高三数学第三次阶段考试卷
高三年级数学第三次考试(附答案)

高三年级数学第三次考试注意事项:1、答卷前,考生务必将自己的姓名、准考证号准确地写在答题卡上。
2、所有试题的答案均写在答题卡上。
对于选择题,每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案。
3、考试结束后,将本试卷和答题卡一并交回。
参考公式: 参考公式:如果事件A 、B 互斥,那么 球的表面积公式P(A+B)=P(A)+P(B) 24R S π= 如果事件A 、B 相互独立,那么P(A·B)=P(A)·P(B) 其中R 表示球的半径 如果事件A 在一次试验中发生的概率是 球的体积公式 p ,那么n 次独立重复试验中恰好发生k 334R V π=次的概率kn k k n n p P C k P --=)1()( 其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若双曲线的实半轴长为2,焦距为6,则该双曲线的离心率为(A )13 (B ) 23(C ) 23(D ) 32.函数f (x ) =sin 2x , x ∈[-π,π],则满足f (x )=0的x 有(A )2个 (B )3个 (C )4个 (D )5个 3.函数xy a =和1xy a =,0a >,1a ≠且,则它们的反函数的图象关于 (A )x 轴对称 (B )y 轴对称 (C )关于直线y=x 对称 (D )原点对称 4.给出关于平面向量的两个命题:①→a 是非零向量,且→→⋅b a =→→⋅c a ,则→b =→c ;②→a ,→b 是非零向量,→a ⊥→b ,则|→a +→b |=|→a -→b |。
正确的命题的序号是 (A )① (B )② (C )①② (D )没有正确的命题 5.设a 、b 表示直线,α、β表示平面,α//β的充分条件是(A )a ⊂α,b ⊂β,a//b (B )a ⊂α,b ⊂β,a //β,b //α (C )a ⊥b ,α⊥β,b ⊥α (D )a//b , a ⊥α,b ⊥β 6.设等差数列{a n }前n 项和为S n ,则使S 6=S 7的一组值是(A )a 3=9, a 10=―9 (B )a 3=―9,a 10= 9 (C )a 3=―12, a 10=9 (D )a 3=―9,a 10=12 7.函数c ax x x x f +++-=233)(在(,1]-∞上是单调减函数,则a 的最大值是 (A )―3 (B )―1 (C )1 (D )38.设二项式(3x +1)n 的展开式的各项系数和为a n ,展开式中x 2的系数为b n 。
高三数学第一学期第三次阶段测试

高三数学第一学期第三次阶段测试数学试题一、填空题:本大题共14小题,每小题5分,共70分.答案填在题中横线上 1.已知集合{}11M =-,,11242x N x x +⎧⎫=<<∈⎨⎬⎩⎭Z ,,则M N =__ ▲ .2.设31sin (), tan(),522πααππβ=<<-=则tan(2)αβ-的值等于__ ▲ . 3.复数ii4321+-在复平面上对应的点位于第 __ ▲ 象限.4.在△ABC 中,BC=1,3π=∠B ,当△ABC 的面积等于3时,=C tan __ ▲ .5.设)(x f y =是一次函数,,1)0(=f 且)13(),4(),1(f f f 成等比数列,则++)4()2(f f …=+)2(n f __ ▲6.四棱锥P ABCD -的顶点P 在底面ABCD 中的投影恰好是A ,其三视图如右图,则四棱锥P ABCD - 的表面积为__ ▲ 7.函数1)1(log +-=x y a (01)a a >≠且,的图象恒过定点A ,若点A 在一次函数n mx y +=的图象上,其中0mn >,则12m n+的最小值为__ ▲ . 8.设O 是△ABC 内部一点,且AOC AOB OB OC OA ∆∆-=+与则,2的面积之比为__ ▲ 9.若函数)(x f 是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足)()()(y f x f xy f +=,则不等式)4(2)()6(f x f x f <++的解集为__ ▲10.(理)若直线1+=kx y 与圆0422=-+++my kx y x 交于M 、N 两点,同时M 、N 关于直线0=+y x 对称,则不等式组⎪⎩⎪⎨⎧≥≤-≥+-0001y my kx y kx 表示的平面区域的面积是__ ▲(文)不等式组100y x y x y ≤+⎧⎪≥⎨⎪+≤⎩表示的平面区域的面积是__ ▲11.已知函数)(x f 的导数a x x f a x x a x f =-+='在若)(),)(1()(处取到极大值,则a 的取值范畴是 ▲ 12.若从点O 所作的两条射线OM 、ON 上分别有点1M 、2M 与点1N 、2N ,则三角形面积之比为:21212211ON ON OM OM S S N OM N OM ⋅=∆∆. 若从点O 所作的不在同一个平面内的三条射线OP 、OQ 和OR 上分别有点1P 、2P 与点1Q 、2Q 和1R 、2R ,则类似的结论为:__ ▲13.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案:则第n 个图案中有白色地面砖__ ▲ 块. 14.给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即 {}x m =. 在此基础上给出下列关于函数|}{|)(x x x f -=的四个命题:①函数)(x f y =的定义域是R ,值域是[0,21]; ②函数)(x f y =的图像关于直线2kx =(k ∈Z)对称; ③函数)(x f y =是周期函数,最小正周期是1; ④ 函数()y f x =在⎥⎦⎤⎢⎣⎡-21,21上是增函数; 则其中真命题是__ ▲二、解答题:本大题共6小题,共90分.解承诺写出文字说明,证明过程或演算过程 15.(本小题满分14分) 已知向量m =(sin B ,1-cos B ),且与向量n =(2,0)所成角为3π,其中A, B, C 是⊿ABC 的内角. (1)求角B的大小; (2)求sinA+sinC 的取值范畴.16.(本小题满分14分) 已知数列}{n a 满足.2112,*,1,51111nn n n a a a a n n a -+=∈>=--有时且当N (Ⅰ)求证:数列}1{na 为等差数列; (Ⅱ)试问21a a 是否是数列}{n a 中的项?假如是,是第几项;假如不是,请说明理由17.(本小题满分15分) 设有关于x 的一元二次方程2220x ax b ++=.(Ⅰ)若a 是从0123,,,四个数中任取的一个数,b 是从012,,三个数中任取的一个数,求上述方程有实根的概率.(Ⅱ)若a 是从区间[03],任取的一个数,b 是从区间[02],任取的一个数,求上述方程有实根的概率.18.(本小题满分15分)已知:正方体1111ABCD-A B C D ,1AA =2,E 为棱1CC 的中点. (Ⅰ) 求证:11B D AE ⊥; (Ⅱ) 求证://AC 平面1B DE ; (Ⅲ)求三棱锥A-BDE 的体积19.(本小题满分16分) (理科做)已知⊙),1,2(1:22A y x O 和定点=+由⊙O 外一点P (a,b )向⊙O引切线PQ ,切点为Q ,且满足.||||PA PQ =(1)求实数a,b 间满足的等量关系; (2)求线段PQ 长的最小值; (3)若以P 为圆心所作的⊙P 与⊙O 有公共点,试求半径最小值时⊙P 的方程。
山东省实验中学2024届高三第三次诊断考试数学试题与答案

山东省实验中学2024届高三第三次诊断考试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}220M x x x =--<,{210}N x x =∈+>Z ,则M N ⋂=()A.13,22⎛⎤-⎥⎝⎦ B.1,12⎛⎤-⎥⎝⎦C.{0,1,2}D.{0,1}2.已知复数z 满足()12i 32i z +=-,则复数z 的实部为()A.85B.85-C.15D.15-3.数列{}n a 满足21n n a a +=,*n ∈N ,则“12a =”是“{}n a 为单调递增数列”的()A .充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.把一个正方体各面上均涂上颜色,并将各棱三等分,然后沿等分线把正方体切开.若从所得的小正方体中任取一个,恰好抽到2个面有颜色的小正方体的概率为()A.29B.827C.49D.125.如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A.,1]3B.63C.622[]33D.22[36.如图,1F 、2F 是双曲线C :()222210,0x y a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于A 、B 两点.若A 是2BF 中点且12BF BF ⊥则该双曲线的渐近线方程为()A.3y =±B.22y x =±C.3y =D.2y =7.已知函数()()3222,1131122,1326ax x f x x ax a x x -≤⎧⎪=⎨-++->⎪⎩,若对任意12x x <都有()()121222f x f x x x -<-,则实数a 的取值范围是()A.(),2-∞- B.[)1,+∞ C.12,2⎛⎤- ⎥⎝⎦D.3,4⎛⎤-∞- ⎥⎝⎦8.棱长为2的正四面体内切一球,然后在正四面体和该球形成的空隙处各放入一个小球,则这些小球的最大半径为()A.33 B.26C.612D.66二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.一组数据1220231232023(),,,a a a a a a a ⋯<<<⋯<,记其中位数为k ,均值为m ,标准差为1s ,由其得到新数据123202321,21,21,,21a a a a +++⋯+的标准差为2s ,下列结论正确的是()A.1012k a = B.10111012a m a << C.m k≥ D.212s s =10.已知函数()()12πsin 0,,,2f x x x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭为()f x 的两个极值点,且12x x -的最小值为π2,直线π3x =为()f x 图象的一条对称轴,将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,下列结论正确的是()A .4ω= B.π6ϕ=-C.()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增 D.()g x 图象关于点π,06⎛⎫⎪⎝⎭对称11.已知函数()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,下列说正确的是()A.当[]()*2,22x n n n ∈+∈N 时,()()1sin π22nf x x n =-B.函数()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增C.方程()()lg 2f x x =+有4个相异实根D.若关于x 的不等式()()2f x k x ≤-在[]2,4恒成立,则1k ≥12.圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有().A.若+=PA PB 3,则P 点的轨迹为圆B.若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C.存在唯一的一组点,P Q ,使得AP PQ ⊥D.1AP PQ QB ++的取值范围是三、填空题:本题共4小题,每小题5分,共20分.13.已知点()1,1A -,()3,B y ,向量()1,2a = ,若AB 与a成锐角,则y 的取值范围为________.14.如果圆台的上底面半径为5,下底面半径为R ,中截面(与上、下底面平行且等距的平面)把圆台分为上、下两个部分,其侧面积的比为1:2,则R =_______.15.若关于x 的不等式()221e x x ax ≥+在()0,∞+恒成立,则实数a 的取值范围是______.16.已知椭圆()2222:10x y C a b a b+=>>,过C 中心的直线交C 于M ,N 两点,点P 在x 轴上其横坐标是点M 横坐标的3倍,直线NP 交C 于点Q ,若直线QM 恰好是以MN 为直径的圆的切线,则C 的离心率为_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()()()sin sin sin sin C B c b a A B +-=-.(1)求角C 的大小(2)若ACB ∠的平分线交AB 于点D ,且2CD =,2AD DB =,求ABC 的面积.18.如图,三棱锥–S ABC 的底面ABC 和侧面SBC 都是等边三角形,且平面SBC ⊥平面ABC ,点P 在侧棱SA 上.(1)当P 为侧棱SA 的中点时,求证:SA ⊥平面PBC ;(2)若二面角P BC A ––的大小为60°,求PASA的值.19.已知在数列{}n a 中,()()*11211,n n n a a a n n++==⋅∈N (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式nn a b n=在k b 和1k b +之间插入k 个数,使这2k +个数组成等差数列,将插入的k 个数之和记为k c ,其中1k =,2,…,n ,求数列{}n c 的前n 项和.20.某中学有A ,B 两个餐厅为老师与学生们提供午餐与晚餐服务,王同学、张老师两人每天午餐和晚餐都在学校就餐,近一个月(30天)选择餐厅就餐情况统计如下:选择餐厅情况(午餐,晚餐)(),A A (),A B (),B A (),B B 王同学9天6天12天3天张老师6天6天6天12天假设王同学、张老师选择餐厅相互独立,用频率估计概率.(1)估计一天中王同学午餐和晚餐选择不同餐厅就餐的概率;(2)记X 为王同学、张老师在一天中就餐餐厅的个数,求X 的分布列和数学期望()E X ;(3)假设M 表示事件“A 餐厅推出优惠套餐”,N 表示事件“某学生去A 餐厅就餐”,()0P M >,已知推出优惠套餐的情况下学生去该餐厅就餐的概率会比不推出优惠套餐的情况下去该餐厅就餐的概率要大,证明.()()РP M N M N >.21.已知函数()ln f x x =,()xg x e =.(1)若函数()()11x x f x x ϕ+=--,求函数()x ϕ的单调区间;(2)设直线l 为函数()f x 的图象上一点()()00,A x f x 处的切线.证明:在区间()1,+∞上存在唯一的0x ,使得直线l 与曲线()y g x =相切.22.已知动圆过点(0,1)F ,且与直线:1l y =-相切,设动圆圆心D 的轨迹为曲线C .(1)求曲线C 的方程;(2)过l 上一点P 作曲线C 的两条切线,PA PB ,,A B 为切点,,PA PB 与x 轴分别交于M ,N 两点.记AFM △,PMN ,BFN 的面积分别为1S 、2S 、3S .(ⅰ)证明:四边形FNPM 为平行四边形;(ⅱ)求2213S S S 的值.山东省实验中学2024届高三第三次诊断考试数学试题答案1.D 【分析】化简集合M,N ,根据交集运算得解.【详解】因为{}220{12}M x x x x x =--<=-<<,12N x x ⎧⎫=∈>-⎨⎬⎩⎭Z ,所以{0,1}M N ⋂=.2.D 【分析】根据复数的除法运算求出复数z ,即可得答案.【详解】由()12i 32i z +=-可得()32i (12i)32i 18i 18i 12i 5555z -----====--+,故复数z 的实部为15-,3.A 【分析】利用充分条件和必要条件的定义判断.【详解】解:由()2110n n n n n n a a a a a a +-=-=->,解得0n a <或1n a >,所以“12a =”是“{}n a 为单调递增数列”的充分不必要条件,4.C 【分析】根据古典概型概率计算公式求得正确答案.【详解】一共有33327⨯⨯=个小正方体,其中2个面有颜色的小正方体有12个,(每条棱上有1个)所以恰好抽到2个面有颜色的小正方体的概率为124279=.5.B 【详解】设正方体的棱长为1,则11111AC AC AO OC OC ======1111332122cos ,sin 33322A OC A OC +-∠==∠=⨯,1131322cos ,sin A OC A OC +-∠=∠又直线与平面所成的角小于等于90 ,而1A OC ∠为钝角,所以sin α的范围为6[,1]3,选B.【考点定位】空间直线与平面所成的角.6.A 【分析】设2AB AF m ==,利用双曲线的定义得121222,222AF AF a m a BF BF a m a =+=+=-=-,再利用勾股定理建立方程组,消去m ,得到2213a c =,进而得到b a的值,由by x a =±得到双曲线的渐近线方程.