八年级(下)第一次月考数学试卷

合集下载

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题

河北省邢台市第十九中学2023-2024学年八年级下学期第一次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查适合普查的是( ) A .检测某城市的空气质量B .了解某市居民对废电池的处理情况C .日光灯厂要检测一批灯管的使用寿命D .学校在给学生订做校服前进行的尺寸大小的调查2.下列调查,样本具有代表性的是( )A .了解全校同学对课程的喜欢情况,对某班男同学进行调查B .了解某小区居民的防火意识,对你们班同学进行调查C .了解商场的平均日营业额,选在周末进行调查D .了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查 3.下列图象中,表示y 是x 的函数的个数有( )A .1个B .2个C .3个D .4个4.若点()2,3P m m ++在平面直角坐标系的x 轴上,则点P 的坐标为( ) A .()1,0-B .()0,1C .()1,0D .()0,1-5.为了解某市80000名学生参加初中毕业考试英语成绩情况,从中抽取了2000名考生的英语成绩进行统计分析,在这次调查中,下列说法:①这80000名学生参加初中毕业考试英语成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的是( ) A .①②③④B .②③④C .①④D .①③④6.如果A (1-a ,b +1)关于y 轴的对称点在第三象限,那么点B (1-a ,b )在( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图所示的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是( ) A .4:00气温最低 B .6:00气温为24 ℃C .14:00气温最高D .气温是30 ℃的时刻为16:008.已知等腰三角形的周长为24cm ,若底边长为y ,一腰长为x ,则y 与x 之间的函数关系式为( )A .()242012y x x =-<<B .()242612y x x =-<<C .()24012y x x =-<<D .()24612y x x =-<<9.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系10.下表列出了一次实验的统计数据,表示皮球从高处落下时,弹跳高度b 与下落高度d 的关系,试问下面哪个式子能表示这种关系( )A .2b d =B .2b d =C .2d b =D .25b d =+11.如图,在平面直角坐标系中,正三角形OAB 的顶点B 的坐标为()2,0,点A 在第一象限内,将OAB V沿直线OA 的方向平移至O A B '''△的位置,此时点A '的横坐标为3,则点B '的坐标为( )A .()3,3B .(C .(D .(12.下列说法正确的个数是( ) (1)若0ab =,则点(),P a b 表示原点(2)点()21,a -在第四象限(3)已知()1,3A -与()1,3B ,则直线AB 平行于y 轴(4)已知()1,3A -,AB y P 轴,且4AB =,则B 点的坐标为()1,1A .0个B .1个C .2个D .3个13.小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还.”如果用纵轴y 表示父亲与儿子行进中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图象与上述诗的含义大致吻合的是( )A .B .C .D .14.如图,在平面直角坐标系上有个点()1,0A -,点A 第1次向上跳动1个单位至点()11,1A -,紧接着第2次向右跳动2个单位至点()21,1A ,第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A 第2022次跳动至点2022A 的坐标是( )A .()506,1010-B .()506,1011C .()505,1010-D .()505,1011二、填空题15.某校八年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理,在得到的频数分布表中,各小组频数之和等于.若某一小组的频数为4,则该小组的频率为;若数据在0.95 1.15~这一小组的频率为0.3,则估计该校八年级学生视力在0.95 1.15~这一范围内的人数约为人.16.函数y =x 的取值范围是. 17.小丽家在学校北偏西60︒方向上,距学校4km ,以学校所在位置为坐标原点建立直角坐标系,1km 为一个单位长度,则小丽家所在位置的坐标为.18.如图1,点P 从ABC V 的顶点A 出发,沿A →B →C 匀速运动到点C ,图2是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则ABC V 的边AB 的长度为.三、解答题19.已知点()24,1P m m +-,试分别根据下列条件,求出点P 的坐标.(1)点P 在过点()2,3A -且与x 轴平行的直线上; (2)点P 到x 轴的距离是1; (3)点P 到x 轴,y 轴的距离相等.20.某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的统计图表图1 图2根据以上信息完成下列问题:(1)统计表中的m =______,n =______; (2)补全条形统计图;(3)扇形统计图中“B ”类所对应的圆心角是______度;(4)若该校有4000名学生,且正确字数在“A ”类和“B ”类的定为不合格,需要补考,求该校需要参加补考的学生人数.21.如图,在平面直角坐标系xOy 中,ABC V 的三个顶点分别为()3,4A -,()5,1B -,()1,2C -.(1)画出ABC V 关于x 轴对称的111A B C △,并写出点1B 的坐标;(2)画出111A B C △向右平移6个单位长度,再向上平移2个单位长度后的222A B C △,并写出点2B 的坐标; (3)求出ABC V 的面积.22.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题 (1)直接写出图中a ,m 的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.23.深圳市12号地铁线断安段正在施工,现甲乙两工程队共同承包,A B 两地之间的道路.两队分别从,A B 两地相向修建,已知甲队先施工3天,乙队才开始施工,乙队施工几天后因另有紧急任务暂停施工,因考虑工期,由甲队以原速的2倍修建,乙队完成紧急任务后又以原速恢复施工,直到道路修通,甲、乙两队各自修路长度与时间之间的关系如图所示,请结合图中信息解答下列问题.(1)在施工的过程中,甲队在提速后每天修道路米;乙队每天修路 米. (2)乙队共参与施工的天数是 天. (3)求,A B 两地之间的道路长度.24.已知平面直角坐标系内两点A 、B ,点(3,4)A -,点B 与点A 关于y 轴对称. (1)则点B 的坐标为________;(2)动点P 、Q 分别从A 点、B 点同时出发,沿直线AB 向右运动,同向而行,点P 的速度是每秒4个单位长度,点Q 的速度是每秒2个单位长度,设P 、Q 的运动时间为t 秒,用含t 的代数式表示OPQ ∆的面积S ,并写出t 的取值范围; (3)在平面直角坐标系中存在一点(,)M m m -,满足23MOB ABO S S ∆∆≤.求m 的取值范围.。

