基因工程药物发展进程
生物制药技术的进展及未来发展趋势

生物制药技术的进展及未来发展趋势引言生物制药技术是指利用生物学和工程学的原理和方法,通过对生物体内的生物大分子(如蛋白质和核酸)进行研究和应用,开发和生产用于预防、诊断和治疗疾病的药物。
随着科技的不断进步,生物制药技术取得了显著的进展,并在医药领域发挥着重要的作用。
本文将介绍生物制药技术的进展以及未来的发展趋势。
生物制药技术的进展1. 基因工程技术的应用:基因工程技术的发展使得生物制药技术得以快速发展。
通过基因工程技术,科学家们能够将人类需要的基因插入到细胞中,使细胞产生特定的蛋白质,从而生产出具有治疗作用的药物。
2. 重组蛋白技术的突破:重组蛋白技术是指通过基因工程技术,将人类需要的基因插入到细胞中,使细胞能够合成具有特定功能的蛋白质。
这种技术的突破使得生产大规模的重组蛋白变得可能,从而满足了大量患者的需求。
3. 单克隆抗体技术的发展:单克隆抗体技术是指通过克隆技术获得一种特定的抗体,并使其能够大规模生产。
这种技术的发展使得抗体药物的研发和生产更加高效和可行,为疾病的治疗提供了新的选择。
生物制药技术的未来发展趋势1. 个性化药物的发展:随着基因组学和生物信息学的迅速发展,个性化药物的研发将成为生物制药技术的重要方向。
个性化药物是指根据个体的基因信息和生理特征,为患者提供个性化的治疗方案和药物。
这将提高治疗效果和减少药物副作用。
2. 基因编辑技术的应用:基因编辑技术如CRISPR-Cas9的发展将为生物制药技术带来新的突破。
通过基因编辑技术,科学家能够直接修改细胞的基因序列,实现对疾病基因的修复或抑制,从而开发出更加有效的治疗方法和药物。
3. 仿生药物的研究:仿生药物是指通过模仿生物大分子在生物体内的作用机制,开发出具有类似效果的药物。
仿生药物的研究将为生物制药技术的发展带来新的思路和方法。
结论生物制药技术在过去几十年中取得了巨大的进展,为医药领域的发展做出了重要贡献。
未来,随着基因工程技术、基因编辑技术和仿生药物的不断发展,生物制药技术将继续迎来新的突破和进展。
基因工程药物概述

• 骨成型蛋白2(BMP-2):促进骨质形成,治疗脊骨退行 性融合。
• 角化细胞生长因子-1(KGF-1):促进上皮细胞移行及再 生,用于治疗化疗引起的重度口腔黏膜炎。
• 胰岛素样生长因子-1(IGF-1):儿童IGF缺乏性生长不 良
联物上市(用于霍奇金淋巴瘤的治疗)
第二节、基因工程药 物的种类及应用现状
参考文献: ①美国食品药物管理局网站: Drags@FDA: ②中国国家食品药品监督管理局(SFDA)网站 ③胡显文在“基因工程药物与抗体药物研发与质量控制关键技术 研讨会”上的报告。
一、基因工程药物的种类
• 基因重组多肽及蛋白药物 • 核酸类重组药物 • 重组活载体药物
长因子) :创伤、烧伤、眼科疾病等。
(四)我国CFDA2013年9月登记的进口重组 细胞因子类药物
• rhIFN α2a注射液:罗荛愫,Roferon-A:瑞士。 • PEG化rhIFN α-2a注射液:派罗欣,Pegasys,瑞士。 • PEG化rhIFN α-2b注射剂:佩乐能,Peg-Intron,新加
1、抗原结合位点:位于N段可变区。 2、补体结合位点: 位于IgG分子Fc段的CH2,可与补体结合。 3、Fc受体结合位点:位于IgG分子Fc段的CH3,可与IgG的
FcR结合。 4、母体胎盘结合位点:位于IgG分子Fc段的CH2,可与母体胎
盘滋养层细胞上的受体结合,介导IgG从母体一侧穿过胎 盘到达胎儿。
外源治疗性可溶性受体可与相应的膜受体竞争配体 而起到抑制作用,借此发挥治疗作用。
亚单位疫苗
• 用病原体上能够诱发保护性反应的蛋白 (而非完整病原体)生产的疫苗。