【详解】设21212,22,222AB AF m AF AF a m a BF BF a m a ===+=+=-=-,222222111212,BF BA AF BF BF F F +=+=,()()222222m a m m a -+=+①,()2222244m a m c -+=②,由①可得3,m a =代入②式化简得:2213a c =,∴2212a b =,∴ba=,所以双曲线的渐近线方程为by x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义.7.A 【分析】转化为任意12x x <都有()()112222f x x f x x -<-,令()()2g x f x x =-,得到()g x 在R 上递增求解.【详解】解:因为若对任意12x x <都有()()121222f x f x x x -<-,所以对任意12x x <都有()()112222f x x f x x -<-,令()()2g x f x x =-,则()g x 在R 上递增,当1x ≤时,()()22g x a x =-+,则20a +<,即2a <-成立;当1x >时,()322213112326g x x ax a x =-+-,则()2232g x x ax a '=-+,当312a ≤,即23a ≤时,()211320g a a '=-+≥,解得12a ≤;当312a >,即23a >时,231024a g a ⎛⎫'=-≥ ⎪⎝⎭,无解;又()21311222326a a a -+≤-+-,即2430a a --≥,解得34a ≤-或1a ≥,综上:2a <-,8.C 【分析】先求出正四面体的体积及表面积,利用A BCD O BCD O ABC O ACD O ABD V V V V V -----=+++求出内切球的半径,再通过11AO O HAO OF=求出空隙处球的最大半径即可.【详解】由题,当球和正四面体A BCD -的三个侧面以及内切球都相切时半径最大,设内切球的球心为O ,半径为R ,空隙处最大球的球心为1O ,半径为r ,G 为BCD △的中心,得AG ⊥平面BCD ,E 为CD 中点,球O 和球1O 分别和平面ACD 相切于F ,H ,在底面正三角形BCD 中,易求BE =,233BG BE ==,3AG ∴=,又44ABC ABD ACD BCD S S S S ====⨯= ,由A BCD O BCD O ABC O ACD O ABD V V V V V -----=+++,即得3A BCDBCD ABC ABD ACDV R S S S S -=+++,又12622333A BCD V -==,6R ∴==,2666362AO AG GO =-=-=,12363AO AG R r r r =--=--=-,又1AHO AFO ,可得11AO O H AO OF =即12r =,即球的最大半径为12.故选:C.9.AD 【分析】利用中位数的定义可判断A 选项;举反例可判断B 选项C ;利用均值和方差公式可判断D 选项.【详解】对于A 选项,因1232023a a a a <<<< ,样本数据最中间的项为1012a ,由中位数的定义可知,1012k a =,A 正确;对于B ,不妨令n a n =()820231,2,,2022,100n a =⋯=,则81012122022100122023101220232023m a +++++++=>== ,B 错误;对于C ,不妨令n a n =()20231,2,,2022,1n a =⋯=,则10121220222022.11220222023101220232023m k a ++++++===<= ,C 错误;对于D ,数据123202421,21,21,,21a a a a ++++ 的均值为:()202420241121212120242024ii i i a a m ==+=+=+∑∑,其方差为122s s =,D 对.10.BCD 【分析】由题意可得π22T =,即可求出ω,再根据正弦函数的对称性即可求出ϕ,根据正弦函数的单调性和对称性即可判断CD .【详解】因为12,x x 为()f x 的两个极值点,且12x x -的最小值为π2,所以π2π222T ω==,所以2ω=,故A 错误;则()()sin 2f x x ϕ=+,又直线π3x =为()f x 图象的一条对称轴,所以2πππ32k ϕ+=+,所以ππ,Z 6k k ϕ=-+∈,又π2ϕ<,所以π6ϕ=-,故B 正确;所以()πsin 26f x x ⎛⎫=- ⎪⎝⎭,由π,06x ⎡⎤∈-⎢⎥⎣⎦,得πππ2,626x ⎡⎤-∈--⎢⎥⎣⎦,所以()f x 在间π,06⎡⎤-⎢⎥⎣⎦上单调递增,故C 正确;将()f x 的图象向右平移π12个单位长度后得到函数()g x 的图象,则()πππsin 2sin 21263g x x x ⎡⎤⎛⎫⎛⎫=--=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦,因为πππsin 0633g ⎛⎫⎛⎫=-=⎪ ⎪⎝⎭⎝⎭,所以()g x 图象关于点π,06⎛⎫⎪⎝⎭对称,故D 正确.11.BC 【分析】A 、B 项利用函数的周期性和单调性求解;C 项,利用函数图象交点解决方程根的问题;D 项,利用切线性质解决不等式问题.【详解】A 项,()()2sin π,0212,22x x f x f x x ≤≤⎧⎪=⎨->⎪⎩,表示当[]0,2x ∈时,()f x 向右平移2个单位长度时,y 值变为原来的12倍,所以当[]()*2,22x n n n ∈+∈N ,()()11sin π22n f x x n -=-,A 项错误;B 项,当[]0,2x ∈时,()2sin πf x x =,增区间为10,2⎡⎤⎢⎥⎣⎦和3,22⎡⎤⎢⎥⎣⎦,当[]2,4x ∈时,增区间为52,2⎡⎤⎢⎥⎣⎦和7,42⎡⎤⎢⎥⎣⎦,同理可得,所以()f x 在()*12,22n n n ⎡⎤+∈⎢⎥⎣⎦N 上单调递增,B 项正确;C 项,如图所示,()y f x =与()()lg 2g x x =+的图象,满足5522f g ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,9922f g ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,两图象共有4个交点,所以方程()()lg 2f x x =+有4个相异实根,C项正确;D 项,当[]2,4x ∈时,()()sin π2f x x =-,所以()()()()2sin π22f x k x x k x ≤--≤-⇒,当两函数相切时,k 有最小值,()()πcos π2f x x '=-,所以()2πf '=,所以πk ≥,D 项错误.12.BC 【分析】建立空间直角坐标系,利用两点间距离公式以及向量夹角公式列式计算可得点P 的轨迹方程判断选项A 和选项B ,假设AP PQ ⊥,根据勾股定理列式结合均值不等式计算最值,即可判断选项C ,计算1AP PQ QB ++的最大值3AP 判断选项D.【详解】对B ,如图,不妨以O 为原点,以AB 的垂直平分线,1,OA OO 分别为,,x y z 轴建立空间直角坐标系,则()0,0,0,(0,1,0),(0,1,0)OA B -,()10,1,1B -,设(),,1P x y ,则()()10,1,1,,,1OB OP x y =-=,由题意,()22222122111x y =-+⨯++,化简得,212y x =-,由于P 点在上底面内,所以P 的轨迹是抛物线的一部分,故B 正确;对A ,2222(1)1(1)13PA PB x y x y +=+-++++=,化简得22119420x y +=,即P 点的轨迹为椭圆,故A 错误;对C ,设点P 在下平面的投影为1P ,若AP PQ ⊥,则222AP PQ AQ +=,则222221111AP PQ AQ +++=,当1P 在线段AQ 上时,2211AP PQ +可取最小值,由均值不等式,222211242AQ AQ AP PQ +≥⨯=,当且仅当112AQAP PQ ==时等号成立,所以2222112()2AQ AQ AP PQ =-+≤,即24AQ ≥,而点Q 只有在与点B 重合时,2A Q 才能取到4,此时点B 与点Q 重合,点P 与点1O 重合,故C 正确;对D ,当点P 与点1B ,点A 与点Q 重合,1AP PQ QB ++的值为3AP ==>,故D 错误.【点睛】判断本题选项B 时,利用定义法计算线线所成的角不好计算时,可通过建立空间直角坐标系,利用向量夹角的计算公式列式计算.13.(1,9)(9,)-+∞ 【分析】根据向量夹角为锐角利用数量积求解.【详解】因为(4,1)AB y =- ,()1,2a = ,AB 与a成锐角,所以422220AB a y y ⋅=+-=+>,解得1y >-,当AB 与a同向时,(4,1)(1,2)(0)y λλ-=>,即412y λλ=⎧⎨-=⎩,解得9y =,此时满足0AB a ⋅> ,但AB 与a所成角为0,不满足题意,综上,AB 与a成锐角时,y 的取值范围为(1,9)(9,)-+∞ .14.25【分析】中截面把圆台分为上、下两个圆台,则两个圆台的侧高相等,且中截面半径等于两底面半径和的一半,根据中截面把圆台分为上、下两个圆台的侧面积的比为1:2,我们易构造出关于R 的方程,解方程即可求出R 的值.【详解】设中截面的半径为r ,则52R r +=①,记中截面把圆台分为上、下两个圆台的侧面积分别为1S 、2S ,母线长均为l ,1 2 π(),π()S r l S R r l =+=+5,又 1 2 ::S S =12 ,(5):()1:2r R r ∴++=②,将①代入②整理得:25R =.15.(],2e -∞【分析】利用分离参数法,通过构造函数以及利用导数来求得a 的取值范围.【详解】依题意,不等式()221e xx ax ≥+在()0,∞+恒成立,即()221e x x a x+≤在()0,∞+恒成立,设()()()221e 0x x f x x x+=>,()()()23333312211e e e x x x x x x x x x x f x x x x-+++--+==='-,其中232e 0xx x x++>,所以()f x 在区间()0,1上,()()0,f x f x '<单调递减;在区间()1,+∞上,()()0,f x f x '>单调递增,所以()()12e f x f ≥=,所以2e a ≤,所以a 的取值范围是(],2e -∞.16.2【分析】利用三条直线的斜率关系,结合点差法可得.【详解】设()11,M x y ,()22,Q x y ,则()11,N x y --,()13,0P x ,设1k 、2k 、3k ,分别为直线MN 、QM 、NP 的斜率,则111y k x =,21221y y k x x -=-,()113111101344y y k k x x x +===--,因直线QM 是以MN 为直径的圆的切线所以QM MN ⊥,121k k =-,所以2314k k =-,又Q 在直线NP 上,所以21321y y k x x +=+,因M 、Q 在()222210x ya b a b +=>>上,所以2211221x y a b +=,2222221x y a b+=,两式相减得22221212220x x y y a b --+=,整理得2212122121y y y y b x x x x a +-⋅=-+-,故223214b k k a =-=-,即2214b a =,222131144b e a =-=-=,故32e =.17.(1)π3C =(2)332【分析】(1)由(sin sin )()(sin sin )C B c b a A B +-=-,利用正弦定理转化为222a b c ab +-=,再利用余弦定理求解;(2)方法一根据CD 平分ACB ∠,且2AD DB =,利用角平分线定理得到2b a =,23AD c =,13BD c =,再由1cos 2C =,3cos 2ACD ∠=,求得边长,再利用三角形面积公式求解.方法二根据CD 平分ACB ∠,且2AD DB =,得到2b a =,然后由+= ACD BCD ABC S S S ,求得边a ,再利用三角形面积公式求解.【小问1详解】解:由(sin sin )()(sin sin )C B c b a A B +-=-及正弦定理,得()()()c b c b a a b +-=-,即222a b c ab +-=,所以2221cos 22a b c C ab +-==.因为(0,π)C ∈,所以π3C =.【小问2详解】方法一因为CD 平分ACB ∠,且2AD DB =,所以由角平分线定理,得2CA AD CB DB==,则有2b a =,23AD c =,13BD c =.由222214cos 24a a c C a+-==,得c =.又2244439cos 28a c ACD a+-∠==,将c =代入,可得2a =或a =当2a =时,32c =,则13222DB CB +=+<,故舍去,所以a =所以11333sin 2222ABC S ab C ==⨯=△.方法二因为CD 平分ACB ∠,且2AD DB =,所以2CA ADCB DB==,则有2b a =.因为+= ACD BCD ABC S S S ,所以1π1π1π2sin 2sin sin 262623b a ab ⨯⨯⨯+⨯⨯⨯=,则有2322a a =,所以a =所以21π333sin 2322ABC S ab ===△.18.【分析】(1)通过证明SA BP ⊥和SA CP ⊥即可得证;(2)取BC 的中点O ,连接SO ,AO ,以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,利用向量法建立关系可求解.【详解】(1)证明:因为ABC 为等边三角形,所以AB AC BC ==.因为SBC △为等边三角形,所以SB SC BC ==,所以AB SB =,AC SC =.在等腰BAS △和等腰CAS △中,因为P 为SA 的中点,所以SA BP ⊥,SA CP ⊥.又因为BP CP P = ,BP ,CP ⊂平面PBC ,所以SA ⊥平面PBC .(2)如图,取BC 的中点O ,连接SO ,AO ,则在等边ABC 和等边SBC △中,有BC AO ⊥,BC SO ⊥,所以AOS ∠为二面角S BC A --的平面角.因为平面SBC ⊥平面ABC ,所以90AOS ∠=︒,即AO SO ⊥.所以OA ,OB ,OS 两两垂直.以点O 为坐标原点,OB ,AO ,OS 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设AB a =,则30,,02A a ⎛⎫- ⎪ ⎪⎝⎭,1,0,02B a ⎛⎫ ⎪⎝⎭,1,0,02C a ⎛⎫- ⎪⎝⎭,30,0,2S a ⎛⎫ ⎪ ⎪⎝⎭.因为P 在SA 上,设AP AS λ=()01λ<<,()0,,P y z ,则30,,2AP y a z ⎛⎫=+ ⎪ ⎪⎝⎭ ,330,,22AS a a ⎛⎫= ⎪ ⎪⎝⎭,解得()312y a λ=-,32z a λ=,即()0,1,22P a a λλ⎛⎫- ⎪ ⎪⎝⎭.显然平面ABC 的一个法向量(0,0,1)n =.设平面PBC 的一个法向量为()111,,m x y z =,因为()1,1,222BP a a a λ⎛⎫=-- ⎪ ⎪⎝⎭,(),0,0CB a = .所以00m BP m CB ⎧⋅=⎨⋅=⎩ ,即()111010x y z λλ=⎧⎨-+=⎩,令1y λ=,则11z λ=-,所以()0,,1m λλ=-.因为二面角P BC A --的大小为60°,所以cos ,cos 60mn mn m n ⋅〈〉==︒,所以22630λλ-+=.又01λ<<,解得32λ=,即32PA SA =.【点睛】本题考查线面垂直的证明,考查向量法求空间中线段比例,属于中档题.19.(1)()1*2n na n n -=⋅∈N (2)()31212n n T n ⎡⎤=-⋅+⎣⎦【分析】(1)方法1:根据递推关系式,先变形;再采用累积法求数列通项公式;方法2:根据递推关系式,先构造出等比数列,再求数列通项公式.(2)先求出数列{}n c 的通项公式,再根据通项公式的特点利用错位相减法求前n 项和.【小问1详解】方法1:()()*121n n n a a n n++=⋅∈N ,∴()121n n n a a n++=,∴当2n ≥时,132112112232121n n n n n nn a a a a a a a n a ---⨯⋅⨯⨯⨯==-=⋅⋅⋅ ∴12,2n n a n n -=⋅≥又 1n =也适合上式,∴()1*2n n a n n -=⋅∈N ;方法2:∵()()*121n n n a a n n++=⋅∈N ,∴121n na a n n+=+,又111a =,故0n a n≠,∴n a n ⎧⎫⎨⎬⎩⎭为公比为2,首项为1的等比数列.∴12n na n-=,∴()1*2n n a n n -=⋅∈N .【小问2详解】()1*2n n a n n -=⋅∈N ,n n a b n=,∴12n n b -=.