八年级下学期数学第一次月考试卷(附答案)

八年级下学期数学第一次月考试卷(附答案)

八年级数学下册第一次月考试卷满分:150分考试用时:120分钟范围:第十六章《二次根式》~第十七章《勾股定理》班级姓名得分一、选择题(本大题共10小题,共40.0分)1.要使√x+1有意义,则x的取值范围为()2A. x≤0B. x≥−1C. x≥0D. x≤−12.已知△ABC的三边之长分别为a、1、3,则化简|9−2a|−√9−12a+4a2的结果是()A. 12−4aB. 4a−12C. 12D. −123.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是()A. 4πB. 8πC. 12πD. 16π4.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为()A. 2B. √5−1C. √10−1D. √55.下列运算中,能合并成一个根式的是()A. √12−√2B. √18−√8C. √8a2+√2aD. √x2y+√xy26.已知a,b,c为互不相同的有理数,满足(b+√2)2=(a+√2)(c+√2),则符合条件的a,b,c共有()A. 0组B. 1组C. 2组D. 4组7.如下图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm8.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是△ABC的高,则BD的长为()A. 1013√13B. 913√13C. 813√13D. 713√139.如果实数a满足|2019−a|+√a−2020=a,那么a−20192的值是()A. 2017B. 2018C. 2019D. 202010.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m.则旗杆的高度(滑轮上方的部分忽略不计)为()A. 12mB. 13mC. 16mD. 17m二、填空题(本大题共10小题,共30.0分)11.要使代数式√2x−1x−1有意义,则x的取值范围是______.12.已知√7=a,√70=b,用含a、b的代数式表示√490=____________.13.已知△ABC中,∠A=12∠B=13∠C,则∠A、∠B、∠C所对的三条边之比为______.14.如图,一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ=_____________厘米.15.对于任意实数a,b,定义一种运算“∗”如下:a∗b=a(a−b)+b(a+b),如:3∗2=3×(3−2)+2×(3+2)=13,那么√3∗√2=.16.如果一个三角形的面积为√15,一边长为√3,那么这条边上的高为.17.如下图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为.18.如图,长方体的长为15,宽为10,高为20,点B离点C距离是5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离为.19.如图所示,正方体的棱长为√2cm,用经过A、B、C三点的平面截这个正方体,所得截面的周长是______ cm.20. a 1=1+112+122,a 2=1+122+132,a 3=1+132+142,⋯⋯,a n =1+1n 2+1(n+1)2,其中n 为正整数,则√a n 的值是__________.三、解答题(本大题共6小题,共80.0分) 21. (12分)计算下列各式(1)(13)−2+6√3−√12+(1−√2)0(2)y x +1x +y ⋅(x −y 2x )22. (12分)如图,OA ⊥OB ,OA =45海里,OB =15海里,我国钓鱼岛位于O 点,我国渔政船在点B 处发现有一不明国籍的渔船,自A 点出发沿着AO 方向匀速驶向钓鱼岛所在地点O ,我国渔政船立即从B 处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C 处截住了渔船.(1)请用直尺和圆规作出C 处的位置;(2)求我国渔政船行驶的航程BC 的长.23.(12分)阅读理解材料:把分母中的根号化掉叫做分母有理化,例如:①2√5=2√5√5⋅√5=2√55;②1√2−1=1×(√2+1)(√2−1)(√2+1)=√2+1(√2)2−12=√2+1等运算都是分母有理化.根据上述材料,(1)化简:1√3−√2(2)计算:1√2+1+1√3+√2+1√4+√3+⋯+1√10+√9.24.(14分)已知四边形ABCD中,BC=DC,对角线AC平分∠BAD.(1)作CE⊥AB,CF⊥AD,E、F分别为垂足.求证:△BCE≌△DCF.(2)如果AB=21,AD=9.BC=DC=10,求对角线AC的长.25.(14分)已知a,b为实数,且a=√5b−35+√7−b+3,求√(a−b)2的值.26.(16分)超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100m的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A处行驶到B 处所用的时间为3s,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了80km/ℎ的限制速度?(√3≈1.732)答案1.B2.A3.B4.C5.B6.A7.A8.D9.D10.D11.x≥12且x≠112.ab13.1:√3:214.2015.516.2√517.218.2519.620.n2+n+1n2+n21.解:(1)原式=9+2√3−2√3+1=10;(2)原式=yx +1x+y·x2−y2x=yx+1x+y·(x+y)(x−y)x=yx+x−yx=1.22.解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45−x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.23.解:(1)原式=√3+√2=√3+√2;(√3−√2)(√3+√2)(2)原式=√2−1+√3−√2+⋯+√10−√9=√10−1.24.(1)证明:∵AC平分∠BAD,且CE⊥AB,CF⊥AD;∴CF=CE;又∵CD=BC;∴Rt△BCE≌Rt△DCF.(2)解:取AG=AD,作CH⊥AB,垂足为H,得△ADC≌△AGC,∴AG=AD=9,CG=CD=10;∴CG=CB;∴△CGB为等腰三角形.∵GB=AB−AG=21−9=12,GH=HB=6;∴CH2=100−36=64,∴CH=8;GB=9+6=15;∴AH=AG+GH=9+12Rt△ACH中,AC2=AH2+CH2=152+82=172∴AC=17.25.由题意得{5b−35⩾07−b⩾0,解得b=7,∴a=√5b−35+√7−b+3=3,∴√(a−b)2=√(3−7)2=4.26.解:此车超过80km/ℎ的限制速度.理由如下:在Rt△APO中,∠APO=60°,则∠PAO=30°,∴AP=2OP=200m,AO=√AP2−OP2=√2002−1002=100√3(m),在Rt△BOP中,∠BPO=45°,则BO=OP=100m,∴AB=AO−BO=(100√3−100)m,∴从A到B小车行驶的速度为(100√3−100)÷3≈24.4(m/s)=87.84km/ℎ>80km/ℎ,∴此车超过80km/ℎ的限制速度.。

