2019年中考数学一模试卷(含解析)
2019年江苏省徐州市市区学校中考数学一模试卷 解析版

2019年江苏省徐州市市区学校中考数学一模试卷一、选择题(本大题共8小题,每空3分,共计24分.每题只有一个正确答案,请将正确案填涂在答题卡相应位置上)1.(3分)﹣5的相反数是()A.5B.﹣5C.D.2.(3分)下列运算正确的是()A.a3•a4=a12B.a3+a3=2a6C.a3÷a3=0D.3x2•5x3=15x53.(3分)2018年底徐州市总人口约为9060000人,数字9060000用科学记数法表示为()A.9.06×105B.0.906×10﹣5C.9.06×106D.0.906×10﹣7 4.(3分)在下列事件中,必然事件是()A.两条线段可以组成一个三角形B.400 人中至少有两个人的生日在同一天C.早上的太阳从西方升起D.过马路时恰好遇到红灯5.(3分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.菱形7.(3分)顺次连接菱形ABCD各边中点所得到的四边形一定是()A.菱形B.正方形C.矩形D.对角线互相垂直的四边形8.(3分)已知一次函数y=ax+b(a≠0,a,b为常数),x与y的对应值如表:x﹣10123y3210﹣1不等式ax+b<0的解集是()A.x>﹣2B.x<2C.x>0D.x>2二、填空题(本大题共10小题,每空3分,共计30分不需与出解答过程,请将答案直接填号在答题卡相应位置上);9.(3分)9的算术平方根是.10.(3分)一组数据:2,4,4,5,3,9,4,5,1,8,这组数据的中位数是.11.(3分)使二次根式有意义的x的取值范围是.12.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为.13.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是.14.(3分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=.15.(3分)圆锥的底面直径是8,母线长是12,则这个圆锥侧面展开图的扇形圆心角是度.16.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的G处,点C落在点H 处,者∠AGB=75°,连接BG,则∠DGH=度.17.(3分)在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的图形的面积为cm2.18.(3分)如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=4,DB=6,则弦BC 的长是.三.解答题(本大题共有10小题,共86分.请在答题卡指定区城内作答,解答时应写出文字说明,证明过程或演算)19.(10分)(1)计算:﹣()﹣1+|﹣3+2|+2sin30°;(2)化简:(2﹣÷20.(10分)(1)解方程:x2﹣4x+3=0;(2)解不等组:21.(7分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?22.(7分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.(1)第一次取出恰为写有数字﹣2的小球的概率为;(2)请你用列表法或树状图的方法(只选其中一种)求出两次取出小球上的数字之和为偶数的概率.23.(8分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.24.(8分)为加快城市群的建设与发展,在徐州与连云港两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,城际铁路的设计平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在徐州到连云港两地的运行时间.25.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=6,AE=3,求⊙O的半径.26.(8分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC =40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)27.(10分)将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.28.(10分)如图,已知二次函数y=ax2+bx+3的图象与x轴交于点A(﹣1,0)、B(4,0),与y的正半轴交于点C.(1)求二次函数y=ax2+bx+3的表达式.(2)点Q(m,0)是线段OB上一点,过点Q作y轴的平行线,与BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为D.探究:是否存在点Q,使得四边形MNDC是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.(3)若点E在二次函数图象上,且以E为圆心的圆与直线BC相切与点F,且EF=,请直接写出点E的坐标.2019年江苏省徐州市市区学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每空3分,共计24分.每题只有一个正确答案,请将正确案填涂在答题卡相应位置上)1.(3分)﹣5的相反数是()A.5B.﹣5C.D.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣5的相反数是5,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)下列运算正确的是()A.a3•a4=a12B.a3+a3=2a6C.a3÷a3=0D.3x2•5x3=15x5【分析】根据同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减;单项式的乘法法则,合并同类项的法则,对各选项计算后利用排除法求解.【解答】解:A、应为a3•a4=a7,故本选项错误;B、应为a3+a3=2a3,故本选项错误;C、应为a3÷a3=a0=1,错误;D、3x2•5x3=15x5,正确.故选:D.【点评】本题考查了合并同类项、同底数幂的乘法和除法,单项式的乘法,熟练掌握运算法则和性质是解题的关键.3.(3分)2018年底徐州市总人口约为9060000人,数字9060000用科学记数法表示为()A.9.06×105B.0.906×10﹣5C.9.06×106D.0.906×10﹣7【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9060000=9.06×106,【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)在下列事件中,必然事件是()A.两条线段可以组成一个三角形B.400 人中至少有两个人的生日在同一天C.早上的太阳从西方升起D.过马路时恰好遇到红灯【分析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【解答】解:A、两条线段可以组成一个三角形是不可能事件,故选项错误;B、400 人中至少有两个人的生日在同一天是必然事件,故选项正确;C、早上的太阳从西方升起是不可能事件,故选项错误;D、过马路时恰好遇到红灯是不确定事件,即随机事件,故选项错误.故选:B.【点评】该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.5.(3分)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.菱形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.(3分)顺次连接菱形ABCD各边中点所得到的四边形一定是()A.菱形B.正方形C.矩形D.对角线互相垂直的四边形【分析】先证明四边形EFGH是平行四边形,再根据有一个角是直角的平行四边形是矩形判断.【解答】解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EH=FG=BD;EF∥HG∥AC,EF=HG=AC,故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°,∴四边形EFGH是矩形,故选:C.【点评】本题考查了中点四边形的有关性质,解题的关键是要熟知菱形的性质,矩形的概念及三角形的中位线定理.菱形的性质:菱形的对角线互相垂直;矩形的概念:有一个角是直角的平行四边形是矩形;三角形的中位线定理:三角形的中位线平行于底边且等于底边的一半.8.(3分)已知一次函数y=ax+b(a≠0,a,b为常数),x与y的对应值如表:x﹣10123y3210﹣1不等式ax+b<0的解集是()A.x>﹣2B.x<2C.x>0D.x>2【分析】根据不等式ax+b<0的解集为函数y=ax+b中y<0时自变量x的取值范围,由图表可知,y随x的增大而减小,因此x>2时,函数值y<0,即不等式ax+b<0的解集为x>2.【解答】解:由图表可得:当x=2时,y=0,且y随x的增大而减小,所以不等式ax+b<0的解集是:x>2,故选:D.【点评】本题主要考查了一次函数与一元一次不等式之间的关系,难度适中.二、填空题(本大题共10小题,每空3分,共计30分不需与出解答过程,请将答案直接填号在答题卡相应位置上);9.(3分)9的算术平方根是3.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.10.(3分)一组数据:2,4,4,5,3,9,4,5,1,8,这组数据的中位数是4.【分析】根据中位数的定义求解可得.【解答】解:将这组数据重新排列为1,2,3,4,4,4,5,5,8,9,则其中位数为=4,故答案为:4.【点评】本题考查了中位数,找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.(3分)使二次根式有意义的x的取值范围是x≥﹣3.【分析】二次根式有意义,被开方数为非负数,列不等式求解.【解答】解:根据二次根式的意义,得x+3≥0,解得x≥﹣3.故答案为:x≥﹣3.【点评】用到的知识点为:二次根式的被开方数是非负数.12.(3分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.【点评】本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.13.(3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2.【分析】因为(﹣1,2)在函数图象上,k=xy,从而可确定k的值.【解答】解:∵图象经过点(﹣1,2),∴k=xy=﹣1×2=﹣2.故答案为:﹣2.【点评】本题考查待定系数法求反比例函数解析式,关键知道反比例函数式的形式,从而得解.14.(3分)若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=4.【分析】根据根与系数的关系得到,通过解该方程组可以求得a、b的值.【解答】解:∵关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别是2、b,∴由韦达定理,得,解得,.∴ab=1×4=4.故答案是:4.【点评】本题考查了根与系数的关系.x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=,反过来也成立,即=﹣(x1+x2),=x1x2.15.(3分)圆锥的底面直径是8,母线长是12,则这个圆锥侧面展开图的扇形圆心角是120度.【分析】底面的直径为8,则底面圆的周长即侧面展开图得到的扇形的弧长是8π;圆锥母线长是12,则扇形的半径是12,根据弧长的公式.【解答】解:根据弧长的公式l=得到:8π=解得n=120°这个圆锥侧面展开图的扇形圆心角是120度.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.16.(3分)如图,将矩形ABCD沿EF折叠,使点B落在AD边上的G处,点C落在点H 处,者∠AGB=75°,连接BG,则∠DGH=30度.【分析】由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,从而可证明∠EBG=∠EGB.,然后再根据∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH,由平行线的性质可知∠AGB=∠GBC,从而易证∠AGB=∠BGH,据此可得答案.【解答】解:由折叠的性质可知:GE=BE,∠EGH=∠ABC=90°,∴∠EBG=∠EGB.∴∠EGH﹣∠EGB=∠EBC﹣∠EBG,即:∠GBC=∠BGH.又∵AD∥BC,∴∠AGB=∠GBC.∴∠AGB=∠BGH.∵∠DGH=30°,∴∠AGH=150°,∴∠AGB=∠AGH=75°,∴∠AGH=150°.∴∠DGH=180°﹣∠AGH=30°.故答案为:30.【点评】本题主要考查翻折变换,解题的关键是熟练掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.(3分)在矩形ABCD中,已知AB=2cm,BC=3cm,现有一根长为2cm的木棒EF紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF 的中点P在运动过程中所围成的图形的面积为6﹣πcm2.【分析】根据题意得出木棒EF的中点P在运动过程中的轨迹为分别以A,B,C,D为圆心,1cm为半径的弧,进而得出扇形面积,即可得出阴影部分面积.【解答】解:如图所示:由题意根据直角三角形斜边上的中线等于斜边的一半,得出P 到B点距离始终为1,则木棒EF的中点P在运动过程中的轨迹为分别以A,B,C,D为圆心,1cm为半径的弧,故所围成的图形的面积为:矩形面积﹣4个扇形面积=6﹣4×=6﹣π(cm2).故答案为:6﹣π.【点评】此题主要考查了扇形的面积计算以及矩形的性质,根据题意得出P到B点距离始终为1是解题关键.18.(3分)如图,将弧BC沿弦BC折叠交直径AB于点D,若AD=4,DB=6,则弦BC 的长是4.【分析】作CH⊥AD于H,连接OC、AC、CD,如图,先利用折叠的性质得AC弧与CDB 弧所在的圆为等圆,利用圆周角定理得=,所以CA=CD,则AH=DH=2,再利用勾股定理计算出CH=4,AC=2,然后根据圆周角定理得到∠ACB=90°,则利用勾股定理可计算出BC.【解答】解:作CH⊥AD于H,连接OC、AC、CD,如图,∵以半圆的一条弦BC为对称轴将弧BC折叠后与直径AB交于点D,∴AC弧与CDB弧所在的圆为等圆,∴=,∴CA=CD,∴AH=DH=2,在Rt△OCH中,OC=5,OH=3,∴CH=4,在Rt△ACH中,AC==2,∵AB为直径,∴∠ACB=90°,∴BC=10=4.故答案为4.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了圆的对称性、圆周角定理和勾股定理.三.解答题(本大题共有10小题,共86分.请在答题卡指定区城内作答,解答时应写出文字说明,证明过程或演算)19.(10分)(1)计算:﹣()﹣1+|﹣3+2|+2sin30°;(2)化简:(2﹣÷【分析】(1)本题涉及绝对值、立方根、负指数幂、特殊角三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)一方面注重第一个括号内的通分,另一方面注重对多项式的因式分解即可.【解答】解:(1)﹣()﹣1+|﹣3+2|+2sin30°=2﹣2+1+2×=1+1=2故原式的值为2.(2)原式=(﹣)÷=×=.【点评】本题考查的是实数的综合运算以及分式的化简求值,重点是化简与运算过程中不能出现纰漏,按运算顺序正确计算是关键.20.(10分)(1)解方程:x2﹣4x+3=0;(2)解不等组:【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)x2﹣4x+3=0,(x﹣1)(x﹣3)=0,x﹣1=0,x﹣3=0,x1=1,x2=3;(2)∵解不等式①得:x>﹣7,解不等式②得:x<﹣5,∴不等式组的解集是﹣7<x<﹣5.【点评】本题考查了解一元二次方程和解一元一次不等式组,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键,注意:解一元二次方程的方法有:因式分解法,直接开平方法,公式法,配方法等.21.(7分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是120人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有96人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?【分析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;(3)求出达标占的百分比,乘以1200即可得到结果.【解答】解:(1)根据题意得:24÷20%=120(人),则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为×100%=30%,补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:×1200=960(人),则全校达标的学生有960人.故答案为:(1)120;(2)96人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.22.(7分)在一个不透明的盒子里,装有三个分别写有数字6,﹣2,7的小球,它们的形状大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.(1)第一次取出恰为写有数字﹣2的小球的概率为;(2)请你用列表法或树状图的方法(只选其中一种)求出两次取出小球上的数字之和为偶数的概率.【分析】(1)直接利用概率公式求解;(2)画树状图展示所有9种等可能的结果数,再找出两次取出小球上的数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:(1)第一次取出恰为写有数字﹣2的小球的概率=;故答案为;(2)画树状图为:共有9种等可能的结果数,其中两次取出小球上的数字之和为偶数的结果数为5,所以两次取出小球上的数字之和为偶数的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.23.(8分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE =CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.24.(8分)为加快城市群的建设与发展,在徐州与连云港两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km缩短至180km,城际铁路的设计平均时速要比现行的平均时速快200km,运行时间仅是现行时间的,求建成后的城际铁路在徐州到连云港两地的运行时间.【分析】设建成后的城际铁路在徐州到连云港两地的运行时间为xh,则建成前在徐州到连云港两地的运行时间为xh,根据速度=路程÷时间结合城际铁路的设计平均时速要比现行的平均时速快200km,解之经检验后即可得出结论.【解答】解:设建成后的城际铁路在徐州到连云港两地的运行时间为xh,则建成前在徐州到连云港两地的运行时间为xh,依题意,得:﹣=200,解得:x=,经检验,x=是原方程的解,且符合题意.答:建成后的城际铁路在徐州到连云港两地的运行时间为h.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=6,AE=3,求⊙O的半径.【分析】(1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE 是⊙O的切线;(2)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.【解答】(1)证明:连接OA,∵OA=OD,∴∠1=∠2.∵DA平分∠BDE,∴∠2=∠3.∴∠1=∠3.∴OA∥DE.∴∠OAE=∠ADE,∵AE⊥CD,∴∠ADE=90°.∴∠OAE=90°,即OA⊥AE.又∵点A在⊙O上,∴AE是⊙O的切线.(2)解:∵BD是⊙O的直径,∴∠BAD=90°.∵∠5=90°,∴∠BAD=∠5.又∵∠2=∠3,∴△BAD∽△AED.∴=,∵BA=6,AE=3,∴BD=2AD.在Rt△BAD中,根据勾股定理,得BD=4.∴⊙O半径为2.【点评】此题主要考查了圆的综合应用以及相似三角形的判定及性质的运用和切线的求法等知识点的掌握情况.要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.26.(8分)初三(5)班综合实践小组去湖滨花园测量人工湖的长,如图A、D是人工湖边的两座雕塑,AB、BC是湖滨花园的小路,小东同学进行如下测量,B点在A点北偏东60°方向,C点在B点北偏东45°方向,C点在D点正东方向,且测得AB=20米,BC =40米,求AD的长.(≈1.732,≈1.414,结果精确到0.01米)【分析】过点B作BE⊥DA,BF⊥DC,垂足分别为E、F,已知AD=AE+ED,则分别求得AE、DE的长即可求得AD的长.