEA FAE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠,AC CE EA ==Q ,60EAC ECA AEC ∴∠=∠=∠=︒,设F B D y ∠=∠=∠=,FEA FAE BAC BCA DCE DEC x ∠=∠=∠=∠=∠=∠=,则2180y x +=︒①,260y x -=︒②,①+②得:2240y =︒,120y ∴=︒,30x =︒,120F B D ∴∠=∠=∠=︒,30FEA FAE BAC BCA DCE DEC ∠=∠=∠=∠=∠=∠=︒, 303060120BAF BCD DEF ∴∠=∠=∠=︒+︒+︒=︒,F B D BAF BCD DEF ∴∠=∠=∠=∠=∠=∠,∴六边形ABCDEF 是正六边形;故答案为:真;②若AD BE CF ==,则六边形ABCDEF 是正六边形;真命题;理由如下:如图4所示:连接AE 、AC 、CE ,在BFE ∆和FBC ∆中,EF CB BE FCBF FB =⎧⎪=⎨⎪=⎩,()BFE FBC SSS ∴∆≅∆,BFE FBC ∴∠=∠,AB AF =Q ,AFB ABF ∴∠=∠,AFE ABC ∴∠=∠,在FAE ∆和BCA ∆中,AF CB AFE CBAEF AB =⎧⎪∠=∠⎨⎪=⎩,()FAE BCA SAS ∴∆≅∆,AE CA ∴=,同理:AE CE =,AE CA CE ∴==,由①得:六边形ABCDEF 是正六边形;故答案为:真.23.(12分)已知函数2(y x bx c b =++,c 为常数)的图象经过点(2,4)-.(1)求b ,c 满足的关系式;(2)设该函数图象的顶点坐标是(,)m n ,当b 的值变化时,求n 关于m 的函数解析式;(3)若该函数的图象不经过第三象限,当51x -剟时,函数的最大值与最小值之差为16,求b 的值.【考点】5H :二次函数图象上点的坐标特征;7H :二次函数的最值;3H :二次函数的性质【分析】(1)将点(2,4)-代入2y x bx c =++,2c b =;(2)2b m =-,244c b n -=,得22n b m =-; (3)2222()224b b y x bx b x b =++=+-+,当0b …时,0c …,函数不经过第三象限,则0c =;此时2y x =,最大值与最小值之差为25;当0b >时,0c >,函数不经过第三象限,则△0…,得08b 剟当51x -剟时,函数有最小值224b b -+,当522b --<-…时,函数有最大值13b +,当212b -<-…时,函数有最大值253b -; 当最大值13b +时,2132164b b b ++-=,6b =;当最大值253b -时,2b =; 【解答】解:(1)将点(2,4)-代入2y x bxc =++,得20b c -+=,2c b ∴=;(2)2b m =-,244c b n -=, 284b b n -∴=, 22n b m ∴=-,(3)2222()224b b y x bx b x b =++=+-+, 对称轴2b x =-, 当0b …时,0c …,函数不经过第三象限,则0c =;此时2y x =,当51x -剟时,函数最小值是0,最大值是25, ∴最大值与最小值之差为25;(舍去)当0b >时,0c >,函数不经过第三象限,则△0…,08b ∴剟,402b x ∴-=-剟, 当51x -剟时,函数有最小值224b b -+, 当522b --<-…时,函数有最大值13b +, 当212b -<-…时,函数有最大值253b -; 函数的最大值与最小值之差为16,当最大值13b +时,2132164b b b ++-=, 6b ∴=或10b =-,48b Q 剟,6b∴=;当最大值253b-时,22532164bb b-+-=,2b∴=或18b=,24bQ剟,2b∴=;综上所述2b=或6b=;24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP FD=.