由题知,()()1112232222k kk k k kk b b k ck -+-++===⋅设数列{}n c 的前n 项和为n T ﹐则()012213333312223212222222n n n T n n --=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ ()123133333212223212222222n n n T n n -=⨯⨯+⨯⨯+⨯⨯++-⋅+⋅ 所以012213333331222222222222n n n n T n ---=⨯⨯+⨯+⨯++⨯+⨯-⋅ ()021********nn n -=⋅-⋅-()31122n n ⎡⎤=-+-⋅⎣⎦,故()31212n n T n ⎡⎤=-⋅+⎣⎦.20.【分析】(1)由频率估计概率,按古典概型进行求解;(2)先确定随机变量的可能取值,再求出各值所对应的概率,列出分布列,根据期望的定义求期望;(3)用条件概率公式进行推理证明.【详解】(1)设事件C 为“一天中王同学午餐和晚餐选择不同餐厅就餐”,因为30天中王同学午餐和晚餐选择不同餐厅就餐的天数为61218+=,所以()180.630P C ==.(2)记X 为王同学、张老师在一天中就餐餐厅的个数,则X 的所有可能取值为1和2,所以()10.30.20.10.40.1P X ==⨯+⨯=,()()2110.9P X P X ==-==,所以X 的分布列为X 12P0.10.9所以X 的数学期望()10.120.9 1.9E X =⨯+⨯=.(3)由题知()()|P N M P N M >,所以()()()()()()()1P NM P NM P N P NM P M P MP M ->=-所以()()()P NM P N P M >⋅,所以()()()()()()()P NM P N P NM P N P M P N P NM ->⋅-,即()()()()P NM P N P N P NM ⋅>⋅,所以()()()()P NM P NM P N P N >,即()()||PM N P M N >21.【分析】(1)求得函数()y x ϕ=的定义域和导数,分析导数的符号变化,即可得出函数()y x ϕ=的单调递增区间和递减区间;(2)求得直线l 的方程为001ln 1y x x x =+-,设直线l 与函数()y g x =相切于点()(),t g t ,可得出0ln t x =-,进而可将直线l 的方程表示为0001ln 1x y x x x +=+,可得0001ln 1x x x +=-,然后利用(1)中的函数()1ln 1x x x x ϕ+=--在区间()1,+∞上的单调性结合零点存在定理可证得结论成立.【详解】(1)()()11ln 11x x x f x x x x ϕ++=-=---,定义域为()()0,11,+∞ ,()()()222121011x x x x x x ϕ+'=+=>--,所以,函数()y x ϕ=的单调递增区间为()0,1,()1,+∞;(2)()ln f x x =Q ,()001f x x '∴=,所以,直线l 的方程为()0001ln y x x x x -=-,即001ln 1y x x x =+-,()x g x e = ,则()x g x e '=,设直线l 与函数()y g x =相切于点()(),t g t ,则()01tg t e x '==,得0ln t x =-,则切点坐标为001ln ,x x ⎛⎫- ⎪⎝⎭,所以,直线l 的方程可表示为()00011ln y x x x x -=+,即0001ln 1x y x x x +=+,由题意可得000ln 1ln 1x x x +-=,则0001ln 1x x x +=-,下面证明:存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.由(1)知,函数()1ln 1x x x x ϕ+=--在区间()1,+∞上单调递增,()2ln 230ϕ=-< ,()22222132011e e e e e ϕ+-=-=>--,由零点存在定理可知,存在唯一的()202,x e∈,使得()00x ϕ=,即0001ln 1x xx +=-.所以,存在唯一的()01,x ∈+∞使得0001ln 1x x x +=-.因此,在区间()1,+∞上存在唯一的0x ,使得直线l 与与曲线()y g x =相切.【点睛】本题考查利用导数求解函数的单调区间,同时也考查了利用导数证明直线与曲线相切,考查了零点存在定理的应用,考查推理能力与计算能力,属于难题.22.【分析】(1)设出圆心(,)D x y ,利用条件建立方程,再化简即可得出结果;(2)(ⅰ)设出两条切线方程,从而求出,,M N P 的坐标,再利用向量的加法法则即可得出证明;(ⅱ)利用(ⅰ)中条件,找出边角间的关系,再利用面积公式即可求出结果.【小问1详解】设圆心(,)D x y|1|y =+,化简整理得:24x y =,所以曲线C 的方程为:24x y =.【小问2详解】(ⅰ)设()11,A x y ,()22,B x y ,因为24x y =,所以2x y '=,∴直线PA 的方程为:()1112x y x x y =-+,即2111124y x x x =-,令0y =,得到12xx =,同理可得直线PB 的方程为:2221124y x x x =-,令0y =,得到22xx =,∴1,02x M ⎛⎫ ⎪⎝⎭,2,02x N ⎛⎫⎪⎝⎭,联立21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,消y 解得122x x x +=,21所以12,12x x P +⎛⎫- ⎪⎝⎭,又(0,1)F ,∴1212,1,1,2222x x x x FM FN FP +⎛⎫⎛⎫⎛⎫+=-+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以四边形FNPM 为平行四边形;(ⅱ)由(ⅰ)知直线PA 的方程为2111124y x x x =-,又2114x y =,所以11102x x y y --=,即11220x x y y --=,同理可知直线PB 的方程为22220x x y y --=,又因为P 在直线PA ,PB 上,设()0,1P x -,则有101202220220x x y x x y -+=⎧⎨-+=⎩,所以直线AB 的方程为:0220x x y -+=,故直线AB 过点(0,1)F ,∵四边形FNPM 为平行四边形,∴//FM BP ,//FN AP ,∴AMF MPN BNF ∠=∠=∠,FN PM =,PN MF =,BN BF MP NP FA MA ==,∴MP NP MA BN ⋅=⋅,∵11sin 2S MA MF AMF =∠,21sin 2S PM PN MPN =∠,31||sin 2S NB NF BNF =∠‖,∴2222131sin (||||)||||2111||||||||||||sin ||sin 22PM PN MPN S PM PN PM PN S S MA MF NB NF MA NB MA MF AMF NB NF BNF ⎛⎫∠ ⎪⋅⋅⎝⎭====⋅⋅⋅⋅⎛⎫⎛⎫∠⋅∠ ⎪ ⎪⎝⎭⎝⎭‖.【点睛】关键点点睛:(2)中的第(ⅰ)问,关键在于利用向量来证明,从而将问题转化成求出点的坐标,将几何问题代数化;第(ⅰⅰ)问的关键在于求出直线AB 恒过定点,再利用几何关系,求出相似比.。
广东省广州市2023-2024学年高三第三次调研数学检测试卷(有解析)

EF
EB+BF
1
AB
3
BC=
1
AB
3
AD
【详解】
2 2 2 2,
故选:B
4.C
【分析】分 0 在定义域内和 0 不在定义域内两种情况进行讨论即可求得答案.
【详解】若 0 在定义域内,由 x 0 时, y 0 得, kπ k Z;
若
0
不在定义域内,由
x
0
时,
tan
无意义,得
π 2
P n 1
明:
3.
21.已知抛物线 C
:
y2
2
px(
p
0)
的焦点
F
到双曲线
x2 3
y2
1 的渐近线的距离为
1 2
.
(1)求抛物线 C 的方程;
(2)过点 F 任意作互相垂直的两条直线 l1 , l2 分别交曲线 C 于点 A,B 和 M,N.设线段 AB ,
MN 的中点分别为 P,Q,求证:直线 PQ 恒过一个定点.
(2) AB 6 , BC 3 2 ,点 D 在 AC 上, AD BD ,求 AD 的长.
19.如图 1,已知正三角形 ABC 边长为 4,其中 AD 3DB, AE 3EC ,现沿着 DE 翻折,
将点 A 翻折到点 A 处,使得平面 ABC 平面 DBC, M 为 AC 中点,如图 2.
B.若
A
π 4
,且
ABC
有两解,则
b
的取值范围为
3,
3
2
C.若 C 2A ,且 ABC 为锐角三角形,则 c 的取值范围为 3 2,3 3
3 33 D.若 A 2C ,且 sinB 2sinC ,O 为 ABC 的内心,则 AOB 的面积为 4
重庆市2024届高三第三次联合诊断检测数学试卷(解析版)

2024年重庆市高考数学三诊试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合2{|10}A x x =-=,集合{}1,1,3B a a =+-,若A B ⊆,则=a ()A.1-B.0C.1D.2【答案】B 【解析】【分析】利用子集的概念求解.【详解】集合{}2{|10}1,1A x x =-==-,集合{}1,1,3B a a =+-,若A B ⊆,又11a a +>-,所以1111a a +=⎧⎨-=-⎩,解得0.a =故选:B2.设复数z 满足2i 1z z -=,则z 的虚部为()A.13B.13-C.3D.3-【答案】A 【解析】【分析】设复数i(,R)z a b a b =+∈,根据题意,列出方程,结合复数相等,求得b 的值,即可求解.【详解】设复数i(,R)z a b a b =+∈,因为复数z 满足2i 1z z -=,可得()22i i i 1a b a b +--=,即()22i 1a b b a -+-=,则21a b -=,20b a -=,解得13b =,所以复数z 的虚部为13.故选:A.3.已知一种服装的销售量(y 单位:百件)与第x 周的一组相关数据统计如表所示,若两变量x ,y 的经验回归方程为ˆ 1.37.9yx =-+,则=a ()x 12345y66a31A.2B.3C.4D.5【答案】C 【解析】【分析】根据统计图表中的数据,求得样本中心,代入回归直线方程,即可求解.【详解】解:由统计图表中的数据,可得()11234535x =⨯++++=,()116663155a y a +=⨯++++=,即样本中心为16(3,5a +,因为两变量,x y 的经验回归方程为ˆ 1.37.9yx =-+,则161.337.95a+-⨯+=,解得 4.a =故选:C.4.若圆锥的母线长为2,且母线与底面所成角为π4,则该圆锥的侧面积为()A.B.2πC. D.4π【答案】C 【解析】【分析】根据题意,求得圆锥底面圆的半径,结合圆锥的侧面积公式,即可求解.【详解】圆锥的母线长为2,母线与底面所成角为π4,所以底面圆的半径为2sin π4r ==,所以该圆锥的侧面积为π2S ==侧.故选:C5.重庆某高校去年招收学生来自成渝地区2400人,除成渝外的西部地区2000人,中部地区1400人,东部地区1800人,港澳台地区400人.学校为了解学生的饮食习惯,拟选取40人作样本调研,为保证调研结果的代表性,则从该校去年招收的成渝地区学生中不同的抽样结果种数为()A.402400C B.242400C C.122400C D.102400C 【答案】C 【解析】【分析】根据分层抽样的性质计算即可。
2024年高考第三次模拟考试高三数学(考试版)

2024年高考第三次模拟考试高三数学(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}4A x x =∈<N ,{}21,B x x n n A ==-∈,P A B = ,则集合P 的子集共有()A .2个B .3个C .4个D .8个2.古希腊数学家毕达哥拉斯通过研究正五边形和正十边形的作图,发现了黄金分隔率,黄金分割率的值也可以用2sin18°表示,即12sin182-=,设12m =,则2tan 811tan 81=+()A.4mB.2m C.m3.若5(4)(2)x m x --的展开式中的3x 的系数为600-,则实数m =()A.8.B.7C.9D.104.甲、乙、丙、丁、戊5位同学报名参加学校举办的三项不同活动,每人只能报其中一项活动,每项活动至少有一个人参加,则甲、乙、丙三位同学所报活动各不相同的概率为()A .518B .625C .925D .895.设n S 为正项等差数列{}n a 的前n 项和.若20232023S =,则4202014a a +的最小值为()A.52B.5C.9D.926.已知函数()()()sin f x x x ωω=+,若沿x 轴方向平移()f x 的图象,总能保证平移后的曲线与直线1y =在区间[]0,π上至少有2个交点,至多有3个交点,则正实数ω的取值范围为()A.82,3⎡⎫⎪⎢⎣⎭B.102,3⎡⎫⎪⎢⎣⎭C.10,43⎡⎫⎪⎢⎣⎭D.[)2,47.已知()6116,ln ,log 71ln 510115a b c =+==-,则()A.a b c >> B.b c a>> C.a c b >> D.c a b>>8.已知正方体1121ABCD A B C D -的棱长为2,P 为线段11C D 上的动点,则三棱锥P BCD -外接球半径的取值范围为()A.,24⎤⎥⎣⎦B.4⎣C.1⎣D.4⎣二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数123,,z z z ,下列说法正确的有()A.若1122z z z z =,则12||||z z =B.若22120z z +=,则120z z ==C.若1213z z z z =,则10z =或23z z =D.若1212||||z z z z -=+,则120z z =10.已知抛物线2:4C x =y 的焦点为F ,准线为l ,过F 的直线与抛物线C 交于A,B 两点,M 为线段AB 中点,,,A B M '''分别为A,B,M 在ι上的射影,且||3||AF BF =,则下列结论中正确的是A.F 的坐标为(1,0)B.||2||A B M F '''=C.,,,A A M F ''四点共圆D.直线AB 的方程为313y x =±+11.对于[]()0,1,x f x ∈满足()()()11,23x f x f x f x f ⎛⎫+-== ⎪⎝⎭,且对于1201x x ≤≤≤.恒有()()12f x f x ≤.则()A .10011011002i i f =⎛⎫=⎪⎝⎭∑B .112624f f⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭C .118080f ⎛⎫= ⎪⎝⎭D .1113216016f ⎛⎫≤≤⎪⎝⎭第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某工厂生产的产品的质量指标服从正态分布2(100,)N σ.质量指标介于99至101之间的产品为良品,为使这种产品的良品率达到95.45%,则需调整生产工艺,使得σ至多为.(若2~(,)X N μσ,则{||2}0.9545)P X μσ-<=13.ABC △中,,,a b c ,分别为角,,A B C的对边,若3A π=,a b c +=+,则ABC △的面积S 的最小值为.14.函数sin cos ()e e x x f x =-在(0,2π)范围内极值点的个数为.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.16.(本小题满分15分)某景区的索道共有三种购票类型,分别为单程上山票、单程下山票、双程上下山票.为提高服务水平,现对当日购票的120人征集意见,当日购买单程上山票、单程下山票和双程票的人数分别为36、60和24.(1)若按购票类型采用分层随机抽样的方法从这120人中随机抽取10人,再从这10人中随机抽取4人,求随机抽取的4人中恰有2人购买单程上山票的概率.(2)记单程下山票和双程票为回程票,若在征集意见时要求把购买单程上山票的2人和购买回程票的m (2m >且*m ∈N )人组成一组,负责人从某组中任选2人进行询问,若选出的2人的购票类型相同,则该组标为A ,否则该组标为B ,记询问的某组被标为B 的概率为p .(i )试用含m 的代数式表示p ;(ii )若一共询问了5组,用()g p 表示恰有3组被标为B 的概率,试求()g p 的最大值及此时m 的值.17.(本小题满分15分)如图,在平行六面体1111ABCD A B C D -中,AC BD O = ,2AB AD ==,13AA =,11π3BAA BAD DAA ∠=∠=∠=,点P 满足1221333DP DA DC DD =++ .(1)证明:O ,P ,1B 三点共线;(2)求直线1AC 与平面PAB 所成角的正弦值.18.(本小题满分17分)已知椭圆22:11612x y E +=的左右焦点分别为12,F F ,点A 在椭圆E 上,且在第一象限内,满足1|| 5.AF =(1)求12F AF ∠的平分线所在的直线l 的方程;(2)在椭圆E 上是否存在关于直线l 对称的相异的两点,若存在,请找出这两点;若不存在请说明理由;(3)已知双曲线M 与椭圆E 有共同的焦点,且双曲线M 与椭圆E 相交于1234,,,P P P P ,若四边形1234P P P P 的面积最大时,求双曲线M 的标准方程.19.(本小题满分17分)已知数列{}n a ,记集合()(){}*1,,...,1,,N i i j T S i j S i j a a a i j i j +==+++≤<∈.(1)若数列{}n a 为1,2,3,写出集合T ;(2)若2n a n =,是否存在*,N i j ∈,使得(),512S i j =?若存在,求出一组符合条件的,i j ;若不存在,说明理由;(3)若n a n =,把集合T 中的元素从小到大排列,得到的新数列为12,,...,,...m b b b ,若2024m b ≤,求m 的最大值.。