【解答】解:过点B作BE⊥DA,BF⊥DC,垂足分别为E,F,由题意知,AD⊥CD∴四边形BFDE为矩形∴BF=ED在Rt△ABE中,AE=AB•cos∠EAB在Rt△BCF中,BF=BC•cos∠FBC∴AD=AE+BF=20•cos60°+40•cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【点评】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.27.(10分)将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为4.【分析】(1)解直角三角形求出AB,再在Rt△ADG中,根据DG=AD•tan30°计算即可解决问题.(2)利用相似三角形的性质解决问题即可.(3)证明K,D,T,C四点共圆,推出KT是该圆的直径,易知当CD是该圆的直径时,KT的长最短.【解答】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,BC=4,∠CAB=30°∴AB=2BC=8,∵DF垂直平分线段AB,∴AD=DB=4,在Rt△ADG中,DG=AD•tan30°=4×=4.(2)结论:CN=HM.理由:如图2中,∵∠ACB=90°,AD=DB,∴CD=DA=DB,∵∠B=60°,∴△BDC是等边三角形,∴∠DCB=∠CDB=60°,∵∠ACB=∠CDH=90°,∴∠MDH=∠HCD=30°,∴CD=DH,∵∠DHM=∠DCN=60°,∠DMH=∠DNC=90°,∴△DMH∽△DNC,∴==,∴CN=HM.(3)如图3中,连接CD.∵∠KCT=∠KDT=90°,∴∠KCT+∠KDT=180°,∴K,D,T,C四点共圆,∴KT是该圆的直径,当CD是该圆的直径时,KT的长最短,此时KT=CD=AB=4.【点评】本题属于几何变换综合题,考查了旋转变换,解直角三角形,相似三角形的判定和性质,四点共圆等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.28.(10分)如图,已知二次函数y=ax2+bx+3的图象与x轴交于点A(﹣1,0)、B(4,0),与y的正半轴交于点C.(1)求二次函数y=ax2+bx+3的表达式.(2)点Q(m,0)是线段OB上一点,过点Q作y轴的平行线,与BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为D.探究:是否存在点Q,使得四边形MNDC是菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.(3)若点E在二次函数图象上,且以E为圆心的圆与直线BC相切与点F,且EF=,请直接写出点E的坐标.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出二次函数的表达式;(2)利用二次函数图象上点的坐标特征可求出点C的坐标,由点B,C的坐标利用待定系数法可求出直线BC的函数表达式,由点Q的坐标可得出点M,N的坐标,进而可得出MN的长度,结合点C的坐标可得出MC的长度,由菱形的性质可得出MN=MC,进而可得出关于m的一元二次方程,解之即可得出m的值(取正值),进而可得出点Q的坐标;(3)过点E作EP∥直线BC,交y轴于点P,这样的点P有两个,记为P1,P2,利用面积法可求出点O到直线BC的距离,结合EF=可得出点P1为线段OC的中点,进而可得出点P1的坐标,由CP1=CP2可得出点P2的坐标,结合BC的解析式可求出直线EP的函数表达式,联立直线EP和抛物线的函数表达式成方程组,通过解方程组即可求出点P的坐标.【解答】解:(1)将A(﹣1,0),B(4,0)代入y=ax2+bx+3,得:,解得:,∴二次函数的表达式为y=﹣x2+x+3.(2)当x=0时,y=﹣x2+x+3=3,∴点C的坐标为(0,3).设直线BC的函数表达式为y=kx+c(k≠0),将B(4,0),C(0,3)代入y=kx+c,得:,解得:,。
2019年中考数学一模试卷含答案

2019年中考数学一模试卷含答案一、选择题1.已知反比例函数 y=的图象如图所示,则二次函数 y =a x 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是()A.B.C.D.2.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个3.地球与月球的平均距离为384 000km,将384 000这个数用科学记数法表示为()A.3.84×103 B.3.84×104 C.3.84×105 D.3.84×1064.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A .B .C .D .5.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .6.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -=D .()136x x += 8.方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠9.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )A.40B.30C.28D.2010.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD 的面积之和为,则k的值为()A.2B.3C.4D.11.矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A.1B.23C.22D512.某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A.140B.120C.160D.100二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.15.如图:已知AB=10,点C 、D 在线段AB 上且AC=DB=2; P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连结EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是________.16.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.17.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .18.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.19.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.20.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
2019年数学中考一模试卷(及答案)

2019年数学中考一模试卷(及答案)一、选择题1.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A .abc >0B .b 2﹣4ac <0C .9a+3b+c >0D .c+8a <02.定义一种新运算:1an nnbn xdx a b -⋅=-⎰,例如:222khxdx k h ⋅=-⎰,若m252mx dx --=-⎰,则m =( )A .-2B .25-C .2D .253.如图,⊙O 的半径为5,AB 为弦,点C 为»AB 的中点,若∠ABC=30°,则弦AB 的长为( )A .12B .5C .53D .534.下列命题中,真命题的是( ) A .对角线互相垂直的四边形是菱形 B .对角线互相垂直平分的四边形是正方形 C .对角线相等的四边形是矩形D .对角线互相平分的四边形是平行四边形5.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .5B .4C .213D .4.86.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.57.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤B .54k >C .514k k ≠<且D .514k k ≤≠且 8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更合算( ) A .甲B .乙C .丙D .一样10.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα 11.cos45°的值等于( ) A 2B .1C 3D .2212.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A.60°B.50°C.45°D.40°二、填空题13.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.不等式组3241112x xxx≤-⎧⎪⎨--<+⎪⎩的整数解是x=.16.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为 cm.17.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm18.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.19.如图所示,过正五边形ABCDE的顶点B作一条射线与其内角EAB∠的角平分线相交于点P,且60ABP∠=︒,则APB∠=_____度.20.如图,在平面直角坐标系xOy中,函数y=kx(k>0,x>0)的图象经过菱形OACD 的顶点D和边AC的中点E,若菱形OACD的边长为3,则k的值为_____.三、解答题21.为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A :自行车,B :电动车,C :公交车,D :家庭汽车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了 名市民,扇形统计图中,C 组对应的扇形圆心角是 °;(2)请补全条形统计图;(3)若甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.22.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法.请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a b 3m 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( +3)2;(3)若(233a m +=+,且ab m n 、、、均为正整数,求a 的值.23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.如图1,已知二次函数y=ax2+32x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+32x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.25.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c(1)请将上面两个表格补充完整:a =____,b =_____,c =_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】 【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12bx a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D.考点:二次函数的图象及性质.2.B解析:B 【解析】 【分析】根据新定义运算得到一个分式方程,求解即可. 【详解】 根据题意得,5211m11(5)25m x dx m m m m---⎰-=-=-=-, 则25m =-,经检验,25m=-是方程的解,故选B.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.3.D解析:D【解析】【分析】连接OC、OA,利用圆周角定理得出∠AOC=60°,再利用垂径定理得出AB即可.【详解】连接OC、OA,∵∠ABC=30°,∴∠AOC=60°,∵AB为弦,点C为»AB的中点,∴OC⊥AB,在Rt△OAE中,53∴AB=53,故选D.【点睛】此题考查圆周角定理,关键是利用圆周角定理得出∠AOC=60°.4.D解析:D【解析】【分析】根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.【详解】对角线互相垂直且平分的四边形是菱形,故A是假命题;对角线互相垂直平分且相等的四边形是正方形,故B是假命题;对角线相等且平分的四边形是矩形,故C是假命题;对角线互相平分的四边形是平行四边形,故D是真命题.故选D.本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C解析:C 【解析】 【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】∵AB 为直径, ∴90ACB ︒∠=,∴6BC ==, ∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C . 【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.6.B解析:B 【解析】 【分析】 【详解】解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点, ∴CP =12BD =3.7.D解析:D 【解析】 【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答 【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D . 【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键8.A解析:A 【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】 解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A . 【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.C解析:C 【解析】试题分析:设商品原价为x ,表示出三家超市降价后的价格,然后比较即可得出答案. 解:设商品原价为x ,甲超市的售价为:x (1﹣20%)(1﹣10%)=0.72x ; 乙超市售价为:x (1﹣15%)2=0.7225x ;丙超市售价为:x(1﹣30%)=70%x=0.7x;故到丙超市合算.故选C.考点:列代数式.10.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.11.D解析:D【解析】【分析】将特殊角的三角函数值代入求解.【详解】解:cos45°=2.故选D.【点睛】本题考查特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.12.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.15.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.16.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧»BC的长=606=2180ππ⋅⋅(cm).17.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm ,根据题意得2πr=904180π⨯,解得r=1. 故答案为:1. 点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.19.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.20.【解析】【分析】过D作DQ⊥x轴于Q过C作CM⊥x轴于M过E作EF⊥x 轴于F设D点的坐标为(ab)求出CE的坐标代入函数解析式求出a再根据勾股定理求出b即可请求出答案【详解】如图过D作DQ⊥x轴于Q解析:25【解析】【分析】过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),求出C、E的坐标,代入函数解析式,求出a,再根据勾股定理求出b,即可请求出答案.【详解】如图,过D作DQ⊥x轴于Q,过C作CM⊥x轴于M,过E作EF⊥x轴于F,设D点的坐标为(a,b),则C点的坐标为(a+3,b),∵E为AC的中点,∴EF=12CM=12b,AF=12AM=12OQ=12a,E点的坐标为(3+12a,12b),把D、E的坐标代入y=kx得:k=ab=(3+12a)12b,解得:a=2,在Rt△DQO中,由勾股定理得:a2+b2=32,即22+b2=9,解得:b=5(负数舍去),∴k=ab=25,故答案为25.【点睛】本题考查了勾股定理、反比例函数图象上点的坐标特征、菱形的性质等,得出关于a、b的方程是解此题的关键.三、解答题21.(1)2000,108;(2)作图见解析;(3).【解析】试题分析:(1)根据B 组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C 组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A 、B 、C 、D 四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.试题解析:(1)被调查的人数为:800÷40%=2000(人),C 组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C 组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.考点:列表法与树状图法;扇形统计图;条形统计图.22.(1)22m 3n +,2mn ;(2)4,2,1,1(答案不唯一);(3)a =7或a =13.【解析】【分析】【详解】(1)∵23(3)a m +=+, ∴223323a b m n mn +=++,∴a =m 2+3n 2,b =2mn .故答案为m 2+3n 2,2mn .(2)设m =1,n =2,∴a =m 2+3n 2=13,b =2mn =4.故答案为13,4,1,2(答案不唯一).(3)由题意,得a =m 2+3n 2,b =2mn .∵4=2mn ,且m 、n 为正整数,∴m =2,n =1或m =1,n =2,∴a =22+3×12=7,或a =12+3×22=13. 23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC 是半圆O 的切线,利用切线的判定定理:即证明AB ⊥BC 即可;(2)因为OC ∥AD ,可得∠BEC=∠D=90°,再有其他条件可判定△BCE ∽△BAD ,利用相似三角形的性质:对应边的比值相等即可求出AD 的长.【详解】(1)证明:∵AB 是半圆O 的直径,∴BD ⊥AD ,∴∠DBA+∠A=90°,∵∠DBC=∠A ,∴∠DBA+∠DBC=90°即AB ⊥BC ,∴BC 是半圆O 的切线;(2)解:∵OC ∥AD ,∴∠BEC=∠D=90°,∵BD ⊥AD ,BD=6,∴BE=DE=3,∵∠DBC=∠A ,∴△BCE ∽△BAD ,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)y=﹣14x 2+32x+4;(2)△ABC 是直角三角形.理由见解析;(3)点N 的坐标分别为(﹣8,0)、(8﹣0)、(3,0)、(0).(4)当△AMN 面积最大时,N 点坐标为(3,0).【解析】【分析】(1)由点A 、C 的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B 的坐标,再由两点间的距离公式求出线段AB 、AC 、BC 的长度,由三者满足AB 2+AC 2=BC 2即可得出△ABC 为直角三角形;(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S △AMN 关于n 的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S△AMN=S△ABN﹣S△BMN=BN•OA﹣BN•MD=(n+2)×4﹣×(n+2)2=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键. 25.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。
试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。
)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。
其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。
2019年山西省太原市中考数学一模试卷(解析版)

【解析】
解:连接OA.