(1)求AFAP的值;(2)如图1,连接EC,在线段EC上取一点M,使EM EB=,连接MF,求证:MF PF=;(3)如图2,过点E作EN CD⊥于点N,在线段EN上取一点Q,使AQ AP=,连接BQ,BN.将AQB∆绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.【考点】SO:相似形综合题【分析】(1)设AP FD a==,通过证明AFP DFC∆∆∽,可得AP AFCD FD=,可求AP的值,即可求AF的值,则可求解;(2)在CD上截取DH AF=,由“SAS”可证PAF HDF∆≅∆,可得PF FH=,由勾股定理可求5CE EP==,可得51CM CH==,由“SAS”可证FCM FCH∆≅∆,可得FM FH PF==;(3)以A原点,AB为y轴,AD为x轴建立平面直角坐标系,用待定系数法可求BN解析式,即可求B'坐标,计算B Q''的长度,即可判断点B旋转后的对应点B'是否落在线段BN上.【解答】解:(1)设AP FD a==,2AF a∴=-,Q四边形ABCD是正方形//AB CD∴AFP DFC∴∆∆∽∴AP AF CD FD=即22a aa-=51a∴=-51AP FD∴==-,35 AF AD DF∴=-=-∴51 AFAP-=(2)在CD上截取DH AF=AF DH=Q,90PAF D∠=∠=︒,AP FD=,()PAF HDF SAS∴∆≅∆PF FH∴=,AD CD=Q,AF DH=51FD CH AP∴===Q点E是AB中点,1BE AE EM∴===5PE PA AE∴=+=222145EC BE BC=+=+=Q,5EC∴=EC PE ∴=,51CM =-P ECP ∴∠=∠//AP CD QP PCD ∴∠=∠ECP PCD ∴∠=∠,且51CM CH ==-,CF CF = ()FCM FCH SAS ∴∆≅∆FM FH ∴=FM PF ∴=(3)若点B '在BN 上,如图,以A 原点,AB 为y 轴,AD 为x 轴建立平面直角坐标系,EN AB ⊥Q ,AE BE =51AQ BQ AP ∴===由旋转的性质可得51AQ AQ '==,2AB AB '==,51Q B QB ''==, Q 点(0,2)B -,点(2,1)N -∴直线BN 解析式为:122y x =- 设点1(,2)2B x x '- 221(2)22AB x x '∴=+- 85x ∴= ∴点8(5B ',6)5-Q 点(51Q ',0)1B Q ''∴=≠ ∴点B 旋转后的对应点B '不落在线段BN 上.。

2019年浙江省台州市中考数学模拟试题(附带超详细答案解析)

评卷人
得分
三、解答题
17.计算:|﹣1+ |﹣ ﹣(5﹣π)0+4cos45°.
18.先化简,再求值: ,其中 满足 .
19.如图,在圆O中,弦AC,BD相交于点M,且∠A=∠B
(1)求证:AC=BD;
(2)若OA=4,∠A=30°,当AC⊥BD时,求弧CD的长.
20.4月18日,一年一度的“风筝节”活动在市政广场举行 ,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈ ,cos67°≈ ,tan67°≈ , ≈1.414).
(1)列出方程(组),求出图甲中a与b的值.
(2)若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图2的竖式与横式两种无盖礼品盒.
①两种裁法共产生A型板材张,B型板材张;
②做成的竖式和横式两种无盖礼品盒总数最多是多少个?此时横式无盖礼品盒可以做多少个?
14.如图,正比例函数y1=k1x的图象与反比例函数y2= (x>0)的图象相交于点A( ,2 ),点B是反比例函数图象上一点,它的横坐标是3,连接OB,AB,则△AOB的面积是_____.
15.双二次方程x4﹣2019x2+4=0的所有实根之和为_____.
16.如图,△ABC绕着点C旋转至△DEC,点B,C,D共线,∠B=90°,∠A=30°,BC=1,则BD=_____.