八年级下数学第一次月考试题

八年级下数学第一次月考试题

八年级数学试题一、选择题(本大题共l0小题,每小题3分,共30分) 1 2 3 4 5 6 7 8 9 101、民间剪纸是中国民间美术形式之一,有着悠久的历史,下列图案是中心对称图形的是A 、B 、C 、D 、2、为了了解一批电视机的使用寿命,从中抽取100台电视机进行试验,这个问题的样本是 A . 这批电视机B . 这批电视机的使用寿命C . 抽取的100台电视机的使用寿命D . 100台3、下面有四种说法 ①了解某一天出入扬州市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. 其中,错误的说法是 A 、① B 、② C 、③ D 、④4、有两个完全相同的抽屉和3个完全相同的白色球,要求抽屉不能空着,那么第一个抽屉中有2个球的概率是52.32.31.21.D C B A 5、下列成语所描述的事件为必然事件的是A 、水中捞月B 、拔苗助长C 、守株待兔D 、瓮中之鳖 6、根据下列条件,能判断出一个四边形是平行四边形的是 A .一组对边相等 B .两条对角线互相平分C .一组对边平行D .两条对角线互相垂直 7、如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C ′. 若∠A =40°.∠B ′=110°,则∠BCA ′的度数是 A .30° B .40° C .80° D . 110°8、如图,在平行四边形ABCD 中,AB =3cm ,BC =5cm ,对角线AC ,BD 相交 于点O ,则OA 的取值范围是A.1cm<OA<4cm B.2cm<OA<8cmC.2cm<OA<5cm D.3cm<OA<8cm9、下列性质中,矩形具有而平行四边形不一定具有的是A 对角线互相平分B 对角线相等C 两组对角相等D 两组对边平行且相等10、对于四边形ABCD,给出下列4组条件:①∠A=∠B=∠C=∠D,②∠B=∠C=∠D,③∠A=∠C,∠B=∠D,④∠A=∠B=∠C=90。