∵∠B=25°.
∴∠DOA=2∠B=50°.
∵AD是⊙的切线,
∴∠OAD=90°.
∴∠D=180°-90°-50°=40°.
故选:B.
连接OA.由圆周角定理求得∠DOA=50°,接下来,由切线的性质可证明∠OAD=90°,最后在△OAD中依据三角形内角和定理可求得∠D的度数.
(1)求西山特长隧道与西山2号隧道的长度;
(2)某日,小王驾车经S56太原--古交高速从古交到太原.他7:28进入高速,计划出高速口的时间不超过7:50.按照他的驾车习惯,在隧道内的平均速度为60千米/时,则他在非隧道路段的平均车速至少为多少千米/时?
21. 清代诗人高鼎的诗句“儿童散学归来早,忙趁东风放纸鸢”描绘出一幅充满生机的春天景象.小明制作了一个风筝,如图1所示,AB是风筝的主轴,在主轴AB上的D、E两处分别固定一根系绳,这两根系绳在C点处打结并与风筝线连接.如图2,根据试飞,将系绳拉直后,当∠CDE=75°,∠CED=60°时,放飞效果佳.已知D、E两点之间的距离为20cm,பைடு நூலகம்两根系绳CD、CE的长.(结果保留整数,不计打结长度.参考数据: , )
A. 千瓦B. 千瓦C. 千瓦D. 千瓦
5. 由木炭,铅笔,钢笔等,以线条来画出物象明暗的单色面,称作素描.如图是素描初学者常用的一种石膏几何体,该几何体的形状可以看成是用一个平面截圆柱体得到的,它的俯视图是( )
A. B.
C. D.
6.下列运算正确的是( )
A. B. C. D.
7. 如图,过⊙O上一点A作⊙O的切线,交直径BC的延长线与点D,连接AB,若∠B=25°,则∠D的度数为( )
D.检测一批新出厂的手机的使用寿命
2019年江苏省苏州市中考数学一模试卷(含答案解析)

°
°
°
°
8、(3 分) 如图,一架无人机航拍过程中在 C 处测得地面上 A,B 两个目标点的俯角分别为 30°和 60°.若 A,B 两个目标点之间的距离是 120 米,则此时无人机与目标点 A 之间的距离(即 AC 的 长)为( )
。
米
B.
米
米
D. 米
9、(3 分) 已知,在 Rt△ ABC 中,∠ ACB=90°,点 D,E 分别是 AB,BC 的中点,延长 AC 到 F,使 得 CF= AC,连接 EF.若 EF=4,则 AB 的长为( )
:
27、(10 分) 如图 1,在平面直角坐标系中,一次函数 y=- x+8 的图象与 y 轴交于点 A,与 x 轴交 于点 B,点 C 是 x 轴正半轴上的一点,以 OA,OC 为边作矩形 AOCD,直线 AB 交 OD 于点 E,交 直线 DC 于点 F. (1)如图 2,若四边形 AOCD 是正方形. ①求证:△ AOE≌ △ COE; ②过点 C 作 CG⊥CE,交直线 AB 于点 G.求证:CG=FG. (2)是否存在点 C,使得△ CEF 是等腰三角形若存在,求该三角形的腰长;若不存在,请说明 理由.
!
2019年上海市普陀区中考数学一模考试卷含逐题详解
2019年上海市普陀区中考数学一模试卷一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<12.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠B B.∠ADE=∠C C.=D.=4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.86.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()A.1个B.2个C.3个D.4个二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.8.(4分)化简:3()﹣2()=.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.14.(4分)正八边形的中心角为度.15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于.17.(4分)已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1y2(填“<”、“=”或“>”)18.(4分)如图,△ABC中,AB=AC=8,cos B=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=.三、解答题:(本大题共7题,满分78分)19.(10分)计算:4sin45°+cos230°﹣.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=,=(用向量、表示)21.(10分)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.22.(10分)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)23.(12分)已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.25.(14分)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.2019年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题:(本大题共6题,每题4分,满分24分)下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.(4分)已知二次函数y=(a﹣1)x2+3的图象有最高点,那么a的取值范围是()A.a>0B.a<0C.a>1D.a<1【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:a﹣1<0,∴a<1,故选:D.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.2.(4分)下列二次函数中,如果图象能与y轴交于点A(0,1),那么这个函数是()A.y=3x2B.y=3x2+1C.y=3(x+1)2D.y=3x2﹣x【分析】根据y轴上点的坐标特征,分别计算出x=0时四个函数对应的函数值,然后根据函数值是否为1来判断图象能否与y轴交于点A(0,1).【解答】解:当x=0时,y=3x2=0;当x=0时,y=3x2+1=1;当x=0时,y=3(x+1)2=9;当x=0时,y =3x2﹣x=0,所以抛物线y=3x2+1与y轴交于点(0,1).故选:B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.(4分)如图,在△ABC中,点D、E分别在△ABC的边AB、AC上,如果添加下列其中之一的条件,不一定能使△ADE与△ABC相似,那么这个条件是()A.∠AED=∠B B.∠ADE=∠C C.=D.=【分析】由已知及三角形相似的判定方法,对每个选项分别分析、判断解答出即可.【解答】解:由题意得,∠A=∠A,A、当∠ADE=∠B时,△ADE∽△ABC;故本选项不符合题意;B、当∠ADE=∠C时,△ADE∽△ABC;故本选项不符合题意;C、当=时,△ADE∽△ABC;故本选项不符合题意;D、当=时,不能推断△ADE与△ABC相似;故选项符合题意;故选:D.【点评】本题考查了直角三角形相似的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.4.(4分)已知、、都是非零向量,如果=2,=﹣2,那么下列说法中,错误的是()A.∥B.||=||C.=0D.与方向相反【分析】根据平面相等向量的定义、共线向量的定义以及向量的模的计算方法解答.【解答】解:A、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;B、因为=2,=﹣2,所以||=||=|2|,故选项说法正确;C、因为=2,=﹣2,所以∥,则•=0,故本选项说法错误;D、因为=2,=﹣2,所以∥,且与方向相反,故本选项说法正确;故选:C.【点评】考查了向量,向量是既有方向又有大小的.5.(4分)已知⊙O1和⊙O2,其中⊙O1为大圆,半径为3.如果两圆内切时圆心距等于2,那么两圆外切时圆心距等于()A.1B.4C.5D.8【分析】根据两圆位置关系是内切,则圆心距=两圆半径之差,以及外切时,r+R=d,分别求出即可.【解答】解:∵两圆相内切,设小圆半径为x,圆心距为2,∴3﹣x=2,∴x=1,∴小圆半径为1,这两圆外切时,圆心距为:1+3=4.故选:B.【点评】此题主要考查了两圆的位置关系,用到的知识点为:两圆内切,圆心距=两圆半径之差,外切时,r+R =d.6.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE经过重心G,在下列四个说法中①=;②=;③=;④=,正确的个数是()A.1个B.2个C.3个D.4个【分析】连接AG并延长,交BC于F,依据DE∥BC,且DE经过重心G,即可得到△ADE∽△ABC,且相似比为2:3,依据相似三角形的性质,即可得到正确结论.【解答】解:如图所示,连接AG并延长,交BC于F,∵DE∥BC,且DE经过重心G,∴△ADE∽△ABC,∴===,故①正确;∴=,故③正确;∵DG∥BF,∴==,故②错误;∵△ADE∽△ABC,=,∴=,∴=,故④正确;故选:C.【点评】本题考查相似三角形的判定和性质以及三角形重心的性质的运用,解决问题的关键是知道相似三角形的对应边对应成比例.二、填空题:(本大题共12题,每题4分,满分48分)7.(4分)如果=,那么的值是.【分析】直接根据已知用同一未知数表示出各数,进而得出答案.【解答】解:∵=,∴设x=7a,则y=2a,那么==.故答案为:.【点评】此题主要考查了比例的性质,正确表示出x,y的值是解题关键.8.(4分)化简:3()﹣2()=.【分析】平面向量的运算法则也符合实数的运算法则.【解答】解:3()﹣2()=3+﹣2+2=(3﹣2)+(+2)=.故答案是:.【点评】考查了平面向量,解题的关键是掌握平面向量的计算法则.9.(4分)如果抛物线y=2x2+x+m﹣1经过原点,那么m的值等于1.【分析】把原点坐标代入抛物线解析式即可得到对应m的值.【解答】解:把(0,0)代入y=2x2+x+m﹣1得m﹣1=0,解得m=1,故答案为1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.10.(4分)将抛物线y=(x+3)2﹣4先向右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是(x+1)2﹣1.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将抛物线y=(x+3)2﹣4向右平移2个单位所得直线解析式为:y=(x+3﹣2)2﹣4=(x+1)2﹣4;再向上平移3个单位为:y=(x+1)2﹣4+3,即y=(x+1)2﹣1.故答案是:y=(x+1)2﹣1.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.11.(4分)已知抛物线y=2x2+bx﹣1的对称轴是直线x=1,那么b的值等于﹣4.【分析】由对称轴公式可得到关于b的方程,可求得答案.【解答】解:∵y=2x2+bx﹣1,∴抛物线对称轴为x=﹣=﹣,∴﹣=1,解得b=﹣4,故答案为:﹣4.【点评】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键,即y=ax2+bx+c的对称轴为x=﹣.12.(4分)已知△ABC三边的比为2:3:4,与它相似的△A′B′C′最小边的长等于12,那么△A′B′C′最大边的长等于24.【分析】由于△A′B′C′∽△ABC,因此它们各对应边的比都相等,可据此求出△A′B′C′的最大边的长.【解答】解:设△A′B′C′的最大边长是x,根据相似三角形的对应边的比相等,可得:=,解得:x=24,∴△A′B′C′最大边的长等于24.故答案为:24.【点评】本题主要考查了相似三角形的性质:相似三角形的对应边成比例.13.(4分)在Rt△ABC中,∠ACB=90°,AB=3,BC=1,那么∠A的正弦值是.【分析】我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sin A.代入数据直接计算得出答案.【解答】解:∵∠ACB=90°,AB=3,BC=1,∴∠A的正弦值sin A==,故答案为:.【点评】本题考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.14.(4分)正八边形的中心角为45度.【分析】根据中心角是正多边形相邻的两个半径的夹角来解答.【解答】解:正八边形的中心角等于360°÷8=45°;故答案为45.【点评】本题考查了正多边形和圆的知识,解题的关键是牢记中心角的定义及求法.15.(4分)如图,在梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,tan∠ABD=,BC=5,那么DC的长等于2.【分析】根据垂直的定义得到∠ABD=∠C,根据正切的定义得到BD=CD,根据勾股定理计算即可.【解答】解:∵AB⊥BC,∴∠ABD+∠DBC=90°,∵BD⊥DC,∴∠C+∠DBC=90°,∴∠ABD=∠C,∴tan C==,∴BD=CD,由勾股定理得,BD2+CD2=BC2,即(CD)2+CD2=52,解得,CD=2,故答案为:2.【点评】本题考查的是梯形的性质,正切的定义,勾股定理,掌握梯形的性质,正切的定义是解题的关键.16.(4分)如图,AB∥CD,AD、BC相交于点E,过E作EF∥CD交BD于点F,如果AB:CD=2:3,EF=6,那么CD的长等于15.【分析】由△ABE∽△DCE,推出==,可得=,再证明△BEF∽△BCD,可得==,由此即可解决问题.【解答】解:∵AB∥CD,∴△ABE∽△DCE,∴==,∴=,∵EF∥CD,∴△BEF∽△BCD,∴==,∵EF=6,∴CD=15,故答案为15.