福建省南平市2024届高三下学期第三次质量检测数学试题(解析版)
南平市2024届高三第三次质量检测数学试题(考试时间:120分钟满分:150分)注意事项:1.答卷前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足()i 2i i z z +=-,则z =()A.1B.C.D.2【答案】A 【解析】【分析】根据复数代数形式的运算法则化简复数,再根据复数模的计算公式计算即可.【详解】由题意可知,复数z 满足i 2i(i)z z +=-,则可转化为2i (2i)(12i)43i 12i (12i)(12i)55z --+===+--+,所以||1z ==.故选:A.2.已知,a b ∈R ,那么22log log a b >是1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据对数函数和指数函数的单调性可得.【详解】因为0,0a b >>,且2log y x =在()0,∞+上单调递增,所以22log log 0a b a b >⇒>>,又12xy ⎛⎫= ⎪⎝⎭在R 上单调递减,所以11,,22aba b a b ⎛⎫⎛⎫⇔∈ ⎪⎪⎝⎭⎝⎭R ,所以2211log log 33aba b a b ⎛⎫⎛⎫>⇒>>< ⎪ ⎪⎝⎭⎝⎭,1133ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭成立,0b a <<时,不能得出22log log a b >成立.故选:A .3.已知向量a ,b 满足4a = ,2b = ,,150a b =︒ ,则a 在b上的投影向量为()A.bB.C.b-D.【答案】D 【解析】【分析】利用||cos ,||b a a b b,计算可得a 在b上的投影向量.【详解】a 在b上的投影向量为:1||cos ,4cos1502||b a a b b b =︒=.故选:D.4.对任意非零实数α,当x 充分小时,()11x x αα+≈+⋅.如:1121 2.2524⎛⎫==≈⨯+⨯= ⎪⎝⎭的近似值为()A.1.906B.1.908C.1.917D.1.919【答案】C 【解析】化为131218⎡⎤⎛⎫⋅+-⎪⎢⎥⎝⎭⎣⎦,根据新定义,直接计算取近似值即可.【详解】1312218⎛⎫==⋅⋅- ⎝⎭131112121 1.917838⎡⎤⎡⎤⎛⎫⎛⎫=⋅+-≈+⨯-≈ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦.故选:C .5.已知π1tan 62α⎛⎫+= ⎪⎝⎭,则2πcos 23α⎛⎫-= ⎪⎝⎭()A.35-B.34C.45-D.45【答案】A 【解析】【分析】由同角三角函数的基本关系求出2π1sin 65α⎛⎫+= ⎪⎝⎭,再由二倍角的余弦公式和诱导公式化简代入即可得出答案.【详解】因为π1tan 62α⎛⎫+= ⎪⎝⎭,所以22πsin 16π2cos 6ππsin cos 166αααα⎧⎛⎫+ ⎪⎪⎝⎭⎪=⎛⎫⎪+ ⎪⎨⎝⎭⎪⎪⎛⎫⎛⎫+++=⎪ ⎪ ⎪⎝⎭⎝⎭⎩,解得:2π1sin 65α⎛⎫+= ⎪⎝⎭,22ππππcos 2cos 2πcos 212sin 3666αααα⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-+=--+ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦131255⎡⎤=--⨯=-⎢⎥⎣⎦.故选:A .6.关于t 的实系数二次不等式()210t b t a +-+<的解集为()2,1--,若1x y a b -=,(),x y ∈R ,则2x y-的最小值为()A.12B.C.2D.【答案】C 【解析】【分析】由已知可得21--,是一元二次方程()210t b t a +-+=的根,进而可得24a b =⎧⎨=⎩,可得1412222y x yyy y-+==+,可求2x y -的最小值.【详解】因为关于t 的实系数二次不等式()210t b t a +-+<的解集为()2,1--,所以21--,是一元二次方程()210t b t a +-+=的根,所以21(1)2(1)b a --=--⎧⎨-⨯-=⎩,解得24a b =⎧⎨=⎩,所以241x y -=,所以241x y =+,所以141222,22y x yy y y -+==+≥=当且仅当0,1y x ==时取等号.所以2x y -的最小值为2.故选:C.7.在正四面体ABCD 中,P 为棱AD 的中点,过点A 的平面α与平面PBC 平行,平面α 平面ABD m =,平面α 平面ACD n =,则m ,n 所成角的余弦值为()A.3B.13C.23D.33【答案】B 【解析】【分析】由面面平行的性质定理可得//m BP ,//n PC ,所以m ,n 所成角即为BPC ∠,在BPC △中,由余弦定理求解即可.【详解】因为平面//α平面PBC ,α 平面ABD m =,平面PBC ⋂面ABD BP =,所以//m BP ,因为平面//α平面PBC ,α 平面ACD n =,平面PBC ⋂面ACD PC =,所以//n PC ,所以m ,n 所成角即为,BP PC 所成角,而,BP PC 所成角为BPC ∠,设正四面体ABCD 的棱长为2,所以2AB AC AD BD BC =====,所以BP CP ===所以1cos 3BPC ∠==.故选:B .8.已知椭圆C 的焦点为()11,0F -,()21,0F ,点A 在C 上,点B 在y 轴上,11F A F B ⊥ ,2223F A F B =-,则C 的方程为()A.2212x y += B.22132x y +=C.22143x y += D.22154x y +=【答案】D 【解析】【分析】由题意设椭圆C 的方程为:222211x y a a +=-,由,11F A F B ⊥ ,2223F A F B =- 可求出54,33A ⎛⎫ ⎪⎝⎭或54,33A ⎛⎫- ⎪⎝⎭,代入椭圆方程化简即可得求出25a =,即可得出答案.【详解】因为椭圆C 的焦点为()11,0F -,()21,0F ,所以设椭圆C 的方程为:222211x y a a +=-,设()00,B y ,(),A m n ,()21,0F ,则()()2201,,1,F A m n F B y =-=- ,因为2223F A F B =-,所以()0211323m n y⎧-=-⨯-⎪⎪⎨⎪=-⎪⎩,所以052,33m n y ==-,所以052,33A y ⎛⎫- ⎪⎝⎭,又因为11F A F B ⊥ ,所以()101082,,1,33F A y F B y ⎛⎫=-= ⎪⎝⎭,所以2082033y -=,所以02y =±,所以54,33A ⎛⎫ ⎪⎝⎭或54,33A ⎛⎫- ⎪⎝⎭,因为A 在C 上,所以2225169911a a +=-,即42950250a a -+=,解得:25a =或259a =,因为椭圆C 的焦点在x 轴上,所以25a =.故C 的方程为22154x y +=.故选:D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.六位评委给某选手的评分分别为:16,18,20,20,22,24.去掉最高分和最低分,所得新数据与原数据相比不变的是()A.极差B.众数C.平均数D.第25百分位数【答案】BC 【解析】【分析】根据题意,由数据的中位数、平均数、方差、众数的定义,分析可得答案.【详解】从6个原始评分中去掉1个最高分、1个最低分,得到4个新数据为:18,20,20,22,极差为:22184-=,众数为:20,平均数为:18202022204+++=,因为0.2541⨯=,所以第25百分位数为1820192+=,而原数据:16,18,20,20,22,24,极差为:24168-=,众数为:20,平均数为:161820202224206+++++=,因为0.256 1.5⨯=,所以第25百分位数为18,所以所得新数据与原数据相比不变的是:众数和平均数.故选:BC.10.已知圆C :()()221225x y -+-=,直线l :()()()211740m x m y m m +++--=∈R ,则()A.直线l 过定点()3,1B.圆C 被x轴截得的弦长为C.当2m =-时,圆C 上恰有2个点到直线l 距离等于4D.直线l 被圆C 截得的弦长最短时,l 的方程为250x y --=【答案】ACD 【解析】【分析】直线l 的方程变形为:()2740x y m x y +-++-=,令m 的系数等于零,即可判断A ;()1,2C 到x 轴的距离为2,求出圆C 被x 轴截得的弦长可判断B ;计算出当2m =-时,圆心到直线的距离即可判断C ;当PC l ⊥时,弦长最短,即可判断D.【详解】对于A ,直线l 的方程变形为:()2740x y m x y +-++-=,令27040x y x y +-=⎧⎨+-=⎩,解得31x y =⎧⎨=⎩,所以直线l 恒过定点()3,1P ,故A 正确;对于B ,圆C 的圆心()1,2C ,半径=5r ,()1,2C到x 轴的距离为2,所以圆C 被x 轴截得的弦长为=,故B 错误;对于C ,当2m =-时,直线l :3100x y +-=,此时圆心()1,2C 到直线l 的距离102d ==,而542r d -=-<,所以当2m =-时,圆C 上恰有2个点到直线l 的距离等于4,故C 正确.对于D ,当PC l ⊥时,弦长最短,此时1121231l CPk k =-=-=--,因为直线l 过定点()3,1P ,所以l 的方程为:()123y x -=-,化简为:250x y --=,故D 正确.故选:ACD.11.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.()f x 满足()()213244f x f x x ---=-,()1g x -的图象关于直线1x =对称,则()A.()()202f f -=B.()11g =C.()1y f x x =+-为奇函数D.()1001100k g k ==∑【答案】ABD 【解析】【分析】对于A ,将恒等式代换变形得到()()112f x f x x +--=,再代入特殊值即可验证A ;对于B ,在()()112f x f x x +--=两边求导得到()()112g x g x ++-=,再代入特殊值即可验证B ;对于C ,举出()πsin2x f x x =+,()ππ1cos 22xg x =+作为反例即可说明C 错误;对于D ,证明()()112g x g x -++=,再对求和式变形即可验证D.【详解】对于A ,由()()213244f x f x x ---=-可知222213244222x x x f f +++⎛⎫⎛⎫⋅---⋅=⋅- ⎪ ⎪⎝⎭⎝⎭,即()()112f x f x x +--=.从而()()111121f f +--=⋅,即()()202f f -=,故A 正确;对于B ,在()()112f x f x x +--=两边同时求导,可得()()112f x f x ''++-=,即()()112g x g x ++-=.代入0x =即得()11g =,故B 正确;对于C ,考虑()πsin2x f x x =+,()ππ1cos 22x g x =+,则()()g x f x =',且()()()()()()π21π32213221sin32sin44cos πcos π4422x x f x f x x x x x x x -----=-+---=--+=-,()()()()()ππππ11111cos 1cos 02222x x g x g x g x g x ⎛⎫-⎛⎫+----=--=+-+= ⎪ ⎪⎝⎭⎝⎭,故此时()(),f x g x 满足全部条件,但()()π1π11sin 1cos22x xf x x x x ++-=++-=+并不是奇函数(因为显然不过原点),故C 错误;之前已证()()112g x g x ++-=,再由()1g x -的图象关于直线1x =对称,知()()1111g x g x +-=--,即()()g x g x =-.故()()()()()()()()11111211212g x g x g x g x g x g x g x g x -++=-++=-+--=-+--=.所以()()()()100505011143412502100k k k g k g k g k ====-+-==⨯=∑∑∑,故D 正确.故选:ABD.【点睛】关键点点睛:本题的关键点在于对恒等式的换元及变形,需要选取恰当的换元方式方可简化等式.三、填空题:本题共3小题,每小题5分,共15分.12.已知集合(){}2,4A x y yx ==,(){},B x y y x ==,则A B ⋂的子集个数为______.【答案】4【解析】【分析】先求交集中的元素,根据元素个数可得子集个数.【详解】由24y x y x ⎧=⎨=⎩解得00x y =⎧⎨=⎩或1414x y ⎧=⎪⎪⎨⎪=⎪⎩,所以11(0,0),(,)44A B ⎧⎫⋂=⎨⎬⎩⎭,有两个元素,所以A B ⋂的子集个数为224=.故答案为:4.13.函数()()sin 0f x x ωω=>在区间ππ,63⎡⎤-⎢⎥⎣⎦上单调递增,且在区间()0,2π上恰有两个极值点,则ω的取值范围是______.【答案】3544ω<≤【解析】【分析】利用正弦型函数的单调性可得302ω<≤,利用正弦型函数的极值点可得3544ω<≤.【详解】由()()sin 0f x x ωω=>在区间3π,6π⎡⎤-⎢⎥⎣⎦上单调递增,可得ππ2π62k ω-≥-+,ππ2π32k ω≤+,k ∈Z ,即312k ω≤-,362k ω≤+,k ∈Z ,即302ω<≤,又()()sin 0f x x ωω=>在区间()0,2π上恰有两个极值点,可得3π5π2π22ω<≤,即3544ω<≤.综上,3544ω<≤.故答案为:3544ω<≤.14.在正四棱台1111ABCD A B C D -中,2AB =,111A B =,且该正四棱台的每个顶点均在表面积为8π的球O 上,则平面11BCC B 截球O 所得截面的面积为______.【答案】8π7##8π7【解析】【分析】先求出外接球的半径与球心位置;再做辅助线证明出2O F ⊥平面11B BCC ,在21EO E 中,设2,EF x O F d ==,结合图象列出关于,x d 的方程组,最后解出截面圆的半径即可.【详解】由球O 的表面积为8π,所以24π8πS R ==,可知球O ,设上下底面的中心分别为12,O O ,因为2AB =,从而可知球O 的球心与下底面ABCD 的中心2O 重合;分别取11B C 和BC 的中点1E E 、,连接112111212,,,,,C O EO E E E O EO O O ,则在直角梯形112C O O C 中得1262O O =,则在直角梯形112E O O E 中得12E E =,过点2O 作1E E 的垂线,垂足为F ,由于BC ⊥平面112E O O E ,2O F ⊂平面112E O O E ,所以2BC O F ⊥,由21OF EE ⊥,1EE BC E = ,1,EE BC ⊂平面11B BCC ,从而2O F ⊥平面11B BCC ,在21EO E 中,设2,EF x O F d ==,则172E F x =-,则221x d +=,和22222x d ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,联立解得:276,77x d ==,又因为平面11B BCC 截球所得平面图形为圆面,所以圆面的半径287r =,所以圆面面积为28ππ7r =.【点睛】方法点睛:构建方程组利用勾股定理解截面圆半径是解决立体几何的一种重要方法.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数()31ln 222f x ax x x x=--+,且()f x 图象在1x =处的切线斜率为0.(1)求a 的值;(2)令()()g x f x '=,求()g x 的最小值.