4 基因工程药物概述

4
1972年美国斯坦福大学的Berg获得了SV40和λDNA重组的 DNA分子 1973年美国斯坦福大学的Cohen 等人,将大肠杆菌R6-5质 粒DNA(含卡那霉素抗性基因)和大肠杆菌pSC101质粒 DNA(含四环素素抗性基因)重组后转化大肠杆菌,产生同 时表现出两种抗性的细菌。 Cohen与Boyer等合作,将非洲爪蟾编码核糖体的基因同 pSC101质粒构成重组DNA分子,并导入大肠杆菌,证实动 物基因进入了细菌细胞,并在细菌细胞中增殖和转录产生相 应的mRNA。
基因工程药物概述
1
名词解释:基因工程
基因工程是通过对核酸分子的插入、拼接和重组而实 现遗传物质的重新组合,再借助病毒、细菌、质粒或 其他载体,将目的基因转移到新的宿主细胞系统,并 使目的基因在新的宿主细胞系统内进行复制和表达的 技术。基因是DNA分子上的一个特定片断,因此基因 工程又称DNA分子水平上的生物工程,其主要研究任 务是有关基因的分离、合成、切割、重组、转移和表 达等。所以基因工程又称基因操作、基因克隆或DNA 重组等。
21
市场
欧美成熟市场占了71.4%,拉美及亚非市场虽然目前仅占 5.7%及12.7%,但其增长率分别为12.75和15%,远高于北 美1.9%的增长率。 IMS预测,药品支付者对医保体系的影响力更大,未来市 场增长的来源已经从欧美国家转移到新兴市场;在未来五 年内,新兴市场对利润的贡献将与与传统成熟市场平分秋 色。 制药业巨头已经在新兴市场投入多年,投资范围不仅限于 大家普遍看好的“金砖四国”(巴西,俄罗斯,印度,中 国),还进一步扩展到沙特阿拉伯、越南、智力、委内瑞 拉、马来西亚、泰国、土耳其和墨西哥等国家。
19
制药巨头的并购
基因工程药物

20
表达蛋白在细胞中的稳定性--防止蛋白降解
①融合蛋白表达系统:封闭了水解酶作用位点,增加稳定性。 ②分泌蛋白表达系统:分泌到细胞周质、培养基中 ③包涵体表达系统:难溶性的沉淀复合物,不易被宿主蛋白
形成原因:聚合物的不相容性,即聚合物分子的空间阻 碍作用,无法形成均一相。
双聚合物:聚乙二醇(PEG)/葡聚糖(Dx)。该系统上相富 含PEG,下相富含Dx;
27
5、反胶团萃取: ➢ 反胶团:是表面活性剂分散在连续的有机溶剂中,自发
形成的纳米尺度的一种聚集体。
28
8.2.3.2 基因重组蛋白的纯化方法--进一
定反应的有机分子; ②它们的作用力很强,很低的浓度就能引起很强的反应; ③它们都是短命的,在细胞中不能积累,很快就会被破坏。 • 激素都是有特异性的,只对某种或某几种细胞有效,具
有接受相应激素的特异受体。
35
36
8.3.1.1 胰岛素( insulin )
概况:动物胰脏胰岛的β细胞以前胰岛素原形式合成→ 跨膜运输后成胰岛素原→高尔基体内形成成熟胰岛素。
• ③酵母发酵产生前胰岛素原。
39
已上市的基因工程胰岛素药物
1、重组人胰岛素:Humulin、Novoli 2、重组人胰岛素类似物:赖脯胰岛素 Humalog,作用快 3、甘精胰岛素:Lantus 4、门冬胰岛素:Novolog:速效
Humulin
Humalog
40
曾经的II型糖尿病治疗药物
41
种类 产生细胞 α-干扰素 白细胞
IFN-α1b
简述基因工程制药的基本流程

简述基因工程制药的基本流程基因工程制药是通过人工改造和调整生物体的基因来生产更有效、更安全的药物。
它的基本流程包括以下几个关键步骤。
1. 目标基因的筛选:在基因工程制药的过程中,首先需要确定目标基因。
目标基因是指具有治疗或预防特定疾病能力的基因。
研究人员通过分析遗传病或其他需要治疗的疾病的相关机制,找到与之相关的基因。
2. 基因克隆:在筛选目标基因后,研究人员需要对其进行基因克隆。