【点评】本题考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(4分)已知二次函数y=ax2+c(a>0)的图象上有纵坐标分别为y1、y2的两点A、B,如果点A、B到对称轴的距离分别等于2、3,那么y1<y2(填“<”、“=”或“>”)【分析】由于二次函数y=2(x﹣1)2+k的图象的开口向上,然后根据点A和点B离对称轴的远近可判断y1与y2的大小关系.【解答】解:∵二次函数y=ax2+c(a>0),∴抛物线开口向上,∵点A、B到对称轴的距离分别等于2、3,∴y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足解析式y=ax2+bx+c(a、b、c为常数,a≠0).18.(4分)如图,△ABC中,AB=AC=8,cos B=,点D在边BC上,将△ABD沿直线AD翻折得到△AED,点B的对应点为点E,AE与边BC相交于点F,如果BD=2,那么EF=.【分析】过A作AH⊥BC于H,依据等腰三角形的性质即可得到BH=6=CH,由折叠可得,BD=DE=2,∠E =∠ABC=∠C,AB=AE=6,依据△AFC∽△DFE,即可得到===,设EF=x,则CF=4x,AF =8﹣x,DF=AF=2﹣x,依据BD+DF+CF=BC,可得x的值,进而得出EF的长.【解答】解:如图所示,过A作AH⊥BC于H,∵AB=AC=8,cos B=,∴BH=6=CH,BC=12,由折叠可得,BD=DE=2,∠E=∠ABC=∠C,AB=AE=6,又∵∠AFC=∠DFE,∴△AFC∽△DFE,∴===,设EF=x,则CF=4x,AF=8﹣x,∴DF=AF=2﹣x,∵BD+DF+CF=BC,∴2+2﹣x+4x=12,解得x=,∴EF=,故答案为:.【点评】本题主要考查了相似三角形的判定与性质,等腰三角形的性质的运用,解决问题的关键是利用相似三角形的对应边成比例,列方程求解.三、解答题:(本大题共7题,满分78分)19.(10分)计算:4sin45°+cos230°﹣.【分析】直接利用特殊角的三角函数值分别代入求出答案.【解答】解:原式=4×+()2﹣=2+﹣2(+)=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.20.(10分)如图,在平行四边形ABCD中,对角线AC、BD相交于点O,点E在边BC上,AE与BD相交于点G,AG:GE=3:1.(1)求EC:BC的值;(2)设=,=,那么=+,=﹣﹣(用向量、表示)【分析】(1)根据平行四边形的性质,平行线分线段成比例定理即可解决问题;(2)利用三角形法则计算即可;【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴==3,∴=3,∴EC:BC=2:3.(2)∵=,AC=2AO,∴=2,∵=+=+2,EC=BC,∴=+,∵AD∥BE,∴==,∴BG=BD,∵=+=+=++2=2+2,∴=(2+2)=+,∴=﹣﹣故答案为+,﹣﹣.【点评】本题考查平行四边形的性质,平行线分线段成比例定理,平面向量等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(10分)如图,⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,O2A的延长线交⊙O1于点D,点E为AD的中点,AE=AC,联结OE.(1)求证:O1E=O1C;(2)如果O1O2=10,O1E=6,求⊙O2的半径长.【分析】(1)连接O1A,根据垂径定理得到O1E⊥AD,根据相交两圆的性质得到O1C⊥AB,证明Rt△O1EA≌Rt△O1CA,根据全等三角形的性质证明结论;(2)设⊙O2的半径长为r,根据勾股定理列出方程,解方程得到答案.【解答】(1)证明:连接O1A,∵点E为AD的中点,∴O1E⊥AD,∵⊙O1和⊙O2相交于A、B两点,O1O2与AB交于点C,∴O1C⊥AB,在Rt△O1EA和Rt△O1CA中,,∴Rt△O1EA≌Rt△O1CA(HL)∴O1E=O1C;(2)解:设⊙O2的半径长为r,∵O1E=O1C=6,∴O2C=10﹣6=4,在Rt△O1EO2中,O2E==8,则AC=AE=8﹣r,在Rt△ACO2中,O2A2=AC2+O2C2,即r2=(8﹣r)2+42,解得,r=5,即⊙O2的半径长为5.【点评】本题考查的是相交两圆的性质,全等三角形的判定和性质,垂径定理,勾股定理的应用,掌握相交两圆的连心线,垂直平分两圆的公共弦是解题的关键.22.(10分)如图,小山的一个横断面是梯形BCDE,EB∥DC,其中斜坡DE的坡长为13米,坡度i=1:2.4,小山上有一座铁塔AB,在山坡的坡顶E处测得铁塔顶端A的仰角为45°,在与山坡的坡底D相距5米的F处测得铁塔顶端A的仰角为31°(点F、D、C在一直线上),求铁塔AB的高度.(参考数值:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)【分析】延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,根据勾股定理得到EH=5,DH =12根据三角函数的定义列方程即可得到结论.【解答】解:延长AB交DC于G,过E作EH⊥CD于H,则四边形EHGB是矩形,∵斜坡DE的坡长为13米,坡度i=1:2.4,∴设EH=5x,DH=12x,∵EH2+DH2=DE2,∴(5x)2+(12x)2=132,∴x=1,∴EH=5,DH=12,∵EB∥DC,∴∠ABE=∠AGH=90°,∵∠AEB=45°,∴AB=BE,∴HG=AB,∴FG=5+12+AB,AG=AB+5,∵∠F=31°,∴tan F=tan31°===0.6,∴AB=13米,答:铁塔AB的高度是13米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,矩形的性质,掌握的作出辅助线是解题的关键.23.(12分)已知:如图,△ADE的顶点E在△ABC的边BC上,DE与AB相交于点F,AE2=AF•AB,∠DAF=∠EAC.(1)求证:△ADE∽△ACB;(2)求证:=.【分析】(1)由AE2=AF•AB,推出△AEF∽△ABE,推出∠AEF=∠B,再证明∠DAE=∠BAC,即可解决问题;(2)由△ADE∽△ACB,推出=,∠D=∠C,再证明△ADF∽△ACE,可得=,由此即可解决问题;【解答】证明:(1)∵AE2=AF•AB,∴=,∵∠EAF=∠BAE,∴△AEF∽△ABE,∴∠AEF=∠B,∵∠DAF=∠EAC,∴∠DAE=∠BAC,∴△ADE∽△ACB.(2)∵△ADE∽△ACB,∴=,∠D=∠C,∵∠DAF=∠EAC,∴△ADF∽△ACE,∴=,∴=,∴=.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0)和点B,且OB=3OA,与y轴交于点C,此抛物线顶点为点D.(1)求抛物线的表达式及点D的坐标;(2)如果点E是y轴上的一点(点E与点C不重合),当BE⊥DE时,求点E的坐标;(3)如果点F是抛物线上的一点.且∠FBD=135°,求点F的坐标.【分析】(1)把点A、B的坐标代入二次函数表达式,即可求解;(2)设:OE=m,则EL=4﹣m,OB=3,DL=1,利用∠LED=∠OBE,即可求解;(3)延长BD交y轴于点H,将△BCH围绕点B顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F.确定直线BH′的表达式,即可求解.【解答】解:(1)OB=3OA=3,则点B的坐标为(3,0),点A(﹣1,0),则函数的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),则﹣3a=﹣3,解得:a=1,则抛物线的表达式为:y=x2﹣2x﹣3…①函数对称轴为x=﹣=1,则点D的坐标为(1,﹣4);(2)如图,过点D作DL⊥y轴,交于点L,设:OE=m,则EL=4﹣m,OB=3,DL=1,∵∠LED+∠OEB=90°,∠OEB+∠OBE=90°,∴∠LED=∠OBE,∴tan∠LED=tan∠OBE,即:=,=,解得:m=1或3(舍去x=3),则点E的坐标为(0,﹣1);(3)延长BD交y轴于点H,将△BCH围绕点B,顺时针旋转135°至△BC′H′的位置,延长BH′交抛物线于点F,∵OB=OC=3,∴∠OCB=∠OBC=45°,则∠FBD=135°,BC′⊥x轴,则点C′(3,3),∠H′C′B=∠HCB=180°﹣45°=135°,tan∠ABD===2,OH=OB•tan∠ABD=2×3=6,则:HC=6﹣3=3=H′C′,过点C′作C′G⊥GH′交于点G,在△BGH′中,GC′=H′C′cos45°==GH′,则点H′的坐标为(3﹣,),将点H′、B的坐标代入一次函数表达式y=kx+b得:,解得:,则直线BH′的表达式为:y=﹣3x+9…②,联立①②并解得:x=3或﹣4(x=3舍去),故点F的坐标为(﹣4,21).【点评】本题考查的是二次函数综合运用,涉及到解直角三角形、图形旋转等知识,其中(3)用图形旋转的方法,确定旋转后图形的位置时本题的难点.25.(14分)如图,点O在线段AB上,AO=2OB=2a,∠BOP=60°,点C是射线OP上的一个动点.(1)如图①,当∠ACB=90°,OC=2,求a的值;(2)如图②,当AC=AB时,求OC的长(用含a的代数式表示);(3)在第(2)题的条件下,过点A作AQ∥BC,并使∠QOC=∠B,求AQ:OQ的值.【分析】(1)如图①中,作CH⊥AB于H.证明△ACH∽△CBH,可得=,由此构建方程即可解决问题.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,根据AC2=AH2+CH2,构建方程即可解决问题.(3)如图②﹣1中,延长QC交CB的延长线于K.利用相似三角形的性质证明=,即可解决问题.【解答】解:(1)如图①中,作CH⊥AB于H.∵CH⊥AB,∴∠AHC=∠BHC=90°,∵∠ACB=90°,∴∠ACH+∠BCH=90°,∵∠ACH+∠A=90°,∴∠BCH=∠A,∴△ACH∽△CBH,∴=,∵OC=2,∠COH=60°,∴∠OCH=30°,∴OH=OC=1,CH=,∴=,整理得:2a2﹣a﹣4=0,解得a=或(舍弃).经检验a=是分式方程的解.∴a=.(2)如图②中,设OC=x.作CH⊥AB于H,则OH=,CH=x.在Rt△ACH中,∵AC2=AH2+CH2,∴(3a)2=(x)2+(2a+x)2,整理得:x2+ax﹣5a2=0,解得x=(﹣1)a或(﹣﹣1)a(舍弃),∴OC=(﹣1)a,(3)如图②﹣1中,延长QC交CB的延长线于K.∵∠AOC=∠∠AOQ+∠QOC=∠ABC+∠OCB,∠QOC=∠ABC,∴∠AOQ=∠KCO,∵AQ∥BK,∴∠Q=∠K,∴△QOA∽△KCO,∴=,∴=,∵∠K=∠K,∠KOB=∠AOQ=∠KCO,∴△KOB∽△KCO,∴=,∴===【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.。
2019年数学中考一模试题及答案
2019年数学中考一模试题及答案一、选择题1.如图是某个几何体的三视图,该几何体是()A .三棱柱B .三棱锥C .圆柱D .圆锥2.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数 3.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=4.如图,下列关于物体的主视图画法正确的是( )A .B .C .D .5.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα6.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .7.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-8.如图,正比例函数1y=k x 与反比例函数2k y=x的图象相交于点A 、B 两点,若点A 的坐标为(2,1),则点B 的坐标是( )A .(1,2)B .(-2,1)C .(-1,-2)D .(-2,-1)9.13O e 中,弦AB 与CD 交于点E ,75DEB ∠=︒,6,1AB AE ==,则CD 的长是( )A .26B .210C .211D .4310.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.在全民健身环城越野赛中,甲乙两选手的行程y (千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有( )A .1 个B .2 个C .3 个D .4个12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.如图,点A 在双曲线y=4x上,点B 在双曲线y=kx (k≠0)上,AB ∥x 轴,过点A 作AD⊥x 轴 于D .连接OB ,与AD 相交于点C ,若AC=2CD ,则k 的值为____.15.使分式的值为0,这时x=_____.16.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 . 17.如图,把三角形纸片折叠,使点B ,点C 都与点A 重合,折痕分别为,DE FG ,若15,2C AE EG ︒∠===厘米,ABC △则的边BC 的长为__________厘米。
2019年温州市XX中学中考数学一模试卷含答案解析