【答案】(1)1(2)0【解析】【分析】(1)对()f x 求导,可得()10f '=,解方程即可得出答案;(2)由(1)知函数()31ln 222f x x x x x =--+,对()f x 求导,令()211ln (0)22g x x x x =+->,对()g x 求导,判断()g x '与0的大小得出()g x 的单调性,即可求出()g x 的最小值.【小问1详解】因为()31ln 222f x ax x x x =--+,所以()()2311ln 22f x a x x -+'=+,因为()f x 图象在1x =处的切线斜率为0,所以()10f '=,即31022a -+=,所以1a =.【小问2详解】由(1)知函数()31ln 222f x x x x x=--+,()f x 的定义域为()0,∞+,()211ln 22f x x x =+-',则()211ln (0)22g x x x x =+->,求导得()233111x g x x x x='-=-,当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在()0,1上递减,在()1,∞+上递增,()()min 10g x g ==.16.建盏为宋代名瓷之一,是中国古代黑瓷的巅峰之作,其采用福建建阳特有的高铁黏土和天然釉矿为原料烧制而成,工艺难度大,成功率低.假设建盏烧制开窑后经检验分为成品和废品两类,现有建盏10个,其中5个由工匠甲烧制,3个由工匠乙烧制,2个由工匠丙烧制,甲、乙、丙三人烧制建盏的成品率依次为0.2,0.1,0.3.(1)从这10个建盏中任取1个,求取出的建盏是成品的概率;(2)每件建盏成品的收入为1000元,每件废品的收入为0元.乙烧制的这3件建盏的总收入为X 元,求X 的分布列及数学期望.【答案】(1)0.19(2)分布列见解析,数学期望为300元【解析】【分析】(1)设事件B 为“取得的建盏是成品”,事件1A ,2A ,3A 分别表示“取得的建盏是由甲、乙、丙烧制的”,求得每个事件的概率,进而利用()()()()()()()112233P B P A P BA P A PB A P A P B A =++∣∣∣可求取出的建盏是成品的概率;(2)这3件中成品的件数为Y .由题可知13,10Y B ⎛⎫~ ⎪⎝⎭,利用二项分布的概率公式可求X 分布列及数学期望.【小问1详解】设事件B 为“取得的建盏是成品”,事件1A ,2A ,3A 分别表示“取得的建盏是由甲、乙、丙烧制的”.则()151102P A ==,()230.310P A ==,()321105P A ==.又()10.2P BA =∣,()20.2PB A =∣,()30.3P B A =∣,所以()()()()()()()112233P B P A P BA P A PB A P A P B A =++∣∣∣0.50.20.30.10.20.30.19=⨯+⨯+⨯=【小问2详解】设这3件中成品的件数为Y .由题可知13,10Y B ⎛⎫~ ⎪⎝⎭.因为1000X Y =,X 的可能取值为0,1000,2000,3000所以()()03031972900C 10101000P X P Y ⎛⎫⎛⎫===== ⎪ ⎪⎝⎭⎝⎭,()()12131924310001C 10101000P X P Y ⎛⎫⎛⎫=====⎪ ⎪⎝⎭⎝⎭,()()2123192720002C 10101000P X P Y ⎛⎫⎛⎫===== ⎪ ⎪⎝⎭⎝⎭,()()33319130003C 10101000P X P Y ⎛⎫⎛⎫=====⎪ ⎪⎝⎭⎝⎭,所以X 的分布列为X100020003000P7291000243100027100011000所以()72924327101000200030003001000100010001000E X =⨯+⨯+⨯+⨯=元.17.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AB CD ∥,AB BC AD CD ==<,2π3ABC ∠=.M ,N 分别为棱CD ,PD 上的动点(与端点不重合),且CM DN CD DP=.(1)求证:AD ⊥平面APC ;(2)若3AP =,设平面AMN 与平面APC 所成的角为α,求cos α的最大值.【答案】(1)证明见解析(2)155【解析】【分析】(1)解法一:由AB BC AD ==,AB CD ∥,2π3ABC ∠=,推出AD AC ⊥,又PA ⊥平面ABCD ,由线面垂直判定定理可得AD ⊥平面PAC ;解法二:同解法一:(2)解法一:设1AD =,建立空间直角坐标系A xyz -,令CM DNCD DPλ==,设()111,,M x y z ,()222,,N x y z ,设平面AMN 的法向量为(),,n x y z =,由cos n AD n ADα⋅=⋅ ,利用基本不等式求解最值;解法二:不妨设1AD =,由AC ,AD ,AP 两两垂直,故建立如图所示的空间直角坐标系A xyz -,求解平面AMN 的法向量为(),,n x y z =,由cos n AD n ADα⋅=⋅ ,利用基本不等式求解最值.【小问1详解】解法一:因为AB BC AD ==,AB CD ∥,2π3ABC ∠=,所以π6CAB ∠=,2πππ362CAD ∠=-=,即AD AC ⊥又PA ⊥平面ABCD ,所以PA AD ⊥因为AC PA A ⋂=,,AC PA ⊂平面PAC ,所以AD ⊥平面PAC ;解法二:同解法一.【小问2详解】解法一:设1AD =,如图所示,建立空间直角坐标系A xyz -.令CM DNCD DPλ==,()0,1λ∈,设()111,,M x y z ,()222,,N x y z 则有CM CD λ=,DN DPλ=即()()111,x y z λ-=,解得))1,,0M λλ-同理可得()0,1N λ-设平面AMN 的法向量为(),,n x y z =,由)()10,10,n AM x y n AN y z λλλ⎧⋅=-+=⎪⎨⋅=-=⎪⎩ 令1x =,则)1y λλ-=,()221z λλ-=.得平面AMN的一个法向量为)()22111,,n λλλλ⎛⎫-- = ⎪⎝⎭又由(1)可知()0,1,0AD =是平面APC 的一个法向量,则有cos n ADn ADα⋅==⋅5==当且仅当211λλ-⎛⎫=⎪⎝⎭,即12λ=时取“=”又π0,2α⎛⎫∈ ⎪⎝⎭,所以cosα的最大值15cos5α=解法二:不妨设1AD=,由AC,AD,AP两两垂直,故建立如图所示的空间直角坐标系A xyz-,则根据题意可得:())1,1,0AM AC ADλλλ=+-=-()()10,,AN AD APλλλ=+-=,()0,1λ∈,设平面AMN的一个法向量为(),,n x y z=,())1010n AM x yn AN y zλλλ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩取1x=,1yλ=-,()221zλλ=-于是()2231,,11nλλλ⎛⎫⎪=⎪--⎝⎭,cos5α=当且仅当211λλ-⎛⎫=⎪⎝⎭,即12λ=时取“=”又π0,2α⎛⎫∈ ⎪⎝⎭,所以cos α的最大值15cos 5α=.18.已知()11,0A -,()21,0A ,直线1A P ,2A P 相交于点P ,且它们的斜率之积是4,记点P 的轨迹为曲线C(1)求C 的方程;(2)不过1A ,2A 的直线l 与C 交于M ,N 两点,直线1MA 与2NA 交于点S ,点S 在直线12x =上,证明:直线l 过定点.【答案】(1)()22114y x x -=≠±(2)证明见解析【解析】【分析】(1)由斜率公式结合题意即可列式,化简即可得解.(2)设直线l 的方程为:()1x my n n =+≠±,将其与椭圆方程联立,从而122841mny y m -+=-,21224441n y y m -⋅=-,思路一:由斜率公式、(1)中结论以及点S 在直线12x =上,可得1143A N A Mk k =-,从而结合韦达定理可得n 为定值2,由此即可得证;思路二:联立直线1MA 与直线2NA 的方程,可得()()12121111y yx x x x +=-+-,在里面代入12x =,结合韦达定理即可得出n 为定值,由此即可得证.【小问1详解】设(),P x y ,则()111PA y k x x =≠-+,()211PA y k x x =≠-,由已知,有()4111y yx x x ⋅=≠±+-,故C 的方程为()22114y x x -=≠±.【小问2详解】解法一:设()11,M x y ,()22,N x y ,若直线l 的斜率为0,则直线1MA 与2NA 的交点在y 轴上,与已知矛盾,故设直线l 的方程为:()1x my n n =+≠±,由2244x my n x y =+⎧⎨-=⎩,得()222418440m y mny n -++-=,()22Δ16410m n =+->,则122841mn y y m -+=-,21224441n y y m -⋅=-,由点S 在直线12x =上,设1,2S t ⎛⎫⎪⎝⎭,则121312A M t k t ==+,22112N A tk t==--,所以213A M NA k k =-,又124A N A N k k ⋅=,则()1134A N A M k k ⋅-=,即1143A N A M k k =-,21214113y y x x ⋅=-++,()()12213411y y my n my n -=++++,()()()()221212434410my y mn m y y n ++++++=,()()()222224484344104141n mn m mn m n m m --+++++=--,220n n --=,所以1n =-(舍去),或2n =,所以l 的方程为2x my =+,过定点()2,0解法二:设()11,M x y ,()22,N x y ,若直线l 的斜率为0,则直线1MA 与2NA 的交点在y 轴上,与已知矛盾,故设直线l 的方程为:()1x my n n =+≠±,由2244x my n x y =+⎧⎨-=⎩得,()222418440m y mny n -++-=,()22Δ16410m n =+->,则122841mn y y m -+=-,21224441n y y m -⋅=-,所以()()2121212n y y mny y-+=-⋅,即()()2121212n y y my y n-+=-,又直线1MA 的方程为()1111y y x x =++,直线2NA 的方程为()2211y y x x =--,联立直线1MA 与直线2NA 的方程,可得()()12121111y y x x x x +=-+-,又点S 在直线12x =上,故()()2112131y x y x +=--,所以()()()()()()21211121212121111111y x y my n my y n y y x y my n my y n y +++++==-+-+-()()()()()()()()()()21212222121211111122111122n y y n y y n y y n nnn y y n n y y y n y nn-+-+-++-+==⋅++--+--+-()()()()2121111131111n y n y n n n n y n y n +--++=⋅==---++--,故2n =,直线l 的方程为2x my =+,过定点()2,0.19.若数列{}n c 共有()*,3m m m ∈≥N 项,对任意()*,i i i m ∈≤N 都有1i m i c c S +-=(S 为常数,且0S >),则称数列{}n c 是S 关于m 的一个积对称数列.已知数列{}n a 是S 关于m 的一个积对称数列.(1)若3m =,11a =,22a =,求3a 的值;(2)已知数列{}n b 是公差为()0d d ≠的等差数列,111b =-,若10m =,2n n nb a b +=,求d 和S 的值;(3)若数列{}n a 是各项均为正整数的单调递增数列,求证:12112153m m m m a a a a Sa a a a --++⋅⋅⋅++<.【答案】(1)4(2)1,2S d ==(3)证明见解析【解析】【分析】(1)依题意可得22S a a =,从而求出3a ;(2)依题意11i ia a S -=,即可得到21311i ii ib b S b b +--⨯=,再结合等差数列通项公式得到()2222222222111111121311109d i d i d b b d S d i d i d b b d -++++=-+-++,再根据对应系数相等得到方程组,解得即可;(3)依题意可得()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,再利用裂项相消法计算可得.【小问1详解】依题意224S a a ==,又13a a S =,所以314Sa a ==.【小问2详解】法一:由10m =知对任意i ()*,10i i ∈≤N 都有11i i a a S -=,即()()()()112131*********i i i i b i d b i db b S b b b i d b i d+--+++-⨯=⨯=+-+-,所以()()222112221112111310119b i i d b d S bi i db d++-+=+-+-+,所以()2222222222111111121311109d i d i d b b d S d i d i d b b d -++++=-+-++,所以()22222222111111111213109d d S d d S d b b d S d b b d ⎧-=-⎪⎪=⎨⎪++=-++⎪⎩,因为0d ≠,111b =-,所以2112240S d b d =⎧⎨+=⎩,即12S d =⎧⎨=⎩.法二:当1,2i =时由11029S a a a a ==得31241111029b b b b S b b b b =⨯=⨯,所以1111111121131098b d b d b d b d b b d b d b d++++⨯=⨯+++,即()()()()22222221111111110161211122710b b d db b d d b b d d b b d ++⨯++=++⨯+,令21110p b b d =+,22111211q b b d d =++,则()()221616p d q q d p +=+,因为0d ≠,111b =-,所以p q =,2221111101211b b d b b d d +=++,即2d =,1S =,当110i ≤≤时都有()()()()2131111112111212112111210i i i i i i i i b b a a b b i i +----++-+-=⨯=⨯-+--+-92132113292i i S i i-+-=⨯==-+-,所以2d =,1S =成立.【小问3详解】由已知1m a a S =,21m a a S -=,…,1i m i a a S +-=,所以()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,所以112222*********m m m a a a S a a a m -⎛⎫++⋅⋅⋅+≤+++⋅⋅⋅+ ⎪⎝⎭1111111111114224354611S m m ⎡⎤⎛⎫<++-+-+⋅⋅⋅+- ⎪⎢⎥-+⎝⎭⎣⎦1111111111115142231142233S S S m m ⎡⎤⎡⎤⎛⎫⎛⎫<+++--<+++= ⎪ ⎪⎢⎥⎢⎥+⎝⎭⎝⎭⎣⎦⎣⎦,即12112153m m m m a a a a S a a a a --++⋅⋅⋅++<.【点睛】关键点点睛:对于新定义型问题,关键是理解定义,第三问关键是利用放缩法得到()1222111,31211m i i i a S S S S i m m a a i i i i -+⎛⎫=≤<=-<≤≥ ⎪--+⎝⎭,再由裂项相消法求和.。
高三数学第三次阶段性考试卷 人教版