基因克隆是指将目标基因从其所在的生物体中分离出来,并通过PCR(聚合酶链式反应)等方法进行复制,形成多个完全相同的基因。
3. 基因的调整与修改:在基因工程制药中,研究人员还需要对目标基因进行调整和修改,以增强其表达或改变其特定性。
调整和修改的方法包括点突变、插入、删除或拼接等,以获得更理想的基因序列。
4. 载体构建:基因工程制药中常用的方法是将目标基因插入到载体中,通过载体帮助基因进入到目标生物体中并进行表达。
载体通常是一段DNA序列,包含促进基因表达和复制的区域。
在构建载体时,研究人员将目标基因与载体的DNA序列进行连接。
5. 重组表达:完成载体构建后,研究人员将其导入到宿主细胞中,并通过转染等方式使其表达。
在宿主细胞内,目标基因会被转录成mRNA,并通过翻译合成蛋白质。
6. 蛋白质纯化和药物制备:蛋白质是常见的生物制药产品,所以在基因工程制药中,研究人员需要对目标蛋白质进行纯化和制备。
纯化的目的是去除其他无关的蛋白质和杂质,使得产生的药物更纯净、更安全。
7. 药物测试和临床实验:基因工程制药生产的药物需要进行一系列的测试和临床实验,以确保其药效和安全性。
这些测试包括药理学、毒理学和临床试验等,通过这些测试可以评估药物的活性、剂量和不良反应等。
参考内容:[1] Rodin, A. S., & Antonova, O. V. (2021). Basic principles of genetic engineering for the production of pharmaceuticals [J]. Tomsk State University Journal of Biology, (4), 285-301.[2] Thomas, S., Sheela, S., & Skariah, K. (2011). Basic concepts in molecular biology related to genes, heredity, and genetic engineering–Review[J]. Indian journal of dental research: official publication of Indian Society for Dental Research, 22(5), 683. [3] Rao, P. A., Prudhvi, K. L., & Padmanaban, G. (2021). Principles and practice in genetic engineering: genome editing and its application in human therapeutics [J]. Journal of Advanced Research, 28, 43-56.[4] Sprouffske, K., Wagner, J. B., Weaver, L. T., & Adams, W. W. (2019). Genetic engineering as a tool for controlling infectious diseases: A guide [J]. Journal of infectious diseases, 219(12), 1871-1880.。
基因工程药物的综述

基因工程药物的研究及进展摘要:20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。
本文以基因工程药物的发展为导向,简要的介绍了国内外基因工程药物的发展概况、研究现状、研究方向、发展方向。