2.下列四个图案中,是轴对称图形的是()

2019年浙江省台州市中考数学真题试卷(解析含考点分析)

2019年浙江省台州市中考数学试卷考试时间:120分钟 满分:150分{题型:1-选择题} 一、选择题:本大题共 10小题,每小题4分,合计40分. (题目}1. (2019年台州)计算2a — 3a,结果正确的是()A. — 1B. 1C. —aD. a{答案}C{解析}本题考查了合并同类项,合并同类项的法则是系数相加减,字母及字母指数都不变,2-3=—1,故2 a — 3a = — a,因此本题选C. {分值}4{章节:[1-2-2]整式的加减} {考点:合并同类项} {类别:常考题} {难度:1-最简单}{题目}2. (2019年台州)如图是某几何体的三视图,则该几何体是({答案}C{解析}本题考查了三视图, 根据主视图和左视图为矩形判断出是柱体,根据俯视图是圆判断出 这个几何体是圆柱,因此本题选C.{分值}4{章节:[1-29-2]三视图} {考点:由三视图判断几何体} {类别:常考题} {难度:1-最简单}{题目}3. (2019年台州)2019年台州市计划安排重点建设项目 用科学记数法可将595 200 000 000表示为()A. 5.952 1011B. 59.52 1010C. 5.952 1012D. 5952M09A.长方体B.正方体C.圆柱D.球344个,总投资 595 200 000 000元,{答案}A{解析}本题考查了科学记数法,科学记数法的表示形式为 ax10n的形式,其中1&a|〈10, n为整数,确定n的值时,要看小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数的绝对值> 1时,n是正数;当原数的绝对值V 1时,n是负数.595200000000 = 5.952 M011,因此本题选A. {分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法}{类别:常考题}{难度:1-最简单}{题目}4. (2019年台州)下列长度的三条线段,能组成三角形的是( )A. 3, 4, 8B. 5, 6, 10C. 5, 5, 11D. 5, 6, 11{答案}B{解析}本题考查了三角形三边关系,根据三角形三边关系定理,两边之和大于第三边,两边之差小于第三边,只有B选项满足题意,因此本题选B.{分值}4{章节:[1-11-1]与三角形有关的线段}{考点:三角形三边关系}{类别:常考题}{难度:2-简单}{题目}5. (2019年台州)方差是刻画数据波动程度的量,对于一组数据X1, X2, X3……X n,可用如1 c c c c 、下算式计算万差:s2—[(X I5)2 (X2 5)2 (X3 5)2 L (X n 5)2],其中"5"是这组数据的n()A.最小值B,平均数 C.中位数 D.众数{答案}B{解析}本题考查了方差,方差的公式是S2= 1[(X1—x)2+(X2 —x)2+, , +(X n —X )2],根据公式可n知“5是平均数,因此本题选B.{分值}4{章节:[1-20-2-1]方差}{考点:方差}{类别:常考题}{难度:2-简单}{题目}6. ( 2019年台州)一道来自课本的习题:从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min ,从乙地到甲地需42min ,甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x, y,已经列出一个方程-y 54 ,则另一个方程正确的是(3 4 60A. X v 424 3 60C x Y 424 5 60{答案}B{解析}本题考查了二元一次方程组的应用x y 425 4 60x y 423 4 60行程问题,首先根据已知方程确定x为上坡路程,y为平路路程,返回时平路还是V,而原来的上坡路程x变成了下坡路程x, 42分钟为下坡时间平路时间x y 42的总和,从而得到万程:一』一,因此本题选B. 5 4 60{分值}4{章节:[1-8-3]实际问题与一元一次方程组}{考点:简单的列二元一次方程组应用题}{类别:常考题}{难度:2-简单}{题目}7. (2019年台州)如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB, AC相切,则。

2019年浙江省台州市中考数学真题模拟试卷附解析

2019年浙江省台州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.函数y x m =+与(0)m y m x=≠在同一坐标系内的图象可以是( ) 2.如图,在梯形ABCD 中,AD ∥BC ,AB=AD=DC ,∠C=60°.若这个梯形的周长为50,则AB 的长为( )A .8B .9C .10D .123.下列语句是命题的有 ( )①若两个角都等于50o ,则这两个角是对顶角; ②直角三角形一定不是轴对称图形; ③画线段AB =2㎝;④在同一平面内的两条直线,若不相交,则平行A .1个B .2个C .3个D .4个4.以下命题的逆命题为真命题的是( )A .三个角相等的三角形是等边三角形B .关于某点成中心对称的两个图形全等C .三角形的中位线平行于第三边D .全等三角形的对应角相等5.样本3、6、4、4、7、6的方差是( )A .12B .3C .2D 2 6.