2019年浙江省温州XX中学中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)26.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.410.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为m.12.不等式组的解是.13.某正n边形的一个内角为108°,则n=.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).20.为了解我省2019届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为,b的值为,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2019年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:(1)小明以折扣价购买的商品是第次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.2019年浙江省温州XX中学中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.有一种美丽的图形,它具有独特的对称美,有无数条对称轴,这种图形是()A.等边三角形B.正方形C.正六边形 D.圆【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,有3条对称轴,故此选项错误;B、是轴对称图形,有4条对称轴,故此选项错误;C、轴对称图形,有6条对称轴,故此选项错误;D、是轴对称图形,有无数条对称轴,故此选项正确;故选:D.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.下列变形正确的是()A.(a2)3=a9B.2a×3a=6a2C.a6﹣a2=a4 D.2a+3b=6ab【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据幂的乘方、单项式乘法、合并同类项法则的运算方法,利用排除法求解.【解答】解:A、应为(a2)3=a6,故本选项错误;B、2a×3a=6a2是正确的;C、a6与a2不是同类项,不能合并,故本选项错误;D、3a与3b不是同类项,不能合并,故本选项错误.故选:B.【点评】本题主要考查了幂的乘方的性质,单项式的乘法法则,合并同类项的法则,熟练掌握运算法则是解题的关键.4.由5个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看第一层是三个正方形,第二层是左边一个正方形.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.5.多项式x2﹣1与多项式x2﹣2x+1的公因式是()A.x﹣1 B.x+1 C.x2﹣1 D.(x﹣1)2【考点】公因式.【分析】分别利用公式法分解因式,进而得出公因式.【解答】解:∵x2﹣1=(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴多项式x2﹣1与多项式x2﹣2x+1的公因式是:x﹣1.故选:A.【点评】此题主要考查了公因式,正确分解因式是解题关键.6.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是黄灯的概率是()A.B.C.D.【考点】概率公式.【专题】压轴题.【分析】让黄灯亮的时间除以总时间即为抬头看信号灯时,是黄灯的概率.【解答】解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒共60秒,所以是黄灯的概率是=.故选C.【点评】本题考查概率的基本计算;用到的知识点为:概率=所求情况数与总情况数之比.7.如图是一个安全用电标记图案,可以抽象为下边的几何图形,其中AB∥DC,BE∥FC,点E,F 在AD上,若∠A=15°,∠B=65°,则∠AFC的度数是()A.50°B.65°C.80°D.90°【考点】平行线的性质.【专题】应用题.【分析】先根据平行线的性质得出∠D=∠A,∠C=∠B,再由三角形外角的性质即可得出结论.【解答】解:∵AB∥DC,BE∥FC,∠A=15°,∠B=65°,∴∠D=∠A=15°,∠C=∠B=65°.∵∠AFC是△CDF的外角,∴∠AFC=∠D+∠C=15°+65°=80°.故选C.【点评】本题考查的是平行线的性质,先根据题意得出∠C及∠D的度数是解答此题的关键.8.某工厂现在平均每天比原计划多生产50台机器,现在生产800台所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】根据题意可知现在每天生产x+50台机器,而现在生产800台所需时间和原计划生产600台机器所用时间相等,从而列出方程即可.【解答】解:设原计划平均每天生产x台机器,根据题意得:=,故选:A.【点评】此题主要考查了列分式方程应用,利用本题中“现在平均每天比原计划多生产50台机器”这一个隐含条件,进而得出等式方程是解题关键.9.如图,面积为5的正方形ABCD的顶点A在y轴上,顶点D在反比例函数y=(x>0)的图象上,已知点B的坐标是(1,3),则k的值为()A.16 B.12 C.8 D.4【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,根据正方形的性质可得AB=AD,∠BAD=90°,再根据同角的余角相等求出∠BAE=∠ADF,然后利用“角角边”证明△ABE和△DAF全等,根据全等三角形对应边相等可得AF=BE,DF=AE,再求出OF,然后写出点D的坐标,再把点D的坐标代入反比例函数解析式计算即可求出k的值.【解答】解:如图,过点B作BE⊥y轴于E,过点D作DF⊥y轴于F,在正方形ABCD中,AB=AD,∠BAD=90°,∴∠BAE+∠DAF=90°,∵∠DAF+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,∵,∴△ABE≌△DAF(AAS),∴AF=BE,DF=AE,∵正方形的面积为5,B(1,3),∴BE=1,AE=2∴OF=OE+AE+AF=3+2+1=6,∴点D的坐标为(2,6),∵顶点D在反比例函数y=(x>0)的图象上,∴k=xy=2×6=12.故选B.【点评】本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点D的坐标是解题的关键.10.如图,矩形ABCD的外接圆O与水平地面相切于点A,已知圆O的半径为4,且=2.若在没有滑动的情况下,将圆O向右滚动,使得O点向右移动了66π,则此时与地面相切的弧为()A.B.C.D.【考点】弧长的计算;旋转的性质.【分析】根据圆的周长公式求出圆的周长以及圆转动的周数,根据题意分别求出和+的长,比较即可得到答案.【解答】解:∵圆O半径为4,∴圆的周长为:2π×r=8π,∵将圆O向右滚动,使得O点向右移动了66π,∴66π÷8π=8…2π,即圆滚动8周后,又向右滚动了2π,∵矩形ABCD的外接圆O与水平地面相切于A点,=2,∴=×8π=<2π,+=8π=4π>2π,∴此时与地面相切的弧为,故选:C.【点评】此题主要考查了旋转的性质以及圆的周长公式等知识,得出O点转动的周数是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.PM2.5是指大气中直径小于或等于0.0000025m颗粒物,它们含有大量的有毒、有害物质,对人体健康危害很大,0.0000025m用科学记数法可表示为 2.5×10﹣6m.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 00025=2.5×10﹣6;故答案为2.5×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.不等式组的解是<x≤3.【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得:x>2,解②得:x≤3.则不等式组的解集是:2<x≤3.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.13.某正n边形的一个内角为108°,则n=5.【考点】多边形内角与外角.【分析】易得正n边形的一个外角的度数,正n边形有n个外角,外角和为360°,那么,边数n=360°÷一个外角的度数.【解答】解:∵正n边形的一个内角为108°,∴正n边形的一个外角为180°﹣108°=72°,∴n=360°÷72°=5.故答案为:5.【点评】考查了多边形内角与外角,用到的知识点为:多边形一个顶点处的内角与外角的和为180°;正多边形的边数等于360÷正多边形的一个外角度数.14.如图,在边长为的菱形ABCD中,∠B=45°,AE是BC边上的高,将△AEB沿AE所在直线翻折得△AEB1,则△AEB1与四边形AECF重叠部分的面积为﹣1.【考点】翻折变换(折叠问题);菱形的性质.【分析】根据等腰直角三角形的性质求出BE、AE,根据翻转变换的性质得到△FCB1是等腰直角三角形,根据三角形的面积公式计算即可.【解答】解:∵AE⊥BC,∠B=45°,AB=∴BE=AE=1,∵将△AEB沿AE所在直线翻折得△AEB1,∴∠B1=∠B=45°,∴EB1=BE=1,CB1=2﹣,∴△AEB1的面积为×AE×EB1=,∵四边形ABCD是菱形,∴AB∥CD,∴∠FCB1=∠B=45°,∴△FCB1是等腰直角三角形,∴△FCB1的面积为×(2﹣)××(2﹣)=﹣,∴△AEB1与四边形AECF重叠部分的面积=﹣(﹣)=﹣1,故答案为:﹣1.【点评】本题考查的是翻转变换的性质和菱形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.如图,在直角坐标平面上,△AOB是直角三角形,点O在原点上,A、B两点的坐标分别为(﹣1,y1)、(3,y2),线段AB交y轴于点C.若S△AOC=1,记∠AOC为α,∠BOC为β,则sinα•sinβ的值为.【考点】相似三角形的判定与性质;坐标与图形性质;三角形的面积;锐角三角函数的定义.【分析】首先过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,由A、B两点的坐标分别为(﹣1,y1)、(3,y2),S△AOC=1,可求得OD,OE,OC的长,继而求得△AOB的面积,求得OA•OB的值,又由三角函数的定义,即可求得答案.【解答】解:过点A作AD⊥x轴于点D,过点B作BE⊥x轴于点E,∵A、B两点的坐标分别为(﹣1,y1)、(3,y2),∴OD=1,OE=3,∵S△AOC=1,∴OC•OD=1,∴OC=2,∴S Rt△AOB=S△AOC+S△BOC=1+OC•OE=1+3=4,∴OA•OB=4,∴OA•OB=8,∵OA∥OC∥BE,∴∠OAD=∠AOC=α,∠OBE=∠BOC=β,∴sinα•sinβ=•==.故答案为:.【点评】此题考查了三角函数的定义、直角三角形的性质以及坐标与图形的性质.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.16.如图,在正方形ABCD中,E为对角线AC,BD的交点,经过点A和点E作⊙O,分别交AB、AD于点F、G.已知正方形边长为5,⊙O的半径为2,则AG•GD的值为9.【考点】相似三角形的判定与性质;正方形的性质;圆周角定理.【分析】连接EF、FG,GE如图,根据正方形的性质得到∠BAD=90°,∠BEA=90°证得△BPF≌△APE,根据全等三角形的性质得到BF=AE,求得DE=AF,根据圆周角定理得到GF为⊙O的直径,得到GF=4,根据勾股定理得到AF2+AG2=GF2=16,由①②联立起来组成方程组,即可得到结论.【解答】解:连接EF、FG,GE如图,∵四边形ABCD为正方形,∴∠BAD=90°,∠BEA=90°∴∠FEG=90°,∴∠BEF=∠AEG,又∵∠FBE=∠EAG=45°,在△BEF与△AGE中,,∴△BPF≌△APE,∴BF=AE,而AB=AD,∴DE=AF,∵∠BAD=90°,∴GF为⊙O的直径,而⊙O的半径为2,∴GF=4,∴AF2+AG2=GF2=16①,而DG=AF,DG2+AG2=16;又∵AD=AG+GD=AB,∴AG+GD=5②,由①②联立起来组成方程组,解得:AG=,GD=或AE=,ED=,∴AG•GD=9.故答案为:9.【点评】本题考查了全等三角形的判定和性质,圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为直角、圆内接四边形的性质、正方形的性质以及方程组的解法.三、解答题(共8小题,满分80分)17.(1)计算:+(﹣1)2﹣2cos60°;(2)化简:÷.【考点】实数的运算;分式的乘除法;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式利用算术平方根,乘方的意义,以及特殊角的三角函数值计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=2+1﹣1=2;(2)原式=•=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在平面直角坐标系xOy中点A(6,8),点B(6,0).(1)只用直尺(没有刻度)和圆规,求作一个点P,使点P同时满足下列两个条件(要求保留作图痕迹,不必写出作法):①点P到A,B两点的距离相等;②点P到∠xOy的两边的距离相等.(2)在(1)作出点P后,直接写出点P的坐标(4,4).【考点】作图—复杂作图;坐标与图形性质;角平分线的性质;线段垂直平分线的性质.【专题】作图题.【分析】(1)作AB的垂轴平分线和∠xOy的角平分线,它们的交点即为P点;(2)由于点P在AB的垂轴平分线上,则P点的纵坐标为4,再利用点P在第一象限的角平分线上,则点P的横纵坐标相同,从而得到P点坐标.【解答】解:(1)如图,点P为所作;(2)P点坐标为(4,4).故答案为(4,4).【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.19.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4cm.(1)求水的最大深度(即CD)是多少?(2)求杯底有水部分的面积(阴影部分).