关键词:基因工程,药物,现状,发展1 基因工程药物的发展概况20世纪70年代,随着DNA重组技术的成熟,诞生了基因工程药物,高产值、高效率的基因药物给医药产业带来了一场革命,推动了整个医药产业的发展,医药产业进入了新的历史时期。
基因药物经历了三个阶段:第一阶段是把药用蛋白基因导入到大肠杆菌等细菌中,通过大肠杆菌等表达药用蛋白,但这类药物往往有缺陷,人类的基因在低等生物的细菌中往往不表达或表达的蛋白没有生物活性。
第二阶段是人们用哺乳动物的细胞代替细菌,生产第二代基因工程药物。
但由于哺乳动物细胞培养条件相对苛刻,生产的药物成本居高不下。
第一、二代基因药物的研制和生产已经成熟。
从第一个反义核酸药物Vitrovene于1998年和1999相继在美国和欧洲上市以来,发展迅速。
第三阶段是到了80年代中期,随着基因重组和基因转移技术的不断发展和完善,科学家可以将人们所需要的药用蛋白基因导入NN-~L动物体内,使目的基因在哺乳动物身上表达,从而获得药用蛋白。
携带外源基因并能稳定遗传的这种动物,我们称之为转基因动物。
由于从哺乳动物乳汁中获取的基因药物产量高、易提纯,因此利用乳腺分泌出的乳汁生产药物的转基因动物称为“动物乳腺生物反应器”。
90年代中后期,国际上用转基因牛、羊和猪等家畜生产贵重药用蛋白的成功实例已有几十种,一些由转基因动物乳汁中分离的药物正用于临床试验,但还没有一例药品成功上市。
2 基因工程药物的研究现状2.1国外基因工程药物研究现状随着1971年第一家生物制药公司Cetus公司在美国的成立,1973年重组DNA技术的出现,生物医药即已显示出巨大的应用价值和商业前景。
基因工程制药的基本过程

基因工程制药的基本过程
1.挑选目标基因:首先,需要从目标生物体的染色体中选出需
要改变或增加的基因。
这个基因可能与药物制备过程中的蛋白质结构或生物反应有关。
2.克隆基因:将目标基因从生物体中提取出来,使用PCR技
术扩增并纯化。
然后将其插入到载体DNA中,形成重组DNA。
3.转化细胞:重组DNA必须被转移到生产大量蛋白的细胞中。
这个过程称为转化,它可以通过多个方法实现,如电化或化学转化。
4.筛选、培养转化细胞:转化后的细胞需要筛选和培养,以找
到涌现出目标蛋白的那些转化细胞。
5.表达目标蛋白:在培养细胞中,重组基因被激活并转录成mRNA分子,然后翻译成目标蛋白。
这个过程通常需要添加
诸如摇动培养、温度调节以及细胞培养基的特殊条件。
6.分离目标蛋白:蛋白质表达后,进一步需要通过纯化和分离
方法来获取足够纯净和高质量的目标蛋白。
7.制药:最后,这些蛋白质将被用于药物研发,包括临床试验、药物注册以及与制药公司和医疗保健专业人士合作推广这些药物。
基因工程药物

§-4 实 例
糖尿病: 糖尿病是个历史悠久的慢性代谢性疾
病,有文字记载的历史已有上千年。但 对糖尿病病因的了解和治疗上有实质上 的进展还不到一百年。
37
胰岛素与糖尿病:
胰岛素的发现对改变糖尿病患者的命 运及揭示糖尿病的病因及相关影响因素 意义重大。
38
胰岛素的结构
S
S
GLYILEVALGLUGLNCYSCYSTHRSERILECYSSERLEUTYRGLNLEUGLUASNTYRCYSASN
A链
S
S
S
S
B链
PHEVALASNGLNHISLEUCYSGLYSERHISLEUVALGLUALALEUTYRLEUVALCYSGLYGLUARGGLYPHEPHETYRTHRPROLYSTHR
39
人胰岛素的一级结构
胰岛素的两个肽链分别为21个氨基酸组 成的A链和30个氨基酸组成的B链,氨基酸排 列有种属差异。
即先合成人胰岛素 的前体,即胰岛素 原,再用酶切除C肽 而制备人胰岛素。
C肽 A链
B链
44
合成人胰岛素原的DNA
引入大肠杆菌K-1 2 株,生成与色氨酸合成
酶相连的人胰岛素原
以溴化氰切断、 纯化