高三数学第三次阶段性考试卷 人教版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.全卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题每小题5分;共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.“1=a ”是“函数ax ax y 22sin cos -=的最小正周期为π”的( A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为( B )A .2B .1C .2-D .3-3.如图,直线022:=+-y x l 过椭圆的左焦点F 1和一个顶点B ,该椭圆的离心率为( D )A .51 B .52C .55 D .552 4.若,1411)cos(,374sin -=+=βαα且α、β都是锐角,则β等于( A ) A .3π B .4π C .6π D .8π5.设等比数列{a n }的前n 项和为S n ,若S 6 : S 3=1 : 2,则S 9 : S 3=( D ) A .1 : 2B .1 : 3C .2 : 3D .3 : 46.圆y c y x y x 与02422=++-+轴交于A 、B 两点,圆必为P ,若∠APB = 120°,则实数c 等于( B )A .1B .-11C .9D .117..设a 、b 、c 都为正数,那么三个数ac c b b a 1,1,1+++ ( D )A .都不大于2B .都不小于2C .至少有一个不大于2D .至少有一个不小于28.若直线0142)0,0(02222=+-++>>=+-y x y x b a by ax 始终平分圆的周长,则ba 11+的最小值是 ( A )A .4B .3C .31-D .-39. O 是非等边ABC ∆的外心,P 是平面ABC 内的一点且OP OC OB OA =++,则P 是C AB ∆的( A )A .垂心B .重心C .内心D .外心10.已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m ( C ) A . 2- B .1- C .1 D .4第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题;每小题5分,共30分.)11. 已知直线1:sin 10l x y θ+-=,2:2sin 10l x y θ++=,若12//l l ,则θ=()4k k Z ππ±∈. .(或Z n ∈+,42n ππ) 12.若2)1(log ),2,0(sin >-∈x θπθ则的解集为),(1cos 2θ . 13.已知A (1,1),B (1,3),C (3,5)向量AP 在AC AB ,方向上的投影分别是3和557,则点p 坐标是 (2,4) .14.已知⎪⎭⎫ ⎝⎛-0,21A ,B 是圆F :42122=+⎪⎭⎫ ⎝⎛-y x (F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P ,则动点P 的轨迹方程为 22413x y += ; 15.函数)10(112<<-+=x xx y 的最小值是223+. 16.在此如图的表格中,每格填上一个数,使每一横行成则c b a ++的值为 227。
山东省高中名校2025届高三第三次模拟考试数学试卷含解析
山东省高中名校2025届高三第三次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某高中高三(1)班为了冲刺高考,营造良好的学习氛围,向班内同学征集书法作品贴在班内墙壁上,小王,小董,小李各写了一幅书法作品,分别是:“入班即静”,“天道酬勤”,“细节决定成败”,为了弄清“天道酬勤”这一作品是谁写的,班主任对三人进行了问话,得到回复如下: 小王说:“入班即静”是我写的;小董说:“天道酬勤”不是小王写的,就是我写的; 小李说:“细节决定成败”不是我写的.若三人的说法有且仅有一人是正确的,则“入班即静”的书写者是( ) A .小王或小李B .小王C .小董D .小李2.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)-D .1(,1)23.数学中有许多形状优美、寓意美好的曲线,例如:四叶草曲线就是其中一种,其方程为()32222x y x y +=.给出下列四个结论:①曲线C 有四条对称轴;②曲线C 上的点到原点的最大距离为14; ③曲线C 第一象限上任意一点作两坐标轴的垂线与两坐标轴围成的矩形面积最大值为18; ④四叶草面积小于4π. 其中,所有正确结论的序号是( )A .①②B .①③C .①③④D .①②④4.已知向量(,1)a m =,(1,2)b =-,若(2)a b b -⊥,则a 与b 夹角的余弦值为( ) A .21313-B .21313C .61365-D .613655.若()()()20192019012019111x a a x a x -=+++++,x ∈R ,则22019122019333a a a ⋅+⋅++⋅的值为( )A .201912--B .201912-+C .201912-D .201912+6.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .607.在260202x y x y x y --≤⎧⎪-+≥⎨⎪+≥⎩条件下,目标函数()0,0z ax by a b =+>>的最大值为40,则51a b +的最小值是( )A .74B .94C .52D .28.从抛物线24y x =上一点P (P 点在x 轴上方)引抛物线准线的垂线,垂足为M ,且||5PM =,设抛物线的焦点为F ,则直线MF 的斜率为( )A .2-B .2C .43-D .439.《九章算术》中将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图,则它的外接球的表面积为( )A .4πB .8πC .642+D .83π10.若202031i iz i+=+,则z 的虚部是( )A .iB .2iC .1-D .111.已知实数集R ,集合{|13}A x x =<<,集合|2B x y x ⎧==⎨-⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<12.已知函数()f x 的定义域为()0,∞+,且()()2224m f m f f n n ⎛⎫⎪⎝⎭⋅=,当01x <<时,()0f x <.若()42f =,则函数()f x 在[]1,16上的最大值为( ) A .4B .6C .3D .8二、填空题:本题共4小题,每小题5分,共20分。
2024年枣庄市高三数学第三次调研模拟考试卷附答案解析
2024年枣庄市高三数学第三次调研模拟考试卷试卷满分150分,考试用时120分钟2024.05一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}20A x x =+>∣,{}220B x x x =--<∣,则A B = ()A .{21}xx -<<∣B .{22}x x -<<∣C .{11}x x -<<∣D .{12}xx -<<∣2.已知双曲线22:14y x C m-=的一条渐近线方程为2y x =,则m =()A .1B .2C .8D .163.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,则πcos 6α⎛⎫-=⎪⎝⎭()A .0B .12C D .24.对数螺线广泛应用于科技领域.某种对数螺线可以用πe ϕρα=表达,其中α为正实数,ϕ是极角,ρ是极径.若ϕ每增加π2个单位,则ρ变为原来的()A .13e 倍B .12e 倍C .π2e 倍D .πe 倍5.己知平面向量(1,1),(2,0)a b =-=,则a 在b 上的投影向量为()A .(1,0)-B .(1,0)C .(D .6.已知圆柱的底面半径为1,母线长为2,它的两个底面的圆周在同一个球的球面上,则该球的表面积为()A .4πB .6πC .8πD .10π7.已知复数1212,,z z z z ≠,若12,z z 同时满足||1z =和|1||i |z z -=-,则12z z -为()A .1BC .2D .8.在ABC 中,1202ACB BC AC ∠=︒=,,D 为ABC 内一点,AD CD ⊥,120BDC ∠=︒,则tan ACD ∠=()A .B C D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知两个变量y 与x 对应关系如下表:x 12345y5m8910.5若y 与x 满足一元线性回归模型,且经验回归方程为ˆ125 4.25yx =+.,则()A .y 与x 正相关B .7m =C .样本数据y 的第60百分位数为8D .各组数据的残差和为010.若函数()()()2ln 1ln 1f x x x x=+--+,则()A .()f x 的图象关于()0,0对称B .()f x 在22⎛ ⎝⎭上单调递增C .()f x 的极小值点为22D .()f x 有两个零点11.已知正方体1111ABCD A B C D -的棱长为2,点M ,N 分别为棱1,DD DC 的中点,点P 为四边形1111D C B A (含边界)内一动点,且2MP =,则()A .1AB ∥平面AMNB .点P 的轨迹长度为π2C .存在点P ,使得MP ⊥平面AMND .点P 到平面AMN 三、填空题:本题共3个小题,每小题5分,共15分.12.写出函数()sin cos 1f x x x =+图象的一条对称轴方程.13.某人上楼梯,每步上1阶的概率为34,每步上2阶的概率为14,设该人从第1阶台阶出发,到达第3阶台阶的概率为.14.设()()1122,,,A x y B x y 为平面上两点,定义1212(,)d A B x x y y =-+-、已知点P 为抛物线2:2(0)C x py p =>上一动点,点(3,0),(,)Q d P Q 的最小值为2,则p =;若斜率为32的直线l 过点Q ,点M 是直线l 上一动点,则(,)d P M 的最小值为.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.如图,四棱台1111ABCD A B C D -的底面为菱形,14,3,60AB DD BAD ==∠=︒,点E 为BC 中点,11,D E BC D E ⊥=(1)证明:1DD ⊥平面ABCD ;(2)若112AD =,求平面11A C E 与平面ABCD 夹角的余弦值.16.已知椭圆2222:1(0)x y E a b a b+=>>的左,右焦点分别为12,F F ,椭圆E 的离心率为12,椭圆E 上的点到右焦点的最小距离为1.(1)求椭圆E 的方程;(2)若过右焦点2F 的直线l 与椭圆E 交于B ,C 两点,E 的右顶点记为A ,1//AB CF ,求直线l 的方程.17.在一个袋子中有若干红球和白球(除颜色外均相同),袋中红球数占总球数的比例为p .(1)若有放回摸球,摸到红球时停止.在第2次没有摸到红球的条件下,求第3次也没有摸到红球的概率;(2)某同学不知道比例p ,为估计p 的值,设计了如下两种方案:方案一:从袋中进行有放回摸球,摸出红球或摸球5次停止.方案二:从袋中进行有放回摸球5次.分别求两个方案红球出现频率的数学期望,并以数学期望为依据,分析哪个方案估计p 的值更合理.18.已知函数2()e x f x ax x =--,()f x '为()f x 的导数(1)讨论()f x '的单调性;(2)若0x =是()f x 的极大值点,求a 的取值范围;(3)若π0,2θ⎛⎫∈ ⎪⎝⎭,证明:sin 1cos 1e e ln(sin cos )1θθθθ--++<.19.若数列{}n a 的各项均为正数,对任意*N n ∈,有212n n n a a a ++≥,则称数列{}n a 为“对数凹性”数列.(1)已知数列1,3,2,4和数列1,2,4,3,2,判断它们是否为“对数凹性”数列,并说明理由;(2)若函数231234()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 为“对数凹性”数列;(3)若数列{}n c 的各项均为正数,21c c >,记{}n c 的前n 项和为n S ,1n n W S n=,对任意三个不相等正整数p ,q ,r ,存在常数t ,使得()()()r p q p q W q r W r p W t -+-+-=.证明:数列{}n S 为“对数凹性”数列.1.D【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得.【详解】由220x x --<,即()()120x x +-<,解得12x -<<,所以{}{}21220|B xx x x x <-=-=<-<∣,又{}{}202A xx x x =+>=>-∣∣,所以{}12A B x x =-<< ∣.故选:D 2.A【分析】利用双曲线方程先含参表示渐近线方程,待定系数计算即可.【详解】依题意,得0m >,令2204y x y x m -=⇒=,即C 的渐近线方程为y x =,21m=⇒=.故选:A 3.D【分析】根据三角函数的定义求出sin α,cos α,再由两角差的余弦公式计算可得.【详解】因为ππcos ,sin 33P ⎛⎫ ⎪⎝⎭,即122P ⎛⎫ ⎪ ⎪⎝⎭,即角α的终边经过点1322P ⎛⎫ ⎪ ⎪⎝⎭,所以sin α=,1cos 2α=,所以πππ11cos cos cos sin sin 66622ααα⎛⎫-=+== ⎪⎝⎭.故选:D 4.B【分析】设0ϕ所对应的极径为0ρ,10π2ϕϕ=+所对应的极径为1ρ,根据所给表达式及指数幂的运算法则计算可得.【详解】设0ϕ所对应的极径为0ρ,则0π0e ϕρα=,则10π2ϕϕ=+所对应的极径为0π2π1eϕρα+=,所以0000ππ222π1πππ1e e e e ϕϕϕϕραρα++-===,故ϕ每增加π2个单位,则ρ变为原来的12e 倍.故选:B 5.A【分析】根据已知条件分别求出a b ⋅ 和b ,然后按照平面向量的投影向量公式计算即可得解.【详解】(1,1),(2,0)a b =-=,2a b ⋅=-,2b =,a 在b 上的投影向量为()()22,01,04a b b bb⋅-⋅==-.故选:A.6.C【分析】利用圆柱及球的特征计算即可.【详解】由题意可知该球为圆柱的外切球,所以球心为圆柱的中心,设球半径为r ,则r =,故该球的表面积为24π8πr =.故选:C 7.C【分析】设()i ,R z x y x y =+∈,根据||1z =和|1||i |z z -=-求出交点坐标,即可求出12,z z ,再计算其模即可.【详解】设()i ,R z x y x y =+∈,则()11i z x y -=-+,()i 1i z x y -=+-,由||1z =和|1||i |z z -=-,所以221x y +=且()()222211x y y x -+=-+,即221x y +=且x y =,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩或22x y ⎧=-⎪⎪⎨⎪=-⎪⎩,所以122z =+、2i 22z =-(或122i 22z =--、222i 22z =+),则21i i 2222z z ⎛⎫-=--- ⎪ ⎪⎝⎭(或21z z -=),所以122z z -=.故选:C 8.B【分析】在Rt ADC 中,设ACD θ∠=,AC x =,即可表示出CB,CD ,再在BCD △中利用正弦定理得cos sin(60)x θθ-︒,再由两角差的正弦公式及同角三角函数的基本关系将弦化切,即可得解.【详解】在Rt ADC 中,设ACD θ∠=π02θ⎛⎫<<⎪⎝⎭,令AC x =()0x >,则2CB x =,cos CD x θ=,在BCD △中,可得120BCD θ∠=︒-,60CBD θ∠=-︒,由正弦定理sin sin BC CDCDB CBD=∠∠,cos sin(60)x θθ==-︒=,可得tan θ=tan ACD ∠=故选:B .【点睛】关键点点睛:本题解答关键是找到角之间的关系,从而通过设元、转化到BCD △中利用正弦定理得到关系式.9.AD【分析】利用相关性的定义及线性回归直线可判定A ,根据样本中心点在回归方程上可判定B ,利用百分位数的计算可判定C ,利用回归方程计算预测值可得残差即可判定D.【详解】由回归直线方程知:1.250>,所以y 与x 正相关,即A 正确;由表格数据及回归方程易知32.53, 1.253 4.257.55mx y m +==⨯+=⇒=,即B 错误;易知560%3⨯=,所以样本数据y 的第60百分位数为898.52+=,即C 错误;由回归直线方程知1,2,3,4,5x =时对应的预测值分别为 5.5,6.75,8,9.25,.5ˆ10y=,对应残差分别为0.5,0.75,0,0.25,0--,显然残差之和为0,即D 正确.故选:AD 10.AC【分析】首先求出函数的定义域,即可判断奇偶性,从而判断A ,利用导数说明函数的单调性,即可判断B 、C ,求出极小值即可判断D.【详解】对于函数()()()2ln 1ln 1f x x x x =+--+,令10100x x x +>⎧⎪->⎨⎪≠⎩,解得10x -<<或01x <<,所以函数的定义域为()()1,00,1-U ,又()()()()()()22ln 1ln 1ln 1ln 1f x x x x x f x x x ⎡⎤-=--+-=-+--+=-⎢⎥⎣⎦,所以()f x 为奇函数,函数图象关于()0,0对称,故A 正确;又()22221121122211111f x x x x x x x x x---'=--=+-=-+-+--222222222(1)24(1)(1)x x x x x x x ----==--,当x ⎛∈ ⎝⎭时,()0f x '<,即()f x在⎛ ⎝⎭上单调递减,故B 错误;当2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x ¢>,即()f x在,12⎛⎫ ⎪ ⎪⎝⎭上单调递增,根据奇函数的对称性可知()f x 在21,2⎛⎫- ⎪ ⎪⎝⎭上单调递增,在22⎛⎫- ⎪ ⎪⎝⎭上单调递减,所以()f x 的极小值点为22,极大值点为22-,故C 正确;又(()ln 320f x f ==++⎝⎭极小值,且当x 趋近于1时,()f x 趋近于无穷大,当x 趋近于0时,()f x 趋近于无穷大,所以()f x 在()0,1上无零点,根据对称性可知()f x 在()1,0-上无零点,故()f x 无零点,故D 错误.