下列各式从左到右的变形中,是因式分解的为( )A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++C .221()a b a a b a +=+ D .1(1)(1)ab a b a b -+-=+- 7.小明通常上学时走上坡路,途中的速度为m 千米/时,放学回家时,沿原路返回,速度为n 千米/时,则小明上学和放学路上的平均速度为( )A .2n m +千米/时B .n m mn +千米/时C .n m mn +2千米/时D .mnn m +千米/时8.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形二、填空题9.若抛物线2y x bx c =-++的最高点为(-1,-3),则b= 一2,c= . 10.天河宾馆在重新装修后,准备在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平 方米售价30元,主楼梯宽2 m ,其侧面图如图所示,则购买地毯至少需要 元.11.在△ABC 中,到AB ,AC 距离相等的点在 上.12.已知直线1l ∥2l ∥3l ,1l 与2l 之间的距离为1cm ,2l 与3l 之间的距离为3 cm ,则1l 与3l 之间的距离为 cm .解答题13.如图,若∠1 =∠B ,则 ∥ , 理由是 ,所以∠2 = ,理由是 .14.如图,BE ,CD 是△ABC 的高,且AD =AE ,判定△ACD ≌△ABE 的依据是“______”.15.如图,是某煤气公司的商标图案,外层可以视为利用图形的 设计而成的,内层可以视为利用图形的 设计而成的.16.在△ABC 中,(1)∠C=85°,∠A=25°,则∠B= ;(2)∠A+∠B=90°,则∠C= ;(3)∠A=∠B=∠C ,则∠A= ;(4)∠A=∠B ,∠C=80°,则∠B= .17.若角α的余角与角α的补角的和是平角,则角α= .三、解答题18.如图,AC⊥CD,甲、乙两船分别从 A地和 C地同时开出,各沿箭头所指方向航行,AC=10 海里,甲、乙两船的速度分别是16 海里/小时和12 海里/小时,间多长时间后两船相距最近?最近距离是多少?19.如图,在□ABCD 中,E、F是 AC 上的两点.且AE=CF .求证:ED∥BF .20.如图,△ABC中,∠C=90°,∠B=60°,AO=x,⊙O的半径为1.问:当x在什么范围内取值时,直线AC与⊙O相离、相切、相交?21.根据下列条件,分别判断以a,b,c为边的三角形是不是直角三角形.(1) a=8,b=15,c=17;(2)23a=,1b=,23c=22.如图,已知线段a ,锐角∠α,画Rt △ABC ,使斜边AB=a ,∠A=∠α.23.如图,A 、F 、C 、D 四点在一条直线上,AF=CD ,∠D =∠A ,且AB=DE ,试说明BC =EF 的理由.24.若(x+y )2=36,(x -y )2=16,求xy 与x 2+y 2的值.25.已知 n 为正整数,试判断233n n +-能否被24 整除.26.当 x 取什么值时,下列分式的值为零? (1)1510x x +-;(2)211x x -+;(3)||22x x --27.如图中AB=8 cm ,AD=5 cm ,BC=5 cm ,求CD 的长.28.某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.(1)D型号种子的粒数是;(2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.29.某天,一蔬菜经营户用70元钱从蔬菜市场批发了辣椒和蒜苗共40kg到市场去卖,辣椒和蒜苗这天的批发价与零售价如表所示:问:(1)辣椒和蒜苗各批发了多少kg?(2)他当天卖完这些辣椒和蒜苗能赚多少钱?30.计算下列各式:(1)4+3×(-2)3+33(2)11 (37)()(3)88 -⨯---⨯A35%B20%C20%D各型号种子数的百分比图1图2(3)200532(1)(3)4(8)9-+-⨯--÷- (4) 2008200945()()54⨯-【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.A5.C6.D7.C8.D二、填空题9.一2,一410.480°11.∠A 的平分线12.4或213.DE ;BC ;同位角相等,两直线平行;∠C ;两直线平行,同位角相等14.ASA (或AAS )15.旋转变换,轴对称变换16.(1)70°;(2)90°;(3)60°;(4)50°17. 45三、解答题18.设需x (小时)两船相距最近.∵AC ⊥CD ,222(1016)(12)BD x x =-+,BD ==,∴. 当 x=0.4 时,6BD ==(海里).即经过 0.4 小时后两船相距最近. 最近为 6海里.19.提示:由△ADE ≌△CBF ,得∠AED =∠CFB ,则∠DEF =∠BFE ,∴DE ∥BF . 20.解:作OD ⊥AC 于D ,在Rt △ABC ,∠C =90°∠B =60°,∴∠A =30°∴OD =12AO =12x (1)当12x >1,即x >2时,AC 与⊙O 相离; (2)当12x =1,即x =2时,AC 与⊙O 相切; (3)0≤12x <1,即0≤x <2时,AC 与⊙O 相交. 21.(1)是;(2)不是22.略23.因为 AF=CD,所以AF+FC=CD+FC,即AC=DF.因为∠D=∠A,且AB =DE,所以△ABC ≌△DEF,所以BC = EF24.5,26.25.能被 24 整26.(1)1x=-;(2)1x=;(3)2x=-27.2 cm28.解:(1)500;(2)如图;(3)A型号发芽率为90%,B型号发芽率为92.5%,D型号发芽率为94%,C型号发芽率为95%.∴应选C型号的种子进行推广.29.(1)设该经营户从蔬菜市场批发了辣椒x kg,则蒜苗(40)x-kg,得1.6 1.8(40)70x x+-=,解得:10x=4030x-=(2)利润:10(2.6 1.6)30(3.3 1.8)55-+-=答:该经营户批发了10kg辣椒和30kg蒜苗;当天能赚55元.30.(1)7;(2)5;(3)193;(4)54-。