在β-巯基乙醇存在下使胰岛素原分子折叠,在正
确的位置 形成二硫键
精制
用胰蛋白酶切断C 肽、用羧肽酶B除去B链C
46
以酵母菌为宿主细胞进行合成人胰岛素。
47
48
28
③小规模试验的情况下原本是安全的供 体、载体、受体等实验材料,在大规模 生产时完全有可能产生对人和其它生物 及其生存环境的危害。
29
④在短期研究和开发利用期间内是安全 的基因工程药物很可能在长期使用后产 生无法预料的危害。 后两种情况一旦 发生,将会是不可逆的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Key words:Gene engineering;medicine;research;trends摘要:由于医药生物技术拥有巨大的市场和高利润的回报,所以目前基因工程药物在一些国家迅速发展,其研究动态也体现在各国的基因工程药物产业的发展上,本文在深入分析我国基因工程药物产业现状的基础上,根据当前生物技术的发展情况,阐述了我国基因工程药物发展的历史﹑特点及其发展趋势。
关键词:基因工程;药物;研究;动态。
正文:1 基因工程药物基因工程药物是先确定对某种疾病有预防和治疗作用的蛋白质,然后将控制该蛋白质合成过程的基因取出来,经过一系列基因操作,最后将该基因放入可以大量生产的受体细胞中去,这些受体细胞包括细菌、酵母菌、动物或动物细胞、植物或植物细胞,在受体细胞不断繁殖过程中,大规模生产具有预防和治疗这些疾病的蛋白质,即基因疫苗或药物。
在医学和兽医学中应用正逐步推广。
以乙型病毒性肝炎(以下简称乙肝)疫苗为例,像其他蛋白质一样,乙肝表面抗原(HBSAg)的产生也受DNA调控。
利用基因剪切技术,用一种"基因剪刀"将调控HBSAg的那段DNA剪裁下来,装到一个表达载体中,所谓表达载体,是因为它可以把这段DNA的功能发挥出来;再把这种表达载体转移到受体细胞内,如大肠杆菌或酵母菌等;最后再通过这些大肠杆菌或酵母菌的快速繁殖,生产出大量我们所需要的HBSAg(乙肝疫苗)。
目前有很多基因工程对人类的贡献典例。
长期以来,医学工作者在防治乙肝方面做了大量工作,但曾一度陷于困境。
乙肝病毒(HBV)主要由两部分组成,内部为DNA,外部有一层外壳蛋白质,称为HBSAg。
把一定量的HBSAg注射入人体,就使机体产生对HBV抗衡的抗体。
机体依靠这种抗体,可以清除入侵机体内的HBV。
过去,乙肝疫苗的来源,主要是从HBV 携带者的血液中分离出来的HBSAg,这种血液是不安全的,可能混有其他病原体[其他型的肝炎病毒,特别是艾滋病病毒(HIV)]的污染。
此外,血液来源也是极有限的,使乙肝疫苗的供应犹如杯水车薪,远不能满足全国的需要。
基因工程疫苗解决了这一难题。
与上述的血源乙肝疫苗相比,基因工程生产的乙肝疫苗,取材方便,利用的是资源丰富的大肠杆菌或酵母菌,它们有极强的繁殖能力,并借助于高科技手段,可以大规模生产出质量好、纯度高、免疫原性好、价格便宜的药物。
在小孩出生后,按计划实施新生儿到六个月龄内先后注射三次乙肝疫苗的免疫程序,就可获得终身免疫,免受乙型肝炎之害。
正是基于1996年我国已有能力生产大量的基因工程乙肝疫苗,我国才有信心遏制这一威胁人类健康最严重、流行最广泛的病种。
这是基因工程药物对人类的贡献典例之一。
基因工程药物另一个重要应用就是干扰素的生产。
当人或动物受到某种病毒感染时,体内会产生一种物质,它会阻止或干扰人体再次受到病毒感染,故人们把此种物质称为干扰素(Interfero,简称IFN),是1957年英国科学家多萨克斯(Lossaacs)和林德曼(Lindenmann)在研究流感病毒干扰现象时发现的。
干扰素具有广谱抗病毒的效能,是一种治疗乙肝的有效药物,国际上批准治疗丙型病毒性肝炎的药物只有它。