人教版八年级下学期第一次月考数学试卷含答案解析

人教版八年级下学期第一次月考数学试卷含答案解析

八年级(下)第一次月考数学试卷一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>32.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣24.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是35.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.37.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,408.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题(每空3分,共24分)11.当x时,式子有意义;当x时,式子有意义.12.已知:,则x2﹣xy=.13.当x时,.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.18.已知,则=.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=.化简计算:(+++…+).-湖北省黄石市慧德学校八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.若为二次根式,则m的取值为()A.m≤3 B.m<3 C.m≥3 D.m>3【考点】二次根式有意义的条件.【分析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3﹣m≥0,解得m≤3.故选A.【点评】主要考查了二次根式的意义和性质.二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列式子中二次根式的个数有()(1);(2);(3);(4);(5);(6);(7).A.2个B.3个C.4个D.5个【考点】二次根式的定义.【分析】根据二次根式的概念“形如(a≥0)的式子,即为二次根式”,进行分析.【解答】解:根据二次根式的概念,知(2)(6)中的被开方数都不会恒大于等于0,故不是二次根式;(4)中的根指数是3,故不是二次根式;故二次根式是(1)(3)(5)(7),共4个.故选C.【点评】此题考查了二次根式的概念,特别要注意a≥0的条件.3.当有意义时,a的取值范围是()A.a≥2 B.a>2 C.a≠2 D.a≠﹣2【考点】二次根式有意义的条件;分式有意义的条件.【分析】本题主要考查代数式中字母的取值范围,代数式中主要有二次根式和分式两部分.【解答】解:根据二次根式的意义,被开方数a﹣2≥0,解得a≥2;根据分式有意义的条件,a﹣2≠0,解得a≠2.∴a>2.故选B.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.4.对于二次根式,以下说法不正确的是()A.它是一个正数B.是一个无理数C.是最简二次根式D.它的最小值是3【考点】最简二次根式.【分析】根据二次根式的性质,被开方数大于等于0,根据非负数的性质,逐一判断.【解答】解:∵x2+9总是正数,∴当x=0时,二次根式==3,是个有理数,∴B错.故选B.【点评】本题考查了两个非负数的性质:≥0(a≥0),a2≥0.5.要登上某建筑物,靠墙有一架梯子,底端离建筑物5m,顶端离地面12m,则梯子的长度为()A.12m B.13m C.14m D.15m【考点】勾股定理的应用.【分析】如(解答)图,AB为梯子长,AC为底端离建筑物的长5m,BC为顶端离地面的长12m;根据勾股定理即可求得.【解答】解:如图:∵AC=5m,BC=12m,∠C=90°∴AB==13m故选B.【点评】此题考查了勾股定理的应用.解题时要注意数形结合思想的应用.6.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,则线段AE的长为()A.1.5 B.2 C.2.5 D.3【考点】勾股定理.【分析】由AB垂直于BC,得到三角形ABC为直角三角形,进而由AB及BC的长,利用勾股定理求出AC的长,由AC垂直于CD,得到三角形ACD为直角三角形,由AC及CD 的长,利用勾股定理求出AD的长,由DE垂直于AD,得到三角形ADE为直角三角形,由AD及DE的长,利用勾股定理即可求出AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴由勾股定理得:AC==;AD==;AE==2.故选B.【点评】此题考查了勾股定理的运用,熟练掌握勾股定理是解本题的关键.7.下列几组数中,不能作为直角三角形三边长度的是()A.1.5,2,2.5 B.3,4,5 C.5,12,13 D.20,30,40【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个三角形就不是直角三角形.【解答】解:A、1.52+22=2.52,符合勾股定理的逆定理,故错误;B、32+42=52,符合勾股定理的逆定理,故错误;C、52+122=132,符合勾股定理的逆定理,故错误;D、202+302≠402,不符合勾股定理的逆定理,故正确.故选D.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.8.如果正方形ABCD的面积为,则对角线AC的长度为()A.B.C.D.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半得出AC的长即可.【解答】解:∵正方形ABCD的面积为,AC=BD,∴AC×BD=,则AC2=,故AC=,故选:A.【点评】此题主要考查了正方形的性质,利用正方形的面积等于对角线乘积的一半得出是解题关键.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.【点评】本题考查翻折的性质、勾股定理,利用翻折不变性是解决问题的关键,学会转化的思想去思考问题.10.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2【考点】翻折变换(折叠问题).【分析】首先根据翻折的性质得到ED=BE,再设出未知数,分别表示出线段AE,ED,BE 的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.【点评】此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.二、填空题(每空3分,共24分)11.当x≥﹣1时,式子有意义;当x>2时,式子有意义.【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据二次根式有意义的条件可得x+1≥0,再解即可;根据二次根式有意义的条件和分式有意义的条件可得,再解不等式组即可.【解答】解:由题意得:x+1≥0,解得:x≥﹣1;由题意得:,解得:x>2,故答案为:≥﹣1;>2.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数;分式有意义的条件是分母不等于零.12.已知:,则x2﹣xy=8.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质列出方程求出x、y的值,然后代入所求代数式计算即可.