初二数学上册第一次月考分析.doc
四川省绵阳市绵阳东辰国际学校2022-2023学年八年级上学期10月月考数学试题(含解析)

四川省绵阳市东辰2022-2023学年八年级上册数学第一次月考试卷考试注意事项:1、考生须诚信考试,遵守考场规则和考试纪律,并自觉服从监考教师和其他考试工作人员 管理;2、监考教师发卷后,在试卷指定的地方填写本人准考证号、姓名等信息;考试中途考生不准以任何理由离开考场;3、考生答卷用笔必须使用同一规格同一颜色的笔作答(作图可使用铅笔) ,不准用规定以外的笔答卷,不准在答卷上作任何标记。
考生书写在答题卡规定区域外的答案无效。
4、考试开始信号发出后,考生方可开始作答。
一、选择题(每小题3分,共36分)1. 盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,使其窗框不变形如图所示,这样做的数学依据是( )A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短 2. 如图,ABD △和ACD 中,AB AC =,BD CD =,若20B ∠=︒,则C ∠等于( )A. 10°B. 20°C. 30°D. 40° 3. 以下列各组线段为边长,能组成三角形的是( )A. 2,3,6B. 3,4,8C. 5,6,10D. 7,8,18 4. 如图,为测量桃李湖两端AB 的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C ,测得∠ACB 的度数,在AC 的另一侧测得∠ACD =∠ACB ,CD =CB ,再测得AD 的长,就是AB 的长.那么判定△ABC ≌△ADC 的理由是( )A SAS B. SSS C. ASA D. AAS5. 一副三角尺如图摆放,则α的大小为()A. 105°B. 120°C. 135°D. 150°6. 如图,ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠DEA等于()A. 22°B. 158°C. 68°D. 112°7. 根据下列条件,能作出唯一的△ABC的是()A. AB=3,AC=4,∠B=30B. AB=3,BC=4,AC=8C. ∠A=50︒,∠B=60︒,AB=4D. ∠C=90︒,AB=58. 如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为()A. 70°B. 80°C. 90°D. 100°9. 如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ( )A. 54°B. 60°C. 72°D. 88°10. 一个多边形截取一个角后,形成另一个多边形的内角和是1440°,则原来多边形的边数可能是()A. 9,10,11B. 12,11,10C. 8,9,10D. 9,1011. 如图,在△ABC中,AB=6,AC=8,AD是边BC上的中线,则AD长的取值范围是()A. 6<AD<8B. 6≤AD≤8C. 1<AD<7D. 1≤AD≤712. 如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA的延长线于F,连接AD,CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A. 32°B. 64°C. 77°D. 87°二、填空(每小题3分,共18分)13. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE 的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x +y =_______.16. 在直角三角形中,锐角α是另一个内角的一半,则锐角α的度数为__________17. 如图,在ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,∠ABE=20°,则∠CAD的度数是___________.18. 如图,在Rt△ABC中,∠ABC=90°,∠ACB的角平分线CF交AB于点F,∠BAC的角平分线AE分别交CF和BC于点D、E,连接EF,过点D作AE的垂线分别交AB和CB的延长线于点P、H,连接EP,则下列结论①∠ADF=45°;②AE=DH+DP;③EP平分∠BEF;④S四边形ACEF=2S△ACD,其中正确的序号是___.三、解答题(共46分)19. 如图,在ABC中,∠ABC=82°,∠C=58°,BD⊥AC于D,AE平分∠CAB,BD与AE 交于点F,求∠AFB.20. 如图,在ABC中,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E (1)求证:CD=BE;(2)若DE =3,BE =2,求AD 的长.21. 如图,ABC 中,=AB BC ,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:Rt ABE Rt CBF ≅△△;(2)判断FE 和AC 的位置关系并证明.22. 如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,点E 在AC 上,且DE =BD .(1)求证:∠B =∠CED ;(2)若AB =16,AE =6,求CE 的长.23. 已知在四边形ABCD 中,∠ABC +∠ADC =180°,∠BAD +∠BCD =180°,AB =BC (1)如图1,连接BD ,若∠BAD =90°,AD =7,求DC 的长度.(2)如图2,点P 、Q 分别在线段AD 、DC 上,满足PQ =AP +CQ ,求证:∠PBQ =∠ABP +∠QBC(3)若点Q 在DC 的延长线上,点P 在DA 的延长线上,如图3所示,仍然满足PQ =AP +CQ ,请写出∠PBQ 与∠ADC 的数量关系,并给出证明过程.24. 等腰三角形的两边长为6cm 和3cm ,则它的周长为__________cm .25. 现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地面砖密铺地面,选择的方式有___________种.26. ABC 为等腰直角三角形,若A (-4,0),C (0,2),则点B 的坐标为___________.27. 如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为_______.28. 