【考点】垂径定理的应用;勾股定理.【分析】(1)由垂径定理可得出BC 的长,在Rt △OBC 中,根据勾股定理求出OC 的长,由DC=OD ﹣OC 即可得出结论.(2)解直角三角形求得∠AOB 的度数,然后求S △AOB 和S 扇形OAB ,然后根据S 阴影=S 扇形﹣S △AOB 即可求得.【解答】解:(1)∵OD ⊥AB ,AB=4cm ,∴BC=AB=×4=2cm ,在Rt △OBC 中,∵OB=4cm ,BC=2cm ,∴OC===2cm ,∴DC=OD ﹣OC=4﹣2=2cm . ∴水的最大深度(即CD )是2cm . (2)∵OC=2,OB=4,∴OC=OB , ∴∠ABO=30°, ∵OA=OB ,∴∠BAO=∠ABO=30°, ∴∠AOB=120°,∵S △AOB =AB •OC=×4×2=4,∴S 扇形OAB ==π,∴S 阴影=S 扇形﹣S △AOB =π﹣4(cm )2. 【点评】本题考查的是垂径定理的应用,解答此类问题的关键是构造出直角三角形,利用垂径定理及勾股定理进行解答.20.为了解我省2019届九年级学生学业水平考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(A:0﹣29分;B:30﹣39分;C:40﹣44分;D:45﹣49分;E:50分)统计如下:学业考试体育成绩(分数段)统计表根据上面提供的信息,回答下列问题:(1)在统计表中,a的值为60,b的值为0.15,并将统计图补充完整;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数.”请问:甲同学的体育成绩应在什么分数段内?C(填相应分数段的字母).(3)如果把成绩在45分以上(含45分)定为优秀,那么该县2019年4020名九年级学生中体育成绩为优秀的学生人数约有多少名?【考点】条形统计图;用样本估计总体;频数(率)分布表;中位数.【分析】(1)首先根据A有12人,所占的频率是0.05即可求得抽查的总人数,则a,b的值即可求解;(2)根据中位数的定义即可求解;(3)利用4020乘以抽查的人数中优秀的人数所占的频率即可.【解答】解:(1)12÷0.05=240(人)240×0.25=60(人)36÷240=0.15补充后如下图:(2)根据中位数的定义即可求解;(3)0.45×4020=1809(名)答:该区九年级考生中体育成绩为优秀的学生人数有1809名.故答案为:60,0.15,C.【点评】此题考查读频数分布直方图的能力和利用统计图获取信息的能力.用到的知识点是:将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,用样本估计整体让整体×样本的百分比即可.21.如图,在矩形ABCD中,AB=2,AD=5,过点A、B作⊙O,交AD、BC于点E、F,连接BE、CE,过点F作FG⊥CE,垂足为G.(1)当点F是BC的中点时,求证:直线FG与⊙O相切;(2)若FG∥BE时,求AE的长.【考点】切线的判定.【分析】(1)连接OF,由点F是BC的中点,得到BF=CF,在矩形ABCD中,∠A=90°,证得BE 是⊙O的直径,求得BO=OE,根据三角形的中位线的性质得到OF∥CE,证得OF⊥FG,即可得到结论;(2)根据平行线的性质得到BE⊥CE,由余角的性质得到∠ABE=∠DEC,证得△ABE∽△CDE,根据相似三角形的性质即可得到结论.【解答】(1)证明:连接OF,∵点F是BC的中点,∴BF=CF,在矩形ABCD中,∵∠A=90°,∴BE是⊙O的直径,∴BO=OE,∴OF∥CE,∵FG⊥CE,∴OF⊥FG,∴直线FG与⊙O相切;(2)解:∵FG∥BE,FG⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴,∵AB=2,AD=5,∴CD=AB=2,∴,∴AE=1,或AE=4.【点评】本题考查的是切线的判定,三角形的中位线的性质,相似三角形的判定和性质,平行线的判定和性质,正确的作出辅助线是解题的关键.22.如图,在平面直角坐标系中,已知A,B两点的坐标分别是(0,2),0,﹣3),点P是x轴正半轴上一个动点,过点B作直线BC⊥AP于点D,直线BC与x轴交于点C.(1)当OP=2时,求点C的坐标及直线BC的解析式;(2)若△OPD为等腰三角形,则OP的值为或4.【考点】两条直线相交或平行问题;全等三角形的判定与性质;勾股定理;等腰直角三角形;相似三角形的判定与性质.【专题】分类讨论.【分析】(1)易证△BOC是等腰直角三角形,从而可求出点C的坐标,然后运用待定系数法就可解决问题;(2)由于等腰三角形OPD的顶角不确定,故需分情况讨论,然后运用全等三角形的性质、相似三角形的性质及勾股定理就可解决问题.【解答】解:(1)∵A,B两点的坐标分别是(0,2),0,﹣3),∴OA=2,OB=3.∵OP=2,∴OA=OP.∵∠AOP=90°,∴∠APO=45°,∴∠CPD=∠APO=45°.∵BC⊥AP,∴∠PCD=45°.∵∠BOC=90°,∴∠OBC=∠OCB=45°,∴OC=OB=3,∴点C的坐标为(3,0).设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=x﹣3;(2)①当点P在点C左边时,如图1,此时∠OPD>90°.∵△OPD为等腰三角形,∴OP=DP.在△AOP和△CDP中,∴△AOP≌△CDP,∴AP=CP,∴OC=AD.在△ADB和△COB中,∴△ADB≌△COB,∴CB=AB=5,∴AD=OC==4,设OP=x,则有AP=CP=4﹣x,在Rt△AOP中,22+x2=(4﹣x)2,解得x=,∴OP=.②当点P在点C右边时,如图2,此时∠ODP>90°.∵△OPD为等腰三角形,∴OD=DP,∴∠DOP=∠DPO.∵∠AOP=90°,∴∠OAP+∠APO=90°,∠AOD+∠DOP=90°,∴∠OAP=∠AOD,∴AD=OD,∴AD=DP.设AD=x,则有AP=2x.∵∠DAB=∠OAP,∠ADB=∠AOP=90°,∴△ADB∽△AOP,∴=,∴=,解得x=(舍去).∴AP=2,∴OP===4.综上所述:OP的值为或4.故答案为或4.【点评】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识,运用分类讨论的思想是解决第(2)小题的关键.23.某超市有单价总和为100元的A、B、C三种商品.小明共购买了三次,其中一次购买时三种商品同时打折,其余两次均按单价购买,三次购买商品的数量和总费用如下表:(1)小明以折扣价购买的商品是第二次购物.(2)若设A商品的单价为x元,B商品的单价为y元.①C商品的单价是100﹣x﹣y元(请用x与y的代数式表示);②求出x,y的值;(3)若小明单价(没打折)第四次购买商品A、B、C的数量总和为m个,其中购买B商品数量是A商品数量的2倍,购买总费用为720元,m的最小值为18.【考点】二元一次方程组的应用.【分析】(1)分析前两次购物,发现第二次购买数量比第一次多但是价钱反而降低了,故得出小明以折扣价购买的商品是第二次购物这个结论;(2)由A、B、C三种商品单价总和为100元,得出C商品的单价,由表格得出关于x、y的二元一次方程,解方程即可求得x、y的值;(3)根据总费用=单价×数量得出购买商品数量m关于购买商品A的数量a的一次函数,结合函数的单调性以及a的取值范围可以得出m的最小值.【解答】解:(1)分析一二次购物:第二次购物比第一次购物A、B商品购买数量没有减少,C商品购买数量增加总费用反而比第一购物少,所以小明以折扣价购买的商品是第二次购物.故答案为:二.(2)①∵某超市有单价总和为100元的A、B、C三种商品,且A商品的单价为x元,B商品的单价为y元,∴C商品的单价为100﹣x﹣y元.故答案为:100﹣x﹣y.②结合一三次购物可知:,解得:.答:A商品的单价为20元,B商品的单价为50元.(3)由(2)可知C商品的单价是100﹣20﹣50=30(元),设第四次购买商品A的数量为a个,则购买商品B的数量为2a个,购买商品C的数量为m﹣3a个,依据题意可知:20a+50×2a+30×(m﹣3a)=720,即m=24﹣a.又∵m﹣3a≥0,∴24﹣4a≥0,解得:a≤6.∵m关于a的函数单调递减,∴当a=6时,m最小,此时m=24﹣6=18.故答案为:18.【点评】本题考查了一次函数的性质以及解二元一次方程组,解题的关键是:(1)第二次购物比第一次多而费用少;(2)列出关于x、y的二元一次方程;(3)找出购买商品数量m关于购买商品A的数量a的一次函数.本题属于中档题,(1)(2)难度不大,(3)需要结合一次函数的性质和解一元一次不等式得出a的取值范围,由一次函数的单调性得出最值问题.24.如图1,在平面直角坐标系中,点A、B、C的坐标分别为(﹣8,0),(﹣5,0),(0,﹣8),点P,E分别从点A,B同时出发沿x轴正方向运动,同时点D从点C出发沿y轴正方向运动.以PD,PE为邻边构造平行四边形EPDF,已知点P,D的一点速度均为每秒2个单位,点E的运动速度为每秒1个单位,运动时间为t秒.(1)当0<t<3时,PE=3﹣t(用含t的代数式表示);(2)记平行四边形的面积为S,当S=12时,求t的值;(3)如图2,当0<t<4时,过点P的作抛物线y=ax2+bx+c交x轴于另一点为H(点H在点P的右侧),若PH=6,且该二次函数的最大值不变均为.①当t=2时,试判断点F是否恰好落在抛物线y=ax2+bx+c上?并说明理由;②若点D关于直线EF的对称点Q恰好落在抛物线y=ax2+bx+c,请直接写出t的值.【考点】二次函数综合题.【分析】(1)根据题意,求出OP及OE的长度,即可求得PE的长度;(2)根据平行四边形的面积=底×高,以BE为底,OD为高,即可解答;(3)根据点P的坐标,PH=6,求出点H的坐标,然后求出抛物线的顶点坐标,用含t的式子表示出函数的解析式;①求出当t=2时,点B,E,D,F的坐标,将点F的横坐标代入解析式,看求出的y的值是否与点F的纵坐标相等,即可判断;②根据对称,求出点Q的坐标,将点Q的坐标代入抛物线,即可求出t的值.【解答】解:(1)根据题意,得:OP=8﹣2t,OE=5﹣t,∴PE=OP﹣OE=(8﹣2t)﹣(5﹣t)=3﹣t;故答案为:3﹣t;。
2019年中考数学一模试卷附答案
2019年中考数学一模试卷附答案一、选择题1.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .2.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数k y x =(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .53.如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )A .B .C .D .4.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤5.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解6.已知直线//m n ,将一块含30°角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30°D .40︒ 7.如果,则a 的取值范围是( ) A . B . C . D .8.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-9.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=o ,CFD 40∠=o ,则E ∠为( )A.102o B.112o C.122o D.92o10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=11.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=12.黄金分割数512-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间二、填空题13.如图,△ABC的三个顶点均在正方形网格格点上,则tan∠BAC=_____________.14.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=kx的图象上,则k的值为________.15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.已知反比例函数的图象经过点(m ,6)和(﹣2,3),则m 的值为________.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.18.分解因式:2x 2﹣18=_____.19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.已知10a b b -+-=,则1a +=__.三、解答题21.计算:103212sin45(2π)-+--+-o .22.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.23.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?24.如图,在Rt △ABC 中,∠C=90°,∠BAC 的角平分线AD 交BC 边于D .以AB 上某一点O 为圆心作⊙O ,使⊙O 经过点A 和点D .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O 的半径;②设⊙O 与AB 边的另一个交点为E ,求线段BD 、BE 与劣弧DE 所围成的阴影部分的图形面积.(结果保留根号和π)25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE.(1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.2.