2019年浙江省台州市中考数学试卷(word版,含答案解析)

2019年浙江省台州市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.计算2a−3a,结果正确的是()A. −1B. 1C. −aD. a2.如图是某几何体的三视图,则该几何体是()A. 长方体B. 正方体C. 圆柱D.球3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为()A. 5.952×1011 B. 59.52×1010 C. 5.952×1012 D. 5952×1094.下列长度的三条线段,能组成三角形的是()A. 3,4,8B. 5,6,10C. 5,5,11D. 5,6,115.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,x n,可用如下算式计算方差:s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2],其中“5”是这组数据的()A. 最小值B. 平均数C. 中位数D. 众数6.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是()A. x4+y3=4260B. x5+y4=4260C. x4+y5=4260D. x3+y4=42607.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A. 2√3B. 3C. 4D. 4−√38.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于()A. 14B. 12C. 817D. 8159.已知某函数的图象C与函数y=3x的图象关于直线y=2对称.下列命题:①图象C与函数y=3x 的图象交于点(32,2);②点(12,−2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是()A. ①②B. ①③④C. ②③④D. ①②③④10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为()A. √2:1B. 3:2C. √3:1D. √2:2二、填空题(本大题共6小题,共30.0分)11.分解因式:ax2−ay2=______.12.若一个数的平方等于5,则这个数等于______.13.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是______.14.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上连接AE.若∠ABC=64°,则∠BAE的度数为____.15.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共______个.16.如图,直线l1//l2//l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且mn =23,则m+n的最大值为______.三、解答题(本大题共8小题,共80.0分)17.计算:√12+|1−√3|−(−1).18.先化简,再求值:3xx2−2x+1−3x2−2x+1,其中x=12.19.图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).20.如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度ℎ(单位:m)x+6,乙离一楼地面的高度y(单与下行时间x(单位:s)之间具有函数关系ℎ=−310位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.21.安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.22.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(______)②若AD=BE=CF,则六边形ABCDEF是正六边形.(______)23.已知函数y=x2+bx+c(b,c为常数)的图象经过点(−2,4).(1)求b,c满足的关系式;(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;(3)若该函数的图象不经过第三象限,当−5≤x≤1时,函数的最大值与最小值之差为16,求b的值.24.如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.(1)求AF的值;AP(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q′落在边AD上.请判断点B旋转后的对应点B′是否落在线段BN上,并说明理由.答案和解析1.