故选:AC .11.ABD【分析】利用线线平行的性质可判定A ,利用空间轨迹结合弧长公式可判定B ,建立空间直角坐标系,利用空间向量研究线面关系及点面距离可判定C 、D.【详解】对于A ,在正方体中易知1111//,////MN CD CD A B NM A B ⇒,又1⊄A B 平面AMN ,MN ⊂平面AMN ,所以1A B ∥平面AMN ,即A 正确;对于B ,因为点P 为四边形1111D C B A (含边界)内一动点,且2MP =,11MD =,则1DP =P 点轨迹为以1D所以点P的轨迹长度为132ππ42⨯,故B 正确;对于C ,建立如图所示空间直角坐标系,则()()())π2,0,0,0,0,1,0,1,0,,,20,2A M N Pθθθ⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭,所以()())2,0,1,2,1,0,,1AM AN MP θθ=-=-=,若存在点P ,使得MP ⊥面AMN,则100AM MP AN MP θθθ⎧⋅=-=⎪⎨⋅=-=⎪⎩,解之得sin ,cos θθ=即不存在点P ,使得MP ⊥面AMN ,故C 错误;对于D ,设平面AMN 的一个法向量为(),,n x y z = ,则2020AM n x z AN n x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取12x y z =⇒==,即()1,2,2n =,则点P 到平面AMN的距离()221πtan ,0,3322n MP d n θϕθθϕϕ⋅++⎛⎫++⎛⎫====∈ ⎪⎪⎝⎭⎝⎭ ,显然π2θϕ+=时取得最大值max d =D 正确.故选:ABD【点睛】思路点睛:对于B ,利用定点定距离结合空间轨迹即可解决,对于C 、D 因为动点不方便利用几何法处理,可以利用空间直角坐标系,由空间向量研究空间位置关系及点面距离计算即可.12.π4x =(答案不唯一)【分析】利用二倍角公式及三角函数的图象与性质计算即可.【详解】易知1()sin 212f x x =+,所以()()πππ2πZ Z 242k x k k x k =+∈⇒=+∈,不妨取0k =,则π4x =.故答案为:π4x =(答案不唯一)13.1316【分析】先分①②两种方法,再由独立事件的乘法公式计算即可.【详解】到达第3台阶的方法有两种:第一种:每步上一个台阶,上两步,则概率为3394416⨯=;第二种:只上一步且上两个台阶,则概率为14,所以到达第3阶台阶的概率为911316416+=,故答案为:1316.14.232【分析】利用定义结合二次函数求最值计算即可得第一空,过P 作//PN x 并构造直角三角形,根据(,)d P M 的定义化折为直,结合直线与抛物线的位置关系计算即可.【详解】设2,2m P m p ⎛⎫ ⎪⎝⎭,则()()2221,30332222m m p d P Q m m m p p p p =-+-≥-+=-+-,322p⇒-=,即2p =,p m =时取得最小值;易知39:22l y x =-,2:4C x y =,联立有26180x x -+=,显然无解,即直线与抛物线无交点,如下图所示,过P 作//PN x 交l 于N ,过M 作ME PN ⊥,则(,)d P M PE EM PE EN PN =+≥+=(,M N 重合时取得等号),设2,4n P n ⎛⎫ ⎪⎝⎭,则223,64n n N ⎛⎫+ ⎪⎝⎭,所以()22133336622n PN n n =-+=-+≥,故答案为:2,32【点睛】思路点睛:对于曼哈顿距离的新定义问题可以利用化折为直的思想,数形结合再根据二次函数的性质计算最值即可.15.(1)证明见解析【分析】(1)连接DE 、DB ,即可证明BC ⊥平面1D DE ,从而得到1BC DD ⊥,再由勾股定理逆定理得到1DD DE ⊥,即可证明1DD ⊥平面ABCD ;(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)连接DE 、DB ,因为四边形ABCD 为菱形,60BAD ∠= 所以BDC 是边长为4的正三角形,因为E 为BC 中点,所以DE BC ⊥,DE =又因为11,D E BC D E DE E ⊥⋂=,1,D E DE ⊂平面1D DE ,所以BC ⊥平面1D DE ,又1DD ⊂平面1D DE ,所以1BC DD ⊥,又1D E =13DD =,DE =所以22211DD DE D E +=,所以1DD DE ⊥,又因为,,DE BC E DE BC =⊂ 平面ABCD ,所以1DD ⊥平面ABCD.(2)因为直线1,,DA DE DD 两两垂直,以D 为原点,1,,DA DE DD 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则()()()()()10,0,0,4,0,0,0,,2,2,2,0,3D A E C A -,所以()()1111,2,2A C AC EA ==-=- 设平面11A C E 的一个法向量为(),,n x y z = ,则11130230n A C x n EA x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,即43y x z ⎧=⎪⎨=⎪⎩,令3x =,得4y z ==,所以()4n = ,由题意知,()0,0,1m = 是平面ABCD 的一个法向量,设平面11A C E 与平面ABCD 的夹角为θ,则cos 13m n m n θ⋅===⋅ ,所以平面11A C E与平面ABCD 16.(1)22143x y +=(2)10x y +-=或10x y -=【分析】(1)利用椭圆焦半径公式及性质计算即可;(2)设直线l 方程,B 、C 坐标,根据平行关系得出两点纵坐标关系,联立椭圆方程结合韦达定理解方程即可.【详解】(1)设焦距为2c ,由椭圆对称性不妨设椭圆上一点()()000,0P x y a x ≥≥,易知()2,0F c ,则2PF =00c c x a a x a a =-=-,显然0x a =时2min PF a c =-,由题意得222121ca a c abc ⎧=⎪⎪⎨-=⎪⎪=+⎩解得2,1,a c b ===所以椭圆C 的方程为22143x y +=;(2)设()()1122,,,C x y B x y ,因为AB //1CF ,所以1122::2:1CF AB F F F A ==所以122y y =-①设直线l 的方程为1x my =+,联立得221431x y x my ⎧+=⎪⎨⎪=+⎩,整理得()2234690m y my ++-=,由韦达定理得()122122634934my y m y y m ⎧+=-⎪+⎪⎨=-⎪+⎪⎩,把①式代入上式得222226349234my m y m ⎧-=-⎪⎪+⎨⎪-=-⎪-+⎩,得()()22222236923434m y m m ==++,解得255m =±,所以直线l 的方程为:10x y -=或10x y -=.17.(1)1p-(2)答案见解析【分析】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,根据条件概率公式计算可得;(2)记“方案一”中红球出现的频率用随机变量X 表示,X 的可能取值为11110,,,,,15432,求出所对应的概率,即可得到分布列与数学期望,“方案二”中红球出现的频率用随机变量Y 表示,则()55,Y B p ~,由二项分布的概率公式得到分布列,即可求出期望,再判断即可.【详解】(1)设事件A =“第2次没有摸到红球”,事件B =“第3次也没有摸到红球”,则()()21P A p =-,()()31P B p =-,所以()()()()()32(1)|1(1)P AB P B p P B A p P A P A p -====--;(2)“方案一”中红球出现的频率用随机变量X 表示,则X 的可能取值为:11110,,,,,15432,且()()501P X p ==-,()4115P X p p ⎛⎫==- ⎪⎝⎭,()3114P X p p ⎛⎫==- ⎪⎝⎭,()2113P X p p ⎛⎫==- ⎪⎝⎭,()112P X p p ⎛⎫==- ⎪⎝⎭,()1P X p ==,所以X 的分布列为:X 0151413121P 5(1)p -4(1)p p -3(1)p p -2(1)p p -()1p p-p 则()()()354211110(1)(1)1(1)115432E X p p p p p p p p p p =⨯-+⨯-+⨯-+⨯-+⨯-+⨯()4321(1)(1)(1)5432p p p p p p p p p ----=++++,“方案二”中红球出现的频率用随机变量Y 表示,因为()55,Y B p ~,所以5Y 的分布列为:()555C (1),0,1,2,3,4,5k k k P Y k p p k -==-=,即Y 的分布列为:Y 0152535451P 5(1)p -45(1)p p -3210(1)p p -3210(1)p p -()451p p -5p 所以()55E Y p =,则()E Y p =,因为()E X p >,()E Y p =,所以“方案二”估计p 的值更合理.18.(1)答案见解析(2)12a >(3)证明见解析【分析】(1)令()()g x f x '=,求出导函数,再分0a ≤和0a >两种情况讨论,分别求出函数的单调区间;(2)结合(1)分0a ≤、102a <<、12a =、12a >四种情况讨论,判断()f x 的单调性,即可确定极值点,从而得解;(3)利用分析法可得只需证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,只需证对任意10x -<<,有()2e ln 1(1)x x x ++<+,结合(2)只需证明()ln 1(10)x x x +<-<<,构造函数,利用导数证明即可.【详解】(1)由题知()e 21x f x ax =--',令()()21x g x f x ax =-'=-e ,则()e 2x g x a '=-,当0a ≤时,()()0,g x f x ''>在区间(),-∞+∞单调递增,当0a >时,令()0g x '=,解得ln2=x a ,当(),ln2x a ∞∈-时,()0g x '<,当()ln2,x a ∈+∞时,()0g x '>,所以()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增,综上所述,当0a ≤时,()f x '在区间(),-∞+∞上单调递增;当0a >时,()f x '在区间(),ln2a -∞上单调递减,在区间()ln2,a +∞上单调递增.(2)当0a ≤时,()00f '=,由(1)知,当(),0x ∈-∞时,()()0,f x f x '<在(),0∞-上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当102a <<时,ln20a <,且()00f '=,由(1)知,当()ln2,0x a ∈时,()()0,f x f x '<在()ln2,0a 上单调递减;当()0,x ∈+∞时,()()0,f x f x '>在()0,∞+上单调递增;所以0x =是函数()f x 的极小值点,不符合题意;当12a =时,ln20a =,则当(),x ∈-∞+∞时,()()0,f x f x '≥在(),-∞+∞上单调递增,所以()f x 无极值点,不合题意;当12a >时,ln20a >,且()00f '=;当(),0x ∈-∞时,()()0,f x f x '>在(),0∞-上单调递增;当()0,ln2∈x a 时,()()0,f x f x '<在()0,ln2a 上单调递减;所以0x =是函数()f x 的极大值点,符合题意;综上所述,a 的取值范围是12a >.(3)要证()sin 1cos 1e e ln sin cos 1θθθθ--++<,只要证()()sin 1cos 122e e ln sin ln cos sin cos θθθθθθ--+++<+,只要证sin 12e ln sin sin θθθ-+<,cos 12e ln cos cos θθθ-+<,因为π0,2θ⎛⎫∈ ⎪⎝⎭,则()()sin 0,1,cos 0,1θθ∈∈,所以只要证对任意01x <<,有12e ln x x x -+<,只要证对任意10x -<<,有()2e ln 1(1)x x x ++<+(※),因为由(2)知:当1a =时,若0x <,则()()01f x f <=,所以2e 1x x x --<,即2e 1x x x <++①,令函数()()ln 1(10)h x x x x =+--<<,则()1111x h x x x-'=-=++,所以当10x -<<时()0h x '>,所以()h x 在()1,0-单调递增;则()()00h x h <=,即()ln 1(10)x x x +<-<<,由①+②得()22e ln 121(1)x x x x x ++<++=+,所以(※)成立,所以()sin 1cos 1e e ln sin cos 1θθθθ--++<成立.【点睛】方法点睛:利用导数证明或判定不等式问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.19.(1)只有1,2,4,3,2是“对数凹性”数列,理由见解析(2)证明见解析(3)证明见解析【分析】(1)利用“对数凹性”数列的定义计算即可;(2)利用导数研究三次函数的性质结合()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同及“对数凹性”数列的定义计算即可;(3)将,p q 互换计算可得0=t ,令1,2p q ==,可证明{}n W 是等差数列,结合等差数列得通项公式可知()11n W c n d =+-,利用1n n W S n=及,n n S c 的关系可得()121n c c d n =+-,并判定{}n c 为单调递增的等差数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.【详解】(1)根据“对数凹性”数列的定义可知数列1,3,2,4中2234≥⨯不成立,所以数列1,3,2,4不是“对数凹性”数列;而数列1,2,4,3,2中222214423342⎧≥⨯⎪≥⨯⎨⎪≥⨯⎩均成立,所以数列1,2,4,3,2是“对数凹性”数列;(2)根据题意及三次函数的性质易知2234()23f x b b x b x =++'有两个不等实数根,所以221324324Δ44303b b b b b b =-⨯>⇒>,又0(1,2,3,4)i b i >=,所以2324243b b b b b >>,显然()1000x f b =⇒=>,即0x =不是()f x 的零点,又2312341111f b b b b x x x x ⎛⎫⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,令1t x =,则()231234f t b b t b t b t =+++也有三个零点,即32123431b x b x b x b f x x +++⎛⎫= ⎪⎝⎭有三个零点,则()321234g x b x b x b x b =+++有三个零点,所以()212332g x b x b x b =++'有两个零点,所以同上有22221321313Δ44303b b b b b b b b =-⨯>⇒>>,故数列1234,,,b b b b 为“对数凹性”数列(3)将,p q 互换得:()()()r q p t q p W p vr W r q W t =-+-+-=-,所以0=t ,令1,2p q ==,得()()(2210r W r W r W -+-+-=,所以()()()()12121211r W r W r W W r W W =-+-=+--,故数列{}n W 是等差数列,记221211022S c c d W W c -=-=-=>,所以()()2111112n c c W c n c n d -⎛⎫=+-=+- ⎪⎝⎭,所以()21n n S nW dn c d n ==+-,又因为11,1,2n n n c n c S S n -=⎧=⎨-≥⎩,所以()121n c c d n=+-,所以120n n c c d +-=>,所以{}n c 为单调递增的等差数列,所以()11210,2,2n n n n n n n n cc c c c c c S ++++>>+==.