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k 的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.3.C解析:C【解析】【分析】按照题中所述,进行实际操作,答案就会很直观地呈现.【详解】 解:将图形按三次对折的方式展开,依次为:.故选:C .【点睛】本题主要考查学生的动手能力及空间想象能力,对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.4.A解析:A【解析】【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0.【详解】①∵对称轴在y 轴右侧,∴a 、b 异号,∴ab <0,故正确; ②∵对称轴1,2b x a=-= ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a ,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).5.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.故选D.点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.6.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】m n,解:Q直线//+︒,21180∴∠+∠∠+∠=ABC BAC∠=︒,Q,9030∠ABC=︒∠=︒,140BAC︒︒︒,︒︒=∴∠=---218030904020故选:B.【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.7.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B.. 考点:二次根式的性质.8.C解析:C【解析】【分析】【详解】∵A (﹣3,4),∴2234+,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,故B 的坐标为:(﹣8,4),将点B 的坐标代入k y x=得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 9.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===o ,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC Q ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=o Q ,DBC BDF ADB 20∠∠∠∴===o ,又ABD 48∠=o Q ,ABD ∴V 中,A 1802048112∠=--=o o o o ,E A 112∠∠∴==o ,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.10.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.11.A解析:A【解析】【分析】已知AB ∥CD ∥EF ,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB ∥CD ∥EF , ∴AD BC DF CE=. 故选A .【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.12.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴1.2<5-1<1.3,故选B .【点睛】本题考查了估算无理数的大小,利用5≈2.236是解题关键.二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan∠BAC=故答案为点睛:本题考查了锐角三角函解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等 解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 15.110°【解析】∵a∥b∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1 解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=k x,可得k =-6,然后可得反比例函数的解析式为y =-6x,代入点(m ,6)可得m=-1. 故答案为:-1. 17.【解析】【分析】设复兴号的速度为x 千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x 千米/时则原来列车的速度为(x ﹣40 解析:13201320304060x x -=-. 【解析】【分析】 设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 18.2(x+3)(x ﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x ﹣3)故答案为:2(x+3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合解析:2(x +3)(x ﹣3)【解析】【分析】原式提取2,再利用平方差公式分解即可.【详解】原式=2(x 2﹣9)=2(x +3)(x ﹣3),故答案为:2(x +3)(x ﹣3)【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出ab 的值进而即可得出答案【详解】∵+|b﹣1|=0又∵∴a﹣b=0且b ﹣1=0解得:a=b=1∴a+1=2故答案为2【点睛】本题主要解析:【解析】【分析】利用非负数的性质结合绝对值与二次根式的性质即可求出a ,b 的值,进而即可得出答案.【详解】b ﹣1|=0,0≥,|1|0b -≥,∴a ﹣b =0且b ﹣1=0,解得:a =b =1,∴a +1=2.故答案为2.【点睛】本题主要考查了非负数的性质以及绝对值与二次根式的性质,根据几个非负数的和为0,那么每个非负数都为0得到关于a 、b 的方程是解题的关键.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式122121 32=+--⨯+=12121 3+--+ 13=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2.设4月份的销售量为t万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22,解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y1﹣y2的值;(2)根据点的坐标,利用待定系数法求出y1、y2关于x的函数关系式;(3)找准等量关系,正确列出一元一次方程.24.(1)BC与⊙O相切,理由见解析;(2)①⊙O的半径为2.②S阴影=2 233π- .【解析】【分析】(1)根据题意得:连接OD,先根据角平分线的性质,求得∠BAD=∠CAD,进而证得OD∥AC,然后证明OD⊥BC即可;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得结果.【详解】(1)相切.理由如下:如图,连接OD.∵AD平分∠BAC,∴∠BAD=∠CAD.∵OA=OD,∴∠ODA=∠BAD,∴∠ODA=∠CAD,∴OD∥AC.又∠C=90°,∴OD⊥BC,∴BC与⊙O相切(2)①在Rt△ACB和Rt△ODB中,∵AC=3,∠B=30°,∴AB=6,OB=2OD.又OA=OD=r,∴OB=2r,∴2r+r=6,解得r=2,即⊙O的半径是2②由①得OD=2,则OB=4,BD=23,S阴影=S△BDO-S扇形ODE=12×23×2-2602360π⨯=23-23π25.(1)详见解析;(2)存在,23+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=23;(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学一模试卷(含解析)一、选择题(本大题有10小题,每小题4分,共40分)1.下列实数属于无理数的是()A.0 B.πC.D.﹣2.方程x﹣2=0的解是()A.B. C.2 D.﹣23.已知一组数据:﹣2,5,2,﹣1,0,4,则这组数据的中位数是()A.B.1 C.D.24.如图,△ABC中,∠C=90°,则∠A的正弦值可以表示为()A.B.C.D.5.一条开口向上的抛物线的顶点坐标是(﹣1,2),则它有()A.最大值1 B.最大值﹣1 C.最小值2 D.最小值﹣26.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点7.如图,点A、B、C都在⊙O上,⊙O的半径为2,∠ACB=30°,则的长是()A.2πB.πC.π D.π8.如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90° B.∠B=∠D=90°C.AC=BD D.点A,D到BC的距离相等9.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:5x+5y= .12.点A(2,﹣1)关于原点对称的点B的坐标为.13.若正多边形的一个外角为40°,则这个正多边形是边形.14.若方程x2﹣2x+1=m有两个相等的实数根,则m的值是.15.当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n时,函数y=x2﹣2x+3的值为.16.如图,直径AB,CD的夹角为60°,P为⊙O上的一个动点(不与点A,B,C,D重合)PM,PN分别垂直于CD,AB,垂足分别为M,N,若⊙O的半径长度为2,则MN的长为.三、解答题(本大题有11小题,共86分)17.计算:.18.解不等式组:.19.画出的图象.20.如图,在△ABC中,点D,E分别在边AB,AC上,若DE∥BC,AD=3,AB=5,求的值.21.一个不透明的口袋中装有3个完全相同的小球,上面分别标有数字1,2,3,从中随机摸出一球记下数字后放回,再随机摸出一球记下数字,求摸出的两个小球数字之积为奇数的概率.22.在平面直角坐标系中,点A(﹣3,0)、点B(2,0)、点C(5,﹣4)、点D(0,﹣4),试判断四边形ABCD的形状,并证明.23.已知甲工人做90个零件所需要的时间和乙工人做120个零件所需要的时间相同,若甲工人每小时比乙工人每小时少做5个零件,求乙工人每小时所做的零件个数.24.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F,已知,求DE的长.25.在平面直角坐标系xOy中,给出如下定义:形如y=a(x﹣m)2+a(x﹣m)与y=a(x﹣m)2﹣a(x﹣m)的两个二次函数的图象叫做“兄弟抛物线”.判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是否为兄弟抛物线?如果是,求出a与m的值;如果不是,请说明理由.26.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.27.已知直线y=kx+m(k<0)与抛物线y=x2+bx+c相交于抛物线的顶点P和另一点Q,点P 在第四象限.(1)若点P(2,﹣c),点Q的横坐标为1,求点Q的坐标;(2)过点Q作x轴的平行线与抛物线y=x2+bx+c的对称轴交于点E,直线PQ与y轴交于点M,若EQ=PE,c=(b<﹣5),求△OMQ的面积S的取值范围.2016年福建省厦门市观音山学校中考数学一模试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分)1.下列实数属于无理数的是()A.0 B.πC.D.﹣【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是整数,是有理数,选项错误;B、正确;C、=3是整数,是有理数,选项错误;D、是分数,是有理数,选项错误.故选:B.2.方程x﹣2=0的解是()A.B. C.2 D.﹣2【考点】解一元一次方程.【分析】方程移项即可求出解.【解答】解:方程x﹣2=0,解得:x=2,故选C3.已知一组数据:﹣2,5,2,﹣1,0,4,则这组数据的中位数是()A.B.1 C.D.2【考点】中位数.【分析】先将这组数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【解答】解:将这组数据按照从小到大的顺序排列为:﹣2,﹣1,0,2,4,5,这组数据的中位数为: =1.故选B.4.如图,△ABC中,∠C=90°,则∠A的正弦值可以表示为()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据正弦函数定义可得结果.【解答】解:根据正弦函数的定义可知,sinA=,故选A.5.一条开口向上的抛物线的顶点坐标是(﹣1,2),则它有()A.最大值1 B.最大值﹣1 C.最小值2 D.最小值﹣2【考点】二次函数的最值.【分析】根据开口向上顶点坐标可求得该函数的最值.【解答】解:∵抛物线的开口向上、顶点坐标是(﹣1,2),∴该函数有最小值,其最小值是2.故选:C.6.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点【考点】角平分线的性质.【分析】利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.7.如图,点A、B、C都在⊙O上,⊙O的半径为2,∠ACB=30°,则的长是()A.2πB.πC.π D.π【考点】弧长的计算;圆周角定理.