【答案】C【解析】解:2a−3a=−a,故选:C.根据合并同类项法则合并即可.本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.2.【答案】C【解析】解:∵几何体的主视图和俯视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱,故选:C.根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.3.【答案】A【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当小数点向左移动时,n是正数;当小数点向右移动时,n是负数.【解答】解:数字595200000000元科学记数法可表示为5.952×1011元.故选:A.4.【答案】B【解析】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10−5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.根据三角形的三边关系即可求此题主要考查三角形的三边关系,要掌握并熟记三角形的三边关系:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.5.【答案】B【解析】解:方差s2=1n[(x1−5)2+(x2−5)2+(x3−5)2+⋯+(x n−5)2]中“5”是这组数据的平均数,故选:B.根据方差的定义可得答案.本题考查方差,解题的关键是掌握方差的定义:一组数据中各数据与它们的平均数的差的平方的平均数叫做这组数据的方差.6.【答案】B【解析】解:设未知数x,y,已经列出一个方程x3+y4=5460,则另一个方程正确的是:x 5+y4=4260.故选:B.直接利用已知方程得出上坡的路程为x,平路为y,进而得出等式求出答案.此题主要考查了二元一次方程组的应用,正确理解题意得出等式是解题关键.7.【答案】A【解析】【分析】设⊙O与AC的切点为E,连接AO,OE,根据等边三角形的性质得到AC=8,∠C=∠BAC=60°,由切线的性质得到∠BAO=∠CAO=12∠BAC=30°,求得∠AOC=90°,解直角三角形即可得到结论.本题考查了切线的性质,等边三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.【解答】解:设⊙O与AC的切点为E,连接AO,OE,∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°,∵圆分别与边AB,AC相切,∴∠BAO=∠CAO=12∠BAC=30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省台州市温岭市中考数学一模试卷姓名:得分:日期:
一、选择题(本大题共 10 小题,共 40 分)
1、(4分) 如果a与﹣3互为相反数,那么a等于()
A.-3
B.3
C.−1
3D.1
3
2、(4分) 习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人.将1350000000用科学记数法表示为()
A.135×107
B.1.35×109
C.13.5×108
D.1.35×1014
3、(4分) 下列计算正确的是()
A.a3+a2=a5
B.a3•a2=a5
C.(2a2)3=6a6
D.a6÷a2=a3
4、(4分) 如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()
A. B.
C.
D.
5、(4分) 如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是()
A.a+b>0
B.ab=0
C.1
a −1
b
<0 D.1
a
+1
b
>0
6、(4分) 某车间20名工人每天加工零件数如表所示:
这些工人每天加工零件数的众数、中位数分别是()
A.5,5
B.5,6
C.6,6
D.6,5
7、(4分) 如图,点A,B,P是⊙O上的三点,若∠AOB=40°,则∠APB的度数为()
A.80°
B.140°
C.20°
D.50°
8、(4分) 如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为()
A.√7
B.2√7
C.3√7
D.4√7
9、(4分) 我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,其中O点是坐标原点,AO=2,BO=3,BC=4,点A、B是固定点,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()
A.(2√3,3)
B.(2√3,5)
C.(3,2√3)
D.(5,2√3)
10、(4分) 如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止,在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点D为曲线部分的最低点,若△ABC的面积是10√6,则a=()
A.7
B.3√6
C.8
D.4√6
二、填空题(本大题共 6 小题,共 30 分)
11、(5分) 分解因式:x2﹣4x=.
12、(5分) 若a,b都是实数,b=√1−2a+√2a−1−2,则a b的值
为.。

相关文档
最新文档