但是,通常情况下人体内干扰素基因处于"睡眠"状态,因而血中一般测不到干扰素。
只有在发生病毒感染或受到干扰素诱导物的诱导时,人体内的干扰素基因才会"苏醒",开始产生干扰素,但其数量微乎其微。
即使经过诱导,从人血中提取1mg干扰素,需要人血8000ml,其成本高得惊人。
据计算:要获取1磅(453g)纯干扰素,其成本高达200亿美元。
使大多数病人没有使用干扰素的能力。
1980年后,干扰素与乙肝疫苗一样,采用基因工程进行生产,其基本原理及操作流程与乙肝疫苗十分类似。
现在要获取1磅(453g)纯干扰素,其成本不到1亿美元。
基因工程生产出来的大量干扰素,是基因工程药物对人类的又一重大贡献。
随着基因工程技术的进展,基因工程药物正在不断增加,创造了可以长期获取更大利润的商机。
2 基因工程药物的发展历程自1972年DNA重组技术诞生以来,作为现代生物技术核心的基因工程技术得到飞速的发展。
1982年美国Lilly公司首先将重组胰岛素投放市场,标志着世界第一个基因工程药物的诞生。
美国是现代医药生物技术的发源地,也是率先应用基因工程药物的国家,其基因工程技术研究开发以及产业化居于世界领先地位。
美国已拥有世界上一半的生物技术公司和一半的生物技术专利。
1996年美国就已有1300多家专门从事生物技术产品研究开发和生产的公司(其中70%是从事医药产品的开发公司),其销售额达1.01x101美元之多,年增长率为12%。
据1998年美国药学会统计,美国FDA已批准了56种生物技术医药产品上市,其中绝大多数为基因工程药物。
此外,还有200多种基因工程药物正在进行临床试验,其中至少有1/5的产品将可能在今后10年内上市。
1999年美国基因工程药物的销售额为7.56x1010美元(占生物技术产品总额的75%),年增长率为12.6%[4]。
基因工程药物为美国的一些公司创造了丰厚的回报,取得了巨大的经济效益和社会效益。
欧洲在发展基因工程药物方面也进展较快,英、法、德、俄等国在开发研制和生产基因工程药物方面成绩斐然,在生命科学技术与产业的某些领域甚至赶上并超过了美国。
我国基因工程药物的研究和开发起步较晚,直至20世纪70年代初才开始将DNA重组技术应用到医学上,但在国家产业政策的大力支持下,这一领域发展迅速,逐步缩短了与先进国家的差距。
1989年我国批准了第一个在我国生产的基因工程药物——重组人干扰素α1b,标志着我国生产的基因工程药物实现了零的突破。
重组人干扰素α1b是世界上第一个采用中国人基因克隆和表达的基因工程药物,也是到目前为止唯一的一个我国自主研制成功的拥有自主知识产权的基因工程一类新药[1,5]。
从此以后,我国基因工程制药产业从无到有,不断发展壮大。
1998年我国基因工程制药产业销售额已达到了7.2x109元。
截止1998年底,我国已批准上市的基因工程药物和疫苗产品共计15种,它们是:一类新药重组人干扰素α1b、一类新药重组bFGF(外用)、重组人表皮生长因子(外用)、重组人干扰素α2a、重组人干扰素α2b、重组人干扰素γ、重组人白细胞介素-2、重组人G-CSF、重组人GM-CSF、重组人红细胞生成素、重组链激酶、重组人胰岛素、重组人生长激素、重组乙肝疫苗、痢疾菌苗。
国内已有30余家生物制药企业取得基因工程药物或疫苗试生产或正式生产批准文号。
至2000年,我国已有200多家生物技术公司,有20多家生产销售人干扰素、白细胞介素、乙肝疫苗等12种基因工程药物。
3 基因工程药物产业的特点高技术:这主要表现在其高知识层次的人才和高新的技术手段。
生物制药是一种知识密集、技术含量高、多学科高度综合相互渗透的新兴产业。
以基因工程为例,上游技术涉及基因的合成、纯化与测序、基因的克隆与导入工程菌的培养与筛选等;下游技术涉及发酵工程、目标蛋白的纯化及工艺放大,产品的质量检测和保证,制剂的选择和贮藏。