【解答】解:∵,∴,解得,∴x2﹣xy=4+4=8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.当x≤时,.【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=|2x﹣1|,结合二次根式以及绝对值的性质求解.【解答】解:∵=1﹣2x根据算术平方根的结果为非负数,可知1﹣2x≥0,解得x≤,故当x≤时,=1﹣2x.【点评】根据算术平方根的结果为非负数,列不等式是解题的关键.故答案为:“两直线平行,同位角相等”.15.如图是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两直角边分别为6和4.【考点】勾股定理.【分析】设全等的直角三角形的两直角边长分别为a,b(a>b),则根据已知条件和勾股定理得到a2+b2=52,(a﹣b)2=4,根据这两个等式可以求出a,b的长.【解答】解:设全等的直角三角形的两直角边长分别为a,b(a>b>0),∵图中大小正方形的面积分别为52和4,∴a2+b2=52,(a﹣b)2=4,∴a﹣b=2,∴a=b+2,代入a2+b2=52中得:(b+2)2+b2=52,整理得(x﹣4)(x+6)=0∴b1=4,b2=﹣6(不合题意舍去),∴a=4+2=6,∴直角三角形的两条直角边的长分别为4,6,故答案为:6和4.【点评】此题主要考查了勾股定理和三角形,正方形的面积公式,解题关键在于找出各边关系列出方程.16.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是10.【考点】平面展开-最短路径问题.【专题】应用题.【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故答案为:10.【点评】本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.17.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.18.已知,则=.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,求出满足两个被开方数条件的x的值.【解答】解:依题意有x﹣2≥0且2﹣x≥0,解得x=2,此时y=,则=.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式,此时≥0;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、计算:(16分)19.计算下列各题:(1);(2)(4+)(4﹣);(3)(3﹣2+)÷2;(4).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)根据二次根式的乘法法则运算;(2)利用平方差公式计算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算;(4)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式=﹣=﹣=﹣46=﹣24;(2)原式=16﹣5=11;(3)原式=(6﹣+4)÷2=÷2=;(4)原式=++=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共6小题,共50分.)20.已知:x=+1,y=﹣1,求下列代数式的值.(1)x2﹣xy+y2(2)x2﹣y2.【考点】二次根式的化简求值.【分析】(1)把式子写成(x﹣y)2﹣xy的形式,然后代入求值即可;(2)把式子写成(x+y)(x﹣y)的形式,然后代入求解即可.【解答】解:(1)原式=(x﹣y)2+xy=22+(+1)(﹣1)=4+2=6;(2)原式=(x+y)(x﹣y)=2×2=4.【点评】本题考查了求代数式的值,正确对代数式进行变形可以简化运算过程.21.已知:如图,Rt△ABC中,∠C=90°,AC=,BC=,求(1)Rt△ABC的面积;(2)斜边AB的长.【考点】二次根式的应用.【分析】(1)利用二次根式的乘法运算公式直接求出即可;(2)利用勾股定理和完全平方公式求出AB即可.【解答】解:(1)Rt△ABC的面积=AC×BC=×(+)(﹣)=;(2)斜边AB的长==.答:斜边AB的长为.【点评】此题主要考查了二次根式的应用,正确利用乘法公式进行计算求出是解题关键.22.如图,四边形ABCD中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边形ABCD 的面积.【考点】勾股定理;勾股定理的逆定理.【专题】计算题.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD 的形状,最后利用三角形的面积公式求解即可.【解答】解:连接AC,如下图所示:∵∠ABC=90°,AB=3,BC=4,∴AC==5,在△ACD中,AC2+CD2=25+144=169=AD2,∴△ACD是直角三角形,∴S=ABBC+ACCD=×3×4+×5×12=36.四边形ABCD【点评】本题考查的是勾股定理、勾股定理的逆定理及三角形的面积,根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键,难度适中.23.如图所示,有一条等宽的小路穿过长方形的草地ABCD,若AB=60m,BC=84m,AE=100m,则这条小路的面积是多少?【考点】生活中的平移现象;勾股定理.【专题】几何图形问题.【分析】根据勾股定理,可得BE的长,再根据路等宽,可得FD,根据矩形的面积减去两个三角形的面积,可得路的面积.【解答】解;路等宽,得BE=DF,△ABE≌△CDF,由勾股定理,得BE==80(m)S△ABE=60×80÷2=2400(m2)路的面积=矩形的面积﹣两个三角形的面积=84×60﹣2400×2=240(m2).答:这条小路的面积是240m2.【点评】本题考查了生活中的平移现象,先求出直角三角形的直角边的边长,再求出直角三角形的面积,用矩形的面积减去三角形的面积.24.如图,折叠长方形一边AD,点D落在BC边的点F处,BC=10cm,AB=8cm,求:(1)FC的长;(2)EF的长.【考点】矩形的性质;翻折变换(折叠问题).【专题】应用题.【分析】(1)由于△ADE翻折得到△AEF,所以可得AF=AD,则在Rt△ABF中,第一问可求解;(2)由于EF=DE,可设EF的长为x,进而在Rt△EFC中,利用勾股定理求解直角三角形即可.【解答】解:(1)由题意可得,AF=AD=10cm,在Rt△ABF中,∵AB=8,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)由题意可得EF=DE,可设DE的长为x,则在Rt△EFC中,(8﹣x)2+42=x2,解得.【点评】本题主要考查了矩形的性质以及翻折的问题,能够熟练运用矩形的性质求解一些简答的问题.25.观察下列等式:①=+1;②=+;③=+;…,(1)请用字母表示你所发现的律:即=﹣.化简计算:(+++…+).【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,发现:连续两个正整数的算术平方根的和乘以这两个算术平方根的差积是1,根据二次根式的乘法,可得答案;(2)根据上述规律,可得答案.【解答】解:(1)请用字母表示你所发现的律:即=﹣(n为正整数),故答案为:﹣;(2)原式=﹣1+﹣+﹣+…+﹣+﹣=﹣1=2﹣1.【点评】本题考查了分母有理化,认真观察等式,发现规律是解题关键.。