如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____八年级上册数学第一学月月考试卷答案解析一、选择题(每小题3分,共36分)1. 盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,使其窗框不变形如图所示,这样做的数学依据是( )A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短【答案】A【解析】【分析】用木条固定矩形门框,即是组成三角形,故可用三角形的稳定性解释.【详解】解:加上木条后,原不稳定的四边形中具有了稳定的三角形,故这种做法根据的是三角形的稳定性.故选:A .【点睛】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.2 如图,ABD △和ACD 中,AB AC =,BD CD =,若20B ∠=︒,则C ∠等于( )A. 10°B. 20°C. 30°D. 40°【答案】B【解析】 【分析】根据“SSS ”证明ABD ACD ∆≌△,根据全等三角形的性质得出20︒∠=∠=C B 即可.【详解】解:∵在ABD △和ACD 中AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴ABD ACD ∆≌△(SSS ),∴20︒∠=∠=C B ,故B 正确.故选:B .【点睛】本题主要考查了全等三角形的判定和性质,证明ABD ACD ∆≌△是解题的关键.3. 以下列各组线段为边长,能组成三角形的是( )A. 2,3,6B. 3,4,8C. 5,6,10D. 7,8,18 【答案】C【解析】【分析】根据三角形的三边关系逐项判断即可得.三角形的三边关系:任意两边之和大于第三边.【详解】解:A 、236+<,不满足三角形的三边关系定理,不能组成三角形;B 、348+<,不满足三角形的三边关系定理,不能组成三角形;C 、5611+>,满足三角形的三边关系定理,能组成三角形;D 、7818+<,不满足三角形的三边关系定理,不能组成三角形.故选:C .【点睛】本题考查了三角形的三边关系,掌握三角形的三边关系是解题关键.4. 如图,为测量桃李湖两端AB 的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C ,测得∠ACB 的度数,在AC 的另一侧测得∠ACD =∠ACB ,CD =CB ,再测得AD 的长,就是AB 的长.那么判定△ABC ≌△ADC 的理由是( )A. SASB. SSSC. ASAD. AAS【答案】A【解析】 【分析】已知条件是∠ACD =∠ACB ,CD =CB ,AC =AC ,据此作出选择.【详解】解:在△ADC 与△ABC 中,CD CB ACD ACB AC AC =⎧⎪∠=∠⎨⎪=⎩.∴△ADC ≌△ABC (SAS ).故选:A .【点睛】此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS ,做题时注意选择.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 5. 一副三角尺如图摆放,则α的大小为( )A. 105°B. 120°C. 135°D. 150°【答案】A【解析】 【分析】由题意可得∠ABC =45°,∠1=30°,∠C =90°,则可求得∠2=15°,利用三角形的外角性质即可求∠α的度数.【详解】解:如图,由题意得:∠ABC=45°,∠1=30°,∠C=90°,∴∠2=∠ABC-∠1=15°,∴∠α=∠2+∠C=105°.故选:A.【点睛】本题主要考查三角形的外角性质,解答的关键是明确三角形的外角等于与其不相邻的两个内角之和.6. 如图,ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=22°,则∠DEA等于()A. 22°B. 158°C. 68°D. 112°【答案】D【解析】【分析】由ABC中,∠ACB=90°,∠A=22°,可求得∠B的度数,由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC,由三角形外角的性质,可求得∠ADE的度数.【详解】解:ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°,由折叠的性质可得:∠CED=∠B=68°,∠DEA=180°-68°=112°,故选:D.【点睛】此题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.7. 根据下列条件,能作出唯一的△ABC的是()A. AB=3,AC=4,∠B=30B. AB=3,BC=4,AC=8C. ∠A=50︒,∠B=60︒,AB=4D. ∠C=90︒,AB=5【答案】C【解析】【分析】根据全等三角形的判定及三角形三边之间的关系解决问题即可.【详解】解:A.边边角,不能唯一确定三角形.本选项不符合题意;B.因为3+4<8,所以这三条线段不能组成三角形.本选项不符合题意;C.角角边,能唯一确定三角形.本选项符合题意;D.边角,不能确定三角形.本选项不符合题意;故选C.【点睛】本题考查全等三角形的判定、三角形三边之间的关系,解题的关键是熟练掌握全等三角形的判定方法.8. 如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为()A. 70°B. 80°C. 90°D. 100°【答案】B【解析】【分析】根据任意多边形内角和都等于360°,进行计算即可解答.【详解】解:由题意得:∠1+2+∠3+∠4+∠5=360°,∵∠1+2+∠3+∠4=280°,∴∠5=360°﹣280°=80°,故选:B.【点睛】本题考查了多边形的内角与外角,熟练掌握任意多边形内角和都等于360°是解题的关键.9. 如图是正五边形ABCDE,DG平分正五边形的外角∠EDF,连接AD,则∠ADG= ( )A. 54°B. 60°C. 72°D. 88°【答案】C【解析】【分析】根据正多边形外角和定理求出正五边形的外角为72°,根据角平分线求出∠EDG ,求出内角∠AED 的度数,利用AE =DE ,求出∠ADE ,进而可得到∠ADG 的度数. 【详解】解:正五边形每个外角的度数为360725︒=︒, ∵DG 平分正五边形的外角∠EDF ,∴∠EDG =172362⨯︒=︒, ∵∠AED =18072108︒-︒=︒,AE =DE , ∴∠ADE =()1180108362⨯︒-︒=︒, ∴∠ADG =∠ADE +∠EDG =72°,故选:C .【点睛