以上还不包括药物的筛选和机制研究。
高投入:生物医药是一个投入相当大的产业,主要用于新产品的研究开发和医药厂房的建造和各种仪器设备的配置方面,目前国外开发一个新的生物药品平均费用在1~3x109美元,并随新药开发的难度增加而增加,有的高达6x109美元。
显然,雄厚的资金是开发成功的必要保障。
周期长:生物药品从开始研制到最终转化为产品要经过很多环节,实验室研究阶段、试生产阶段、临床研究阶段(Ⅰ,Ⅱ,Ⅲ期)、规模化生产阶段、市场商品化阶段以及监督,每个环节都要经过严格复杂的药政审批程序,而且产品培养和市场开发较难,所以开发一种新药周期较长,一般需要8~10年,甚至10年以上。
高风险:生物医药的开发存在较大的不确定性风险,新药的投资从生物筛选、药理、毒理等临床前实验,制剂处方确定性实验,生物利用度测试,直到用于人体的临床实验,以及注册上市和售后监督,一系列的步骤,可谓耗资巨大的系统工程,任何一个环节的失败都将前功尽弃。
一般来讲,一个基因工程药品的成功率仅有5~10%,时间要8~10年,另外市场竞争的风险也在日益加剧。
高回报:巨大风险背后蕴藏着高额的回报,生物工程药物的回报率都很高,一种新生物药品一般上市后2~3年即可回收全部投资。
尤其是拥有新产品、专利产品的企业,一旦开发成功便形成技术垄断优势,利润回报高达10倍以上。
美国Amgen 公司1989年推出的促红细胞生成素(EPO)和1991年推出的粒细胞集落刺激因子(G-CSF),在1997年的销售额已分别超过和接近2.0x1010美元,可以说生物药品一旦开发成功投放市场将获暴利。
4 我国基因工程药物产业存在的问题(1)同种产品生产厂家过多,造成市场恶性竞争,严重影响产业的健康发展:我国已批准上市的基因工程药物和疫苗绝大多数是多家生产。
例如干扰素a2a生产厂家有5家,干扰素a2b有5家,白细胞介素-2有10家,G-CSF有7家,GM-CSF有6家。
基因工程药物临床使用剂量一般都很小(微克级),通常2~3个厂家满负荷生产就能满足全国市场需要。
因此,过多厂家生产同一种基因工程药品势必造成市场过度竞争,使各生产企业的利润下降,同时还导致现有生产能力开工不足,成本增加,使企业不能获得合理利润,无法步入良性发展的轨道,甚至迫使有些企业严重亏损和破产。
这种重复生产的现象与我国新药研究开发的指导思想不无关系。
以往我国新药的研究开发是以引进开发为主,我国研制上市的和在研的新药绝大部分是仿制国外的,创新药物很少。
已批准的15种基因工程药物和疫苗中,只有干扰素a1b拥有我国自主知识产权。
在研的生物新药中,绝大多数是国外进入二、三期临床后我国开始跟踪研制的。
由此不难看出,我国新药研究开发缺乏创新和低水平重复是导致医药产业重复生产的源头[5,6]。
(2)科技投入明显不足:必要的资金投入是加快高科技及其产业发展的基本条件之一。
目前,我国R&D经费的投入,仅占国内生产总值的0.5%,远远低于世界上发达国家(占国内生产总值的比例均超过2.0%。
如美国2.6%,日本2.87%,德国2.58%,英国2.08%,法国2.42%),甚至也低于同为发展中国家的印度(其R&D经费占国内生产总值的0.89%)。
“九.五”期间“863”计划、攻关计划、重大基础研究计划、自然科学基金在生物技术与生命科学领域年经费投入合计约为4~5x109元人民币,尚不及国外一家大公司一年的研发投入。
到2000年,即使我国的R&D经费占生产总值达到预定1.5%的目标,也仍然相当程度地落后于发达国家。
(3)技术储备相对不足:创新成果不多,创新性的成果需要强大的基础性研究的支撑,只有基础性研究达到相当的广度和深度才可能促成“点”上的突破。