人教版八年级下第一次月考数学试题及答案

人教版八年级下第一次月考数学试题及答案

八年级下第一次月考数学试卷一、选择题(每小题3分,共30分) 1.代数式xx n m n m a x 232、、、-+中,分式有( ) A.4 个 B. 3 个 C.2 个 D.1个2.对于反比例函数x y 2=,下列说法不正确的是( ) A.点(-2,-1)在它的图象上 B.它的图象在第一、三象限C.当0 x 时,y 随x 的增大而增大D.当0 x 时,y 随x 的增大而减小 3.若分式392--x x 的值为0,则x 的值是( ) A.-3 B.3 C. ±3 D.04.以下是分式方程1211=--xx x去分母后的结果,其中正确的是( )A.112=--xB.112=+-xC.x x 212=--D.x x 212=+-5.如图,点A 是函数xy 4=图象上的任意一点,AB ⊥x 轴于点B,AC ⊥y 轴于点C ,则四边形OBAC 的面积为( )A.2 B .4 C.8 D.无法确定6.下列分式一定有意义的是( ) A. 12+x x B. 22x x + C. 22--x x D.32+x x 7.已知反比例函数()0 k xk y =的图象上有两点A ()11y x ,,B ()22y x ,,且21x x ,则21y y -的值是( )A.正数B.负数C.非正数D.不能确定8.若关于x 的方程xm x x -=--223无解,则m 的值为( ) A.2 B.0 C.-1 D .19.下列运算中,错误的是( ) A.1-=+--b a b a B.ba b a b a b a 321053.02.05.0-+=-+ C.yx y x y xy x y x +-=++-22222 D.223m m m m m +=+ 10.在一段坡路,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段OC B A x y5题图路上、下坡的平均速度是每小时( )A. 221v v +千米B.2121v v v v +千米 C. 21212v v v v +千米 D.无法确定 二、填空题(每小题3分,共30分)11.写出一个图象位于第一、三象限的反比例函数的表达式: .12.反比例函数k x k y (=≠0)的图象经过点A(-3,1),则k 的值为 . 13.若分式31--x x 的值是负数,那么x 的取值范围是 . 14.用科学计数法表示:-0.00002006= . 15.计算0122004(521)1()π-÷-⎪⎭⎫ ⎝⎛+--的结果是 . 16.轮船顺水航行46千米和逆水航行34千米所用的时间恰好相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/小时.17.化简:=++-44422a a a . 18.如图所示是三个反比例函数x k y x k y x k y 321,,===的图象,由此观察1k 、2k 、3k 的大小关系是 (用“<”连接).19.已知反比例函数xa y =和一次函数b kx y +=的图象的两个交点分别是A(-3,-2)、B(1,m ), 则b k -2= .20.一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要 小时.三、解答题: 21.(6分)先化简,再求值:x x x x +÷⎪⎭⎫⎝⎛--+211111,其中x =5.y=k 3x y=k 2x y=k 1x O xy 18题图22.解方程(每小题6分,共12分)(1)125552=-+-x x x (2)6272332+=++x x23.(6分)在平面直角坐标系XOY 中,反比例函数x k y =的图象与xy 3=的图象关于x 轴对称,又与直线2+=ax y 交于点A (m ,3),试确定a 的值.24.(8分)已知函数21y y y +=,且1y 与x 成反比例函数关系,2y 与(2-x )成正比例函数关系.当x =1时,y =-1;当x =3时,y =5.求x =5时,y 的值.25.(8分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km 的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.26.(10分)学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为X 吨,那么这批煤能维持Y 天.(1)则Y 与X 之间有怎样的函数关系?(2)若每天节约0.1吨,则这批煤能维持多少天?27.(10分)如图所示,已知一次函数y=kx+b 的图象与反比例函数x y 8-=的图象交于A 、B 两点,且点A 的横坐标和B 点的纵坐标都是-2.(1)求一次函数的解析式;(2)求∆AOB 的面积.O BA x y 27题图参考答案1.B ;2.C ;3.A ;4.D ;5.B ;6.A ;7.D ;8.D ;9.D ;10.C ;11.x y 2=;12.3;13.1<x <3;14.-2.006×10-5;15.-2;16.8.5;17. 24+-a a ;18. 1k <3k <2k ;19.0;20.yx xy +; 21.原式=12--x x ,当x =5时,原式=25-; 22.(1)x =0,(2)x =-2;23. a =-1; 24. ()243-+=x x y ,当x =5时,y =563; 25.4;26.(1)x y 90=,(2)180;27.(1)x y -=+2,(2)6.。

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)