【分析】根据圆周角定理可得出∠AOB=60°,再根据弧长公式的计算即可.【解答】解:∵∠ACB=30°,∴∠AOB=60°,∵OA=2,∴===π,故选:C.8.如图,四边形纸片ABCD,以下测量方法,能判定AD∥BC的是()A.∠B=∠C=90° B.∠B=∠D=90°C.AC=BD D.点A,D到BC的距离相等【考点】平行线的判定.【分析】逐条分析四个选项:A、由∠B=∠C=90°可得出∠B+∠C=180°,进而得出AB∥CD,故A不正确;B(C)、由∠B=∠D=90°(AC=BD),无法得出边平行,故B(C)不正确;D、由点A,D到BC的距离相等,且A、D在直线BC的同侧,即可得出AD∥BC.综上即可得出结论.【解答】解:A、∵∠B=∠C=90°,∴∠B+∠C=180°,∴AB∥CD,A不可以;B、∠B=∠D=90°,无法得出边平行的情况,B不可以;C、AC=BD,无法得出边平行的情况,C不可以;D、∵点A,D到BC的距离相等,且A、D在直线BC的同侧,∴AD∥BC,D可以.故选D.9.无论m为何值,点A(m,5﹣2m)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).【解答】解:当m<0时,5﹣2m>0,点A(m,5﹣2m)在第二象限,当0<m时,点A(m,5﹣2m)在第一象限,当m时,点A(m,5﹣2m)在第四象限.故选:C.10.如图1,M是铁丝AD的中点,将该铁丝首尾相接折成△ABC,且∠B=30°,∠C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远【考点】三角形三边关系.【分析】根据钝角三角形中钝角所对的边最长可得AB>AC,取BC的中点E,求出AB+BE>AC+CE,再根据三角形的任意两边之和大于第三边得到AB<AD,从而判定AD的中点M在BE上.【解答】解:∵∠C=100°,∴AB>AC,如图,取BC的中点E,则BE=CE,∴AB+BE>AC+CE,由三角形三边关系,AC+BC>AB,∴AB<AD,∴AD的中点M在BE上,即点M在BC上,且距点B较近,距点C较远.故选:C.二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:5x+5y= 5(x+y).【考点】因式分解﹣提公因式法.【分析】观察原式,找到公因式5,提出即可得出答案.【解答】解:5x+5y=5(x+y).12.点A(2,﹣1)关于原点对称的点B的坐标为(﹣2,1).【考点】关于原点对称的点的坐标.【分析】由关于原点对称的点,横坐标与纵坐标都互为相反数可知:点A(2,﹣1)关于原点的对称点的坐标.【解答】解:∵关于原点对称的点,横坐标与纵坐标都互为相反数,∴点A(2,﹣1)关于原点的对称点的坐标为(﹣2,1).故答案为:(﹣2,1).13.若正多边形的一个外角为40°,则这个正多边形是九边形.【考点】多边形内角与外角.【分析】利用任意凸多边形的外角和均为360°,正多边形的每个外角相等即可求出答案.【解答】解:多边形的每个外角相等,且其和为360°,据此可得=40,解得n=9.故答案为:九.14.若方程x2﹣2x+1=m有两个相等的实数根,则m的值是0 .【考点】根的判别式.【分析】根据已知方程有两个相等的实数根得出△=0,得出△=(﹣2)2﹣4×1×(1﹣m)=0,求出即可.【解答】解:x2﹣2x+1=m,x2﹣2x+1﹣m=0,∵方程x2﹣2x+1=m有两个相等的实数根,∴△=(﹣2)2﹣4×1×(1﹣m)=0,解得:m=0,故答案为:0.15.当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3的函数值相等,当x=m+n时,函数y=x2﹣2x+3的值为 3 .【考点】二次函数图象上点的坐标特征.【分析】先找出二次函数y=x2﹣2x+3=(x﹣1)2+2的对称轴为x=2轴,再把x=2代入代数式即可.【解答】解:∵当x=m和x=n(m≠n)时,二次函数y=x2﹣2x+3=(x﹣1)2+2的函数值相等,∴以m、n为横坐标的点关于直线x=1对称,则=1,∴m+n=2,∵x=m+n,∴x=2,函数y=4﹣4+3=3.故答案为3.16.如图,直径AB,CD的夹角为60°,P为⊙O上的一个动点(不与点A,B,C,D重合)PM,PN分别垂直于CD,AB,垂足分别为M,N,若⊙O的半径长度为2,则MN的长为.【考点】三角形中位线定理;垂径定理.【分析】因为P为⊙O上的一个动点(不与点A,B,C,D重合),所以可以考虑特殊情况下即当PM⊥AB于圆心O时,延长PM交圆与点E,PN⊥CD,延长PN交圆于点F,连接EF,求出EF的长,得到MN的长,根据圆周角、圆心角、弧、弦之间的关系得到答案.【解答】解:如图,当PM⊥AB于圆心O时,延长PM交圆与点E,PN⊥CD,延长PN交圆于点F,连接EF,根据垂径定理,MN=EF,∵∠AOD=120°,PM⊥AB,∴∠PMN=30°,∠P=60°,在Rt△PEF中,PE=4,则EF=2,∴MN=,点P移动时,由题意,∠P=60°,根据在同圆中,圆周角相等,所对的弧相等,弦也相等,即弦长为2,∴MN=,故答案为.三、解答题(本大题有11小题,共86分)17.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,算术平方根定义,以及零指数幂法则计算即可得到结果.【解答】解:原式=3×﹣+1=+.18.解不等式组:.【考点】解一元一次不等式组.【分析】分别求出每个不等式的解集,再求出其公共部分即可.【解答】解:,由①得,x<﹣1,由②得,x≤4,不等式组的解集为x<﹣1.19.画出的图象.【考点】反比例函数的图象.【分析】从正数,负数中各选几个值作为x 的值,进而得到y 的值,描点,连线即可.【解答】解:列表得:描点,连线得:20.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,AD=3,AB=5,求的值.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出=,再根据AD=3,AB=5,即可得出答案.【解答】解:∵DE ∥BC ,∴=, ∵AD=3,AB=5,∴=.21.一个不透明的口袋中装有3个完全相同的小球,上面分别标有数字1,2,3,从中随机摸出一球记下数字后放回,再随机摸出一球记下数字,求摸出的两个小球数字之积为奇数的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出小球的数字之积为奇数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出小球的数字之积为奇数的有4种情况,∴两次摸出小球的数字之积为奇数的概率是.22.在平面直角坐标系中,点A(﹣3,0)、点B(2,0)、点C(5,﹣4)、点D(0,﹣4),试判断四边形ABCD的形状,并证明.【考点】坐标与图形性质.【分析】建立直角坐标系,根据坐标将A、C、B、D四点表示在平面直角坐标系中,然后判定四边形ABCD的形状.【解答】解:将点A(﹣3,0)、点B(2,0)、点C(5,﹣4)、点D(0,﹣4)表示在平面直角坐标系中,如下图所示:由图可知:四边形ABCD是平行四边形.证明:∵点C(5,﹣4)、点D(0,﹣4)的纵坐标相等,∴CD∥x轴,又点A、B在x轴上,∴AB∥CD又∵AB=2﹣(﹣3)=5,CD=5﹣0=5,∴AB=CD∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形)23.已知甲工人做90个零件所需要的时间和乙工人做120个零件所需要的时间相同,若甲工人每小时比乙工人每小时少做5个零件,求乙工人每小时所做的零件个数.【考点】分式方程的应用.【分析】设乙工人每小时做x个,则甲工人做(x﹣5)个零件,根据90÷甲的工效=120÷乙的工效,列出方程,求出x的值,即可得出答案.【解答】解:设乙工人每小时做x个,则甲工人做(x﹣5)个零件,根据题意得:=,解得:x=20,经检验x=20是原方程的解,答:乙工人每小时所做的零件个数是20个.24.如图,AB是半圆O的直径,CD⊥AB于点C,交半圆于点E,DF切半圆于点F,已知,求DE的长.【考点】切线的性质;勾股定理;垂径定理.【分析】首先证明四边形CODF是矩形,△BOF是等腰直角三角形,求出CD、CE即可解决问题.【解答】解:如图,连接OE、OF.∵∠AEF+∠B=180°,∠AEF=135°,∴∠B=45°,∴∠AOF=2∠B=90°,∴∠B=∠OFB=45°,∴OF=OB,∵BF=2,∴OF=OB=2,∵DF是切线,∴DF⊥OF,∴∠DFO=90°,∴DC⊥AB,∴∠DCO=∠COF=∠DFO=90°,∴四边形OCDF是矩形,∴DC=OF=2,∵CE=CO,EO=2,∴CE=CO=,∴DE=DC﹣CE=2﹣.25.在平面直角坐标系xOy中,给出如下定义:形如y=a(x﹣m)2+a(x﹣m)与y=a(x﹣m)2﹣a(x﹣m)的两个二次函数的图象叫做“兄弟抛物线”.判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是否为兄弟抛物线?如果是,求出a与m的值;如果不是,请说明理由.【考点】二次函数的性质.【分析】通过变形得到y=x2﹣x=(x﹣1)2+(x﹣1),y=x2﹣3x+2=(x﹣1)2﹣(x﹣1),于是根据新定义可判断二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线.【解答】解:二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线,理由如下:∵y=x2﹣x=(x﹣1)2+(x﹣1),y=x2﹣3x+2=(x﹣1)2﹣(x﹣1),∴二次函数y=x2﹣x与y=x2﹣3x+2的图象是兄弟抛物线.此时a=1,m=1.26.(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;(2)如图2,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF的长.【考点】正方形的性质;矩形的性质.【分析】(1)首先过点E分别作BC、CD的垂线,垂足分别为H、P,然后利用ASA证得Rt △FEP≌Rt△GEH,则问题得证;(2)过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,过点C作CP⊥EG交EG的延长线于点P,过点C作CQ⊥EF垂足为Q,可得四边形EPCQ是矩形,四边形EMCN是矩形,可得EC平分∠FEG,可得矩形EPCQ是正方形,然后易证△PCG≌△QCF(AAS),进而可得:CG=CF,由EM∥AB,EN∥AD知△CEN∽△CAD,△CEM∽△CAB,从而可得=2,进而可得:EF=2EG,然后易证EM和EN分别是△ABC和△BCD的中位线,进而可得:EM=1,EN=2,MC=2,CN=1,然后易证△EMG∽△ENF,进而可得,即NF=2MG,然后设MG=x,根据CG=CF,列出方程即可解出x的值,即MG的值,然后在Rt△EMG中,由勾股定理即可求出EG的值,进而可得EF的值.【解答】解:(1)如图1,过点E作EH⊥BC于H,过点E作EP⊥CD于P,∵四边形ABCD为正方形,∴CE平分∠BCD,又∵EH⊥BC,EP⊥CD,∴EH=EP,∴四边形EHCP是正方形,∴∠HEP=90°,∵∠GEH+∠HEF=90°,∠PEF+∠HEF=90°,∴∠PEF=∠GEH,∴Rt△FEP≌Rt△GEH,∴EF=EG;(2)如图2,过点E作EM⊥BC于M,过点E作EN⊥CD于N,垂足分别为M、N,过点C作CP⊥EG交EG的延长线于点P,过点C作CQ⊥EF垂足为Q,则四边形EPCQ是矩形,四边形EMCN是矩形,∵EC平分∠FEG,∴CQ=CP,∴矩形EPCQ是正方形,∴∠QCP=90°,∴∠QCG+∠PCG=90°,∵∠QCG+∠QCF=90°,∴∠PCG=∠QCF,在△PCG和△QCF中,∵,∴△PCG≌△QCF(AAS),∴CG=CF,∵EM∥AB,EN∥AD.∴△CEN∽△CAD,△CEM∽△CAB,∴、,∴=,即=,∴,∵BC=4,AB=2,∴==2,∴EF=2EG,∵点E放在矩形ABCD的对角线交点,∴EM和EN分别是△ABC和△BCD的中位线,∴EM=AB=1,EN=AD=2,MC=BC=2,CN=CD=1,∵四边形EMCN是矩形,∴∠NEM=90°,∴∠MEG+∠GEN=90°,∵∠GEF=90°,∴∠FEN+∠GEN=90°,∴∠MEG=∠FEN,∵∠EMG=∠FNE=90°,∴△EMG∽△ENF,∴==,即NF=2MG,设MG=x,则NF=2x,CG=2﹣x,CF=1+2x,∵CG=CF,∴2﹣x=1+2x,解得:x=,∴MG=,在Rt△EMG中,由勾股定理得:EG==,∵EF=2EG,∴EF=.27.已知直线y=kx+m(k<0)与抛物线y=x2+bx+c相交于抛物线的顶点P和另一点Q,点P 在第四象限.(1)若点P(2,﹣c),点Q的横坐标为1,求点Q的坐标;(2)过点Q作x轴的平行线与抛物线y=x2+bx+c的对称轴交于点E,直线PQ与y轴交于点M,若EQ=PE,c=(b<﹣5),求△OMQ的面积S的取值范围.【考点】二次函数的性质.【分析】(1)根据对称轴公式求出b,再将P代入抛物线得到c,求出抛物线解析式,根据Q点的横坐标即可解决问题.(2)由题意可以假设直线PQ为y=﹣x+b′,利用方程组求出点Q坐标,求出S的表达式,根据函数增减性解决即可.【解答】解:(1)由题意:﹣=2,∴b=﹣4,∴抛物线为y=x2﹣4x+c,将P(2,﹣c)代入得到,﹣c=4﹣8+c,∴c=2,∴抛物线解析式为y=x2﹣4x+2,∵点Q横坐标为1,∴点Q坐标为(1,﹣1).(2)由题意可以假设直线PQ为y=﹣x+b′,∵顶点P(﹣,﹣2),代入上式得到:﹣2=+b′,∴b′=﹣2﹣,∴直线PQ为y=﹣x﹣2﹣,∴点M坐标(0,﹣2﹣),由解得和,∴点Q坐标(﹣﹣1,﹣1),∴S△OQM==b2+b+1=(b+3)2﹣,∵b<﹣5,b=﹣5时,S=,根据函数的增减性可知,S△OQM>.。