所以()()()()()22212111124(1)2n n n n n n S S S n c c n n c c c c ++++-=++-+++()()()()22112211(1)22n n n c c c c n c c n n ++⎡⎤+++>++-+⎢⎥⎣⎦()()222112112(1)22n n c c c n c c n n ++++⎛⎫=++-+ ⎪⎝⎭()()()2221111(1)2n n n c c n n c c ++=++-++()()2211(1)2n n n n c c +⎡⎤=+-++⎣⎦()2110n c c +=+>所以212n n n S S S ++≥,数列{}n S 是“对数凹性”数列【点睛】思路点睛:第二问根据定义及三次函数的性质、判别式先判定2324243b b b b b >>,再判定()1,f f x x ⎛⎫ ⎪⎝⎭零点个数相同,再次利用导函数零点个数及判别式判定2213133b b b b b >>即可;第三问根据条件将,p q 互换得0=t ,利用赋值法证明{}n W 是等差数列,再根据1n n W S n=及,n n S c 的关系可得n c 从而判定其为单调递增数列,根据等差数列求和公式计算()2124n n n S S S ++-结合基本不等式放缩证明其大于0即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏州市第五中学高三数学第三次阶段考试 -1-3班级 姓名 成绩一、填空题:本大题共14小题,每小题5分,共70分.把答案填在答题卷相应位置上.设集合1|2A x x ⎧⎫=<⎨⎬⎩⎭,{}|21x B x =>,则A B = ▲ . cos17cos43sin163sin 43-= ▲ .已知a 是实数,i1i a -+是纯虚数,则a = ▲ .在等差数列{}n a 中,1815360a a a ++=,则8a 的值为 ▲ .黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第n 个图案中有白色地面砖 ▲ 块.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,则这个球的体积为 ▲ . 函数2sin y x x =-在(0,2π)内的单调增区间为 ▲ .已知12,F F 是椭圆2224x y +=的焦点,B ,则12BF BF ⋅的值为 ▲ . ABC ∆中,3A π∠=,3BC =,AB =,则C ∠= ▲ .把函数πsin(3)4y x =+的图象向右平移8π个单位,再将图象上所有点的横坐标扩大到原来的3倍(纵坐标不变),则所得图象的函数解析式子是 ▲ .根据表格中的数据,可以判定方程20xe x --=的一个零点所在的区间为*(,1)()k k k +∈N ,则k 的值为 ▲ .已知命题p:“[]21,2,0x x a ∀∈-≥”,命题q:“2,220x xax a ∃∈++-=R ”若命题“p 且q”是真命题,则实数a 的取值范围是 ▲ .设点O 在△ABC 内部,且2OA OC OB +=-,则AOB △与AOC △的面积之比为 ▲ .给出定义:若1122m x m -<≤+(其中m 为整数),则m 叫做离实数x 最近的整数,记作{}x ,即{}x m =.在此基础上给出下列关于函数()|{}|f x x x =-的四个命题:①函数()y f x =的定义域是R ,值域是[0,12];②函数()y f x =的图像关于直线2kx =(k ∈Z)对称;③函数()y f x =是周期函数,最小正周期是1;则其中真命题是 ▲ .二、解答题:本大题共6小题,共90分.请把解答写在答题卷规定的答题框内.解答应写出文字说明、证明过程或演算步骤. (本小题满分14分)已知圆C 经过(2,1)A -和直线1x y +=相切,且圆心在直线2y x =-上. (Ⅰ)求圆C 的方程;(Ⅱ)若直线l 经过圆C 内一点1(,3)2P -与圆C 相交于,A B 两点,当弦AB 被点P 平分时,求直线l 的方程.(本小题满分14分)设不等式组0606x y ≤≤⎧⎨≤≤⎩表示的区域为A ,不等式组060x x y ≤≤⎧⎨-≥⎩表示的区域为B ,在区域A 中任意取一点P (,)x y .(Ⅰ)求点P 落在区域B 中的概率;(Ⅱ)若,x y 分别表示甲、乙两人各掷一次正方体骰子所得的点数,求点P 落在区域B 中的概率.(本小题满分15分)如图,O 为坐标原点,A 、B 是单位圆O 上的动点,C 是圆O 与x 轴正半轴的交点,设COA α∠=.(Ⅰ)当点A 的坐标为34,55⎛⎫⎪⎝⎭时,求sin α的值;(Ⅱ)若π02α≤≤,且当点A 、B 在圆O 上沿逆时针方向移动时,总有π3AOB ∠=,试求BC 的取值范围.(本小题满分15分)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知4AD =,BD =,28AB CD ==.(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)当M 点位于线段PC 什么位置时,PA ∥平面MBD ? (Ⅲ)求四棱锥P ABCD -的体积.(本小题满分16分)根据如图所示的流程图,将输出的a 的值依次分别记为122008, , , , , n a a a a ,将输出的b 的值依次分别记为122008, ,, ,, n b b b b .BP(Ⅰ)求数列{}n a ,{}n b 通项公式;(Ⅱ)依次在k a 与1k a +中插入1k b +个3,就能得到一个新数列{}n c ,则4a 是数列{}n c 中的第几项?(Ⅲ)设数列{}n c 的前n 项和为n S ,问是否存在这样的正整数m ,使数列{}n c 的前m 项的和2008m S =,如果存在,求出m 的值,如果不存在,请说明理由.(本小题满分16分)已知函数2()ln ,()3f x x x g x x ax ==-+-. (Ⅰ)求函数()f x 在[,2](0)t t t +>上的最小值;(Ⅱ)若对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围;(Ⅲ)证明:对一切(0,)x ∈+∞,12ln xx e ex >-恒成立.数学(附加题)一、选做题:本大题共4小题,请从这4小题中选做其中2题,每小题满分10分,共20分.如果多做,则以前两题计分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.1.(几何证明选讲选做题)(本小题满分10分)如图,圆O 是△ABC 的外接圆,过点C 的切线交AB 的延长线于点D ,CD=27,AB=BC=3.求BD 以及AC 的长.2.(矩阵与变换选做题)(本小题满分10分) 给定矩阵M=⎣⎢⎡⎦⎥⎤23-13-1323,N=⎣⎡⎦⎤2112及向量e1=⎣⎡⎦⎤11,e2=⎣⎡⎦⎤1-1. (Ⅰ)证明M 和N 互为逆矩阵;(Ⅱ)证明e1和e2都是M 的特征向量.3.(坐标系与参数方程选做题)(本小题满分10分)已知直线l的参数方程为1,2()7x t t y ==+⎧⎪⎪⎨⎪⎪⎩为参数,曲线C 的参数方程为4cos ()4sin x y θθθ==⎧⎨⎩为参数.(Ⅰ)将曲线C 的参数方程转化为普通方程;(Ⅱ)若直线l 与曲线C 相交于A 、B 两点,试求线段AB 的长. 4.(不等式选讲选做题)(本小题满分10分) 已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z ++++≥.二、必做题:本大题共2小题,每小题满分10分,共20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 5.(本小题满分10分)平面直角坐标系xOy 中,动点P 到直线x=-2的距离比它到点F(1,0)的距离大1. (Ⅰ)求动点P 的轨迹C ;(Ⅱ)求曲线C 与直线x=4所围成的区域的面积.6.(本小题满分10分)有红蓝两粒质地均匀的正方体骰子,红色骰子有两个面是8,四个面是2,蓝色骰子有三个面是7,三个面是1,两人各取一只骰子分别随机掷一次,所得点数较大者获胜。
(Ⅰ)分别求出两只骰子投掷所得点数的分布列及期望; (Ⅱ)求投掷蓝色骰子者获胜的概率是多少?苏州市第五中学高三数学第三次阶段考试 参考解答及评分标准一、填空题:本大题共14小题,每小题5分,共70分.1.12x x ⎧⎫>⎨⎬⎩⎭; 2.12; 3.1; 4.12; 5.42n +; 6.43π;7.5(,)33ππ;8.0; 9.4π; 10.sin()8y x π=-; 11.1; 12.2a ≤-或1a =; 13.1:2;14.①②③.二、解答题:本大题共6小题,共90分.(注:评分标准以第15题为样板)15.解(Ⅰ)由题意,设圆的方程为222()(2)x a y a r -++=, 1分222(2)(12).a a r r ⎧-+-+=∴=,4分1a ∴=,r6分所以22(1)(2)2x y -++=. 7分(Ⅱ)由题意得CP AB ⊥,而322112CP k -+==-,所以12AB k =-, 10分从而得直线AB 的方程为113()22y x +=--. 12分 所以直线AB 的方程为24110x y ++=. 14分16.解:(Ⅰ)设区域A 中任意一点P (,)x y B ∈为事件M . 1分 因为区域A 的面积为136S =,区域B 在区域A 的面积为218S =, 5分故181()362P M ==.7分(Ⅱ)设点P (,)x y 在集合B 为事件N , 8分甲、乙两人各掷一次骰子所得的点P (,)x y 的个数为36个,其中在区域B 中的点P (,)x y 有21个. 12分故217()3612P N ==. 14分17.解:(Ⅰ)因为A 点的坐标为34,55⎛⎫ ⎪⎝⎭,根据三角函数定义可知35x =,45y =,1r =, 所以4sin 5y r α==. 4分 (Ⅱ)因为π3AOB ∠=,COA α∠=,所以π3COB α∠=+.由余弦定理得2222cos BC OC OB OC OB BOC =+-⋅∠ππ112cos 22cos 33αα⎛⎫⎛⎫=+-+=-+ ⎪ ⎪⎝⎭⎝⎭. 8分因为π02α≤≤,所以ππ5π336α≤+≤,所以π1cos()32α≤+≤. 12分于是π122cos()23α≤-+≤+212BC ≤≤+14分故BC的取值范围是1,⎡⎢⎣. 15分18.证明:(Ⅰ)在ABD △中,∵4AD =,BD =,8AB =,∴222AD BD AB +=.∴AD BD ⊥.2分又 ∵平面PAD ⊥平面ABCD , 平面PAD平面ABCD AD =,BD ⊂平面ABCD ,∴BD ⊥平面PAD . 又BD ⊂平面MBD ,∴平面MBD ⊥平面PAD . 4分(Ⅱ)当M 点位于线段PC 靠近C 点的三等分点处时,PA ∥平面MBD . 5分证明如下:连接AC ,交BD 于点N ,连接MN . ∵AB DC ∥,所以四边形ABCD 是梯形.ABCMPD O N∵2AB CD =,∴:1:2CN NA =. 又 ∵:1:2CM MP =,∴:CN NA =:CM MP ,∴PA ∥MN . 7分 ∵MN ⊂平面MBD ,∴PA ∥平面MBD . 9分 (Ⅲ)过P 作PO AD ⊥交AD 于O , ∵平面PAD ⊥平面ABCD , ∴PO ⊥平面ABCD .即PO 为四棱锥P ABCD -的高.11分又 ∵PAD △是边长为4的等边三角形,∴42PO ==.12分在Rt ADB △中,斜边AB 边上的高为=ABCD 的高.∴梯形ABCD 的面积482ABCD S +=⨯=14分故1243P ABCD V -=⨯=. 15分19.解:(Ⅰ)由流程图,111, 1n n a a a +==+,{}n a ∴是公差为1的等差数列.∴n a n =. 2分由流程图,11032n n b b b +==+,, ∴113(1)n n b b ++=+.∴{1}n b +是首项为1,公比为3的等比数列.∴1111(1)33n n n b b --+=+⨯=,∴131n n b -=-. 6分(Ⅱ){}n c 的前几项为1333931,3,2,3,3,3,3,3,,3,4,个个个,4a =4,∴4a 是数列{}n c 中的第17项. 9分(Ⅲ)数列{}n c 中,k a 项(含k a )前的所有项的和是:12(1)33(12)(333)22k kk k k +-++++++=+,11分当7k =时,其和为73328112020082-+=<, 当8k =时,其和为83336331520082-+=>.13分又因为-1120=888=296×3,是3的倍数,故当257(1333)296667m =+++++=时,2008m S =. 16分20.解:(Ⅰ)∵'()ln 1f x x =+,∴当1(0,)x e ∈时,'()0f x <,()f x 单调递减; 当1(,)x e ∈+∞时,'()0f x >,()f x 单调递增.2分①当102t t e <<+<时,t 无解;②当102t t e <<<+,即10t e <<时,min 11()()f x f e e ==-; ③当12t t e ≤<+,即1t e ≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==; 所以min110()1ln .t e e f x t t t e ⎧-<<⎪⎪=⎨⎪≥⎪⎩, ,, 6分(Ⅱ)22ln 3x x x ax ≥-+-,则32ln a x x x ≤++,7分设3()2ln (0)h x x x x x =++>,则2(3)(1)'()x x h x x +-=,当(0,1)x ∈时,'()0h x <,()h x 单调递减;当(1,)x ∈+∞时,'()0h x >,()h x 单调递增, 所以min ()(1)4h x h ==.10分因为对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,所以min ()4a h x ≤=.11分(Ⅲ)问题等价于证明2ln ((0,))x x x x x e e >-∈+∞,由(Ⅰ)可知当1x e =时,()ln ((0,))f x x x x =∈+∞的最小值是1e -.13分设2()((0,))x x m x x e e =-∈+∞,则1'()x x m x e -=, 易得max 1()(1)m x m e ==-,当且仅当1x =时取到.15分从而对一切(0,)x ∈+∞,都有12ln x x e ex >-成立. 16分数学(附加题)参考答案及评分标准一、选做题:本大题共4小题,请从这4小题中选做其中2题,每小题满分10分,共20分.1.解:由切割线定理得:2DB DA DC ⋅=, 2分2()DB DB BA DC +=, 23280DB DB +-=,4DB =. 6分A BCD ∠=∠,∴ DBC ∆∽DCA ∆,8分∴BC DBCA DC =,得BC DC AC DB ⋅==. 10分2.解:(Ⅰ)因为MN=⎢⎢⎢⎢⎣⎡-3132⎥⎥⎥⎥⎦⎤-3231⎢⎣⎡12 ⎥⎦⎤21=⎢⎣⎡01 ⎥⎦⎤10, 2分NM=⎢⎣⎡12 ⎥⎦⎤21⎢⎢⎢⎢⎣⎡-3132⎥⎥⎥⎥⎦⎤-3231=⎢⎣⎡01 ⎥⎦⎤10, 4分所以M 和N 互为逆矩阵. 5分(Ⅱ)向量e1=⎥⎦⎤⎢⎣⎡11在M 的作用下,其像与其保持共线,即⎢⎢⎢⎢⎣⎡-3132 ⎥⎥⎥⎥⎦⎤-3231⎥⎦⎤⎢⎣⎡11=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡3131=31⎥⎦⎤⎢⎣⎡11,7分向量e2=⎥⎦⎤⎢⎣⎡-11在M 的作用下,其像与其保持共线,即⎢⎢⎢⎢⎣⎡-3132⎥⎥⎥⎥⎦⎤-3231⎥⎦⎤⎢⎣⎡-11=⎥⎦⎤⎢⎣⎡-11, 9分 所以e1和e2是M 的特征向量.10分3.解:(Ⅰ)由22224cos 16cos 4sin 16sin x x y y θθθθ⎧==⎧⎪⎨⎨==⎪⎩⎩;;得..故圆的方程为2216x y +=. 3分(Ⅱ)(法一)把22212()16,3607x t t x y t y ⎧=⎪⎪+=++=⎨⎪=+⎪⎩;为参数代入方程得.,.36,382121=-=+∴t t t t7分12||||AB AB t t ∴=-=线段的长为. 10分(法二)由12(),407x t t l y y ⎧=⎪⎪-+=⎨⎪=⎪⎩;为参数得..5分由(Ⅰ)知:圆心的坐标为(0,0),圆的半径R=4,2)1()3(|4|22=-+=∴d l 的距离圆心到直线,7分||AB ∴== 10分4.证明: 因为x ,y ,z 无为正数.所以12()x y x y yz zx z y x z +=+≥, 4分 同理可得22y z z x zx xy x xy yzy ++≥,≥, 7分当且仅当x =y =z 时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111x y z yz zx xy x y z ++++≥.10分二、必做题:本大题共2小题,每小题满分10分,共20分.5.解:(Ⅰ)设点(,)P x y ,则|(2)|1x --=, |2|1x +-=2分若x ≥2-,则1x +=,化简得:24y x =, 4分若x <2-,则3x --=28(1)y x =+,不合题意,舍去, 故所求轨迹为:以原点为顶点,开口向右的抛物线24y x =. 6分(Ⅱ)46423S dx ==⎰.10分6.解:(2分.43223181=⋅+⋅=ξE3分设蓝色骰子投掷所得点数为ξ2,其分布如下:5分21171422E ξ=⋅+⋅=. 6分(Ⅱ)∵投掷骰子点数较大者获胜,∴投掷蓝色骰子者若获胜,则投掷后蓝色骰子点数为7,红色骰子点数为2. 8分∴投掷蓝色骰子者获胜概率是121233⋅=. 10分。