人教版数学八年级(下)第一次月考测试卷(含答案)一.选择题(每小题3分,共30分)1.(3分)下列计算不正确的是()A.B.C.D.=2+32.(3分)下列根式中,属于最简二次根式的是()A.B.C.D.3.(3分)有下列各组数:①3,4,5;②62,82,102;③0.5,1.2,1.3;④1,,.其中勾股数有()A.1组B.2组C.3组D.4组4.(3分)下列条件中,不能判断一个三角形是直角三角形的是()A.三个角的比为1:2:3B.三条边满足关系a2=b2﹣c2C.三条边的比为1:2:3D.三个角满足关系∠B+∠C=∠A5.(3分)如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,AD为△ABC的高,则AD的长为()A.B.C.D.6.(3分)如图,在平面直角坐标系中,点P坐标为(﹣3,2),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.﹣5和﹣4之间C.3和4之间D.4和5之间7.(3分)国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.(3分)如果一个三角形的三边长分别为、k、,则化简﹣|2k﹣5|的结果是()A.﹣k﹣1B.k+1C.3k﹣11D.11﹣3k9.(3分)如图,是由四个全等的直角三角形拼成的“赵爽弦图”,得到正方形ABCD与正方形EFGH,连结DF.若S正方形ABCD=5,EF=BG,则DF的长为()A.2B.C.3D.10.(3分)如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n(n是整数,且n≥4)行从左向右数第(n﹣3)个数是(用含n的代数式表示)()A.B.C.D.二.填空题(每小题3分,共15分)11.(3分)式子在实数范围内有意义,则实数x的取值范围是.12.(3分)α=﹣的倒数是.13.(3分)在△ABC中,若AB=AC=5,BC=6,则AC边上的高h=.14.(3分)若关于x的一元一次不等式组无解,则a的取值范围是.15.(3分)如图,△ABC中,∠ACB=90°,分别以AC、BC为斜边作等腰直角三角形S1、S2,以AB为边作正方形S.若S1与S2的面积和为9,则正方形S的边长等于.三.解答题(共9小题,共72分)16.(6分)计算:(1);(2).17.(6分)已知最简二次根式和可以合并,你能求出使有意义的x的取值范围吗?18.(6分)如图,有一个池塘,其底边长为10尺,一根芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B'.请你计算这个池塘水的深度和这根芦苇的长度各是多少?19.(8分)如图,学校有一块三角形空地ABC,计划将这块三角形空地分割成四边形ABDE 和△EDC,分别摆放“秋海棠”和“天竺葵”两种不同的花卉,经测量,∠EDC=90°,DC=3,CE=5,BD=7,AB=8,AE=1,求四边形ABDE的面积.20.(8分)如图,在梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°,折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.求AB的长.21.(8分)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c 的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.22.(10分)实数a在数轴上的对应点A的位置如图所示,b=|a﹣|+|2﹣a|.(1)求b的值;(2)已知b+2的小数部分是m,8﹣b的小数部分是n,求2m+2n+1的平方根.23.(11分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若动点P从点A出发,以每秒1cm的速度沿折线A﹣C﹣B运动,设运动时间为t秒(t>0).(1)当点P在AB边的垂直平分线上时,求t的值;(2)当点P在∠BAC的平分线上时,求t的值.24.(12分)规律探索题:细心观察如图,认真分析各式,然后解答问题.;(S1是△OA1A2的面积);;(S2是△OA2A3的面积);;(S3是△OA3A4的面积);…(1)请用含有n(n为正整数)的等式S n=;(2)推算出OA10=;(3)求出的值.参考答案一.选择题(每小题3分,共30分)1.D;2.C;3.A;4.C;5.D;6.A;7.D;8.D;9.B;10.C;二.填空题(每小题3分,共15分)11.x>5;12.+;13.;14.a≥1;15.6;三.解答题(共9小题,共72分)16.(1);(2).;17.x≥2.;18.;19.四边形ABDE的面积为18.;20.6.;21.;22.(1);(2)±.;23.;24.;.。

八年级下数学第一次月考试卷及答案

八年级下数学第一次月考试卷及答案

A .B .C .D .八年级数学月考试卷(时间:100分钟 总分:120分)一、选择题(本题共10小题,每小题3分,共30分)1、如果a >b ,那么下列各式中正确的是……………………………………………( )A、a -2<b -2 B 、22ba < C 、-2a <-2b D 、-a >-b2、函数y =中,自变量x 的取值范围是………………………………………( ) A .2x >- B .2x -≥ C .2x ≠- D .2x -≤3、下列各式从左.到右.是因式分解的是………………………………………………( ) A 、(a +3)(a -3)=a 2-9 B 、x 2+x -5=(x -2)(x +3)+1C 、a 2b +ab 2=ab(a +b)D 、x 2+1=x(x +x1)4、已知点A (2-a ,a +1)在第一象限,则a 的取值范围是 ……………………( ) A.a >2 B.-1<a <2 C.a <-1 D.a <15、不等式x x 27)2(5+≤-的正整数解共有……………………………………….( ) A .3个 B .4个 C .5个 D .6个6、不等式组2x -⎧⎨≤的解集在数轴上表示正确的是………………………………( )7、若不等式组⎩⎨⎧>≤11x mx 无解,则m 的取值范围是 ….………………………………( )A.m <11B.m >11C.m ≤11D.m ≥18、把多项式)2()2(2a m a m -+-分解因式等于……………………………………( )A 、))(2(2m m a +-B 、))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1)9、下列四个不等式:(1)ac>bc ;(2)-<-ma mb ;(3)ac bc 22>;(4)-≤-ac bc 22中,能推出a>b 的有…………………………………………………………………( ) A. 1个B. 2个C. 3个D. 4个10、若n 为任意整数,()n n +-1122的值总可以被k 整除,则k 等于……………( )A. 11B. 22C. 11或22D. 11的倍数二、填空题(本题共10小题,每小题3分,共30分)1、x 与3的和不小于6,用不等式表示为 。

八年级下册第一次月考数学试卷+答案

八年级下册第一次月考数学试卷+答案

八年级数学试题(全卷满分150分,考试时间120分钟)一、选择题(本大题共8个小题,每小题3分,共24分.)1.下列既是轴对称图形又是中心对称图形的是()(A)(B)(C)(D)2.以下问题,不适合用普查的是()(A)了解全班同学每周体育锻炼的时间(B)旅客上飞机前的安检(C)学校招聘教师,对应聘人员面试(D)了解一批灯泡的使用寿命3.下列条件中,不能判定四边形ABCD为平行四边形的条件是()(A)AB=AD,BC=CD(B)∠A=∠C,∠B=∠D(C)AB∥CD,AB=CD(D)AB=CD,AD=BC4.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()(A)①②(B)②③(C)①③(D)①②③第4题图第5题图第6题图5.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()(A)28°(B)52°(C) 62°(D)72°6.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()(A)△AFD≌△DCE(B)AF= 12 AD(C)AB=AF(D)BE=AD﹣DF7.母亲节快到了,某校团委随机抽取本校部分同学,进行母亲生日日期了解情况调查,分“知道、不知道、记不清”三种情况.下面图①、图②是根据采集到的数据,绘制的扇形和条形统计图.请你根据图中提供的信息,若全校共有990名学生,估计这所学校所有知道母亲的生日的学生有()名(A)440 (B)495 (C)550 (D)660第7题图第8题图8.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是()(A)2 (B)3 (C)4 (D)5二、填空题(本大题共10个小题,每小题3分,共30分.)9.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.10.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.11.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A= .12.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于.13.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.14.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE= 度.第14题图第15题图第16题图15.如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.16.如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是.17.如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A 重合,则折痕EF的长为.第17题图第18题图18.如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为.三、解答题(本大题共10个小题,共96分.)19.(8分)如图,在边长为1个单位长度的小正方形组成的两格中,点A、B、C都是格点.(1)将△ABC向左平移6个单位长度得到得到△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2;(3)若点O的坐标为(0,0),点B的坐标为(2,3);写出△A1B1C1与△A2B2C2的对称中心的坐标.20.(8分)在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色的球20只,某学习小组做摸球实验.将球搅匀后从中随机摸出一个球,记下颜色,再把它放回袋中,不断重复,下表是活动进行中记下的一组数据摸球的次数n100 150 200 500 800 1000摸到白球的次数m58 96 116 295 484 601摸到白球的频率mn0.58 0.64 0.58 0.59 0.605 0.601(1)请你估计,当n很大时,摸到白球的频率将会接近(精确到0.1).(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是.(3)试估算口袋中黑、白两种颜色的球有多少只.21.(8分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?O22.(8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,A F∥CE,且交BC于点F.(1)求证:△ABF≌△CDE;(2)如图,若∠1=65°,求∠B的大小.23.(10分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF ∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(10分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE 与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.25.(10分)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.26.(10分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.27.(12分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.28.(12分)如图1,点O是正方形ABCD两对角线的交点. 分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°< α<360°)OE F G,如图2.得到正方形'''OAG是直角时,求α的度数;(注明:当直角边为斜边一半时,①在旋转过程中,当∠'这条直角边所对的锐角为30度)AF长的最大值和此时α的度数,②若正方形ABCD的边长为1,在旋转过程中,求'直接写出结果不必说明理由.图1 图2命题人:花荡中学徐灯书审核人:吴桥中学张贻恒八年级数学试题(参考答案)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求题号 1 2 3 4 5 6 7 8 答案 A D A A C B C C二、填空题(本大题共10个小题,每小题3分,共30分.)9.6 10.8 11.55°12.20 13.4 14.22.5°15.1216.10 17.8018.252,56,10三、解答题(本大题共10个小题,共96分.)19.(1)△A1B1C1如图所示;(3分)(2)△A2B2C2如图所示;(3分)(3)旋转中心(﹣3,0).(2分)20.(1)0.6;(2分)(2)35,25;(4分)(3)因为摸到白球的概率是35,摸到黑球的概率是25,所以口袋中黑、白两种颜色的球有白球是320125⨯=个,黑球是22085⨯=个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXX学校八年级(下)第一次月考数学试卷
姓名:班级考号成绩:
一、选择题.(每小题3分,共36分)
1.如果有意义,则a的取值范围是()
A.a≥0 B.a≤0 C.a≥3 D.a≤3
2.下列四组线段中,可以构成直角三角形的是()
A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,6
3.下列二次根式中属于最简二次根式的是()
A.B.C.D.
4.最简二次根式的被开方数相同,则a的值为()
A.B.C.a=1 D.a=﹣1
5.下列计算正确的是()
A.B.C.D.
6.等边三角形的边长为2,则该三角形的面积为()
A.4B.C.2D. 3
7.如图所示,点C的表示的数为2,BC=1,以O为圆心,OB为半径画弧,交数轴于点A,则点A 表示的数是()
A.B.C.﹣D.﹣
8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()
(7题图)(8题图)(9题图)
A.9 B.10 C.D.
9.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()
A.13 B.26 C.47 D.94
10.如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端下滑0.4米,则梯足将向外移()
A.0.6米B.0.7米C.0.8米D.0.9米
11.如图,将边长为8c m的正方形ABCD折叠,使点D落在BC边的中点E处,点A落在F处,折痕为MN,则线段CN长是()
A.3cm B.4cm C.5cm D.6cm
12.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7
(10题图)(11题图)(12题图)
二、选择题(每小题3分,共18分)
13.计算:=;=.
14.化简:=;=.
15.有两棵树,一棵高6米,另一棵高2米,两树相距5米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了米.
16.若=0,则m n的值为.
17.计算=.
18.如图所示,在高为3m,斜坡长为5m的楼梯表面铺地毯,至少需要地毯米.
三、计算题(46分)
19.计算:
(1);(2);
(3)(4+)(4﹣);(4).
20.已知x=+3,y=﹣3,求下列各式的值:
(1)x2﹣2xy+y2 (2)x2﹣y2.21.实数a在数轴上的位置如图,化简|a﹣2|+.
22.如图,小方格都是边长为1的正方形
(1)求AB、BC的长度.(2)用勾股定理的知识证明:∠ABC=90°.
23题已知:折叠矩形ABCD的一边AD, 点D落在BC边上的点F处, AB=6,BC=10
求: (1)CF的长度(2)EC的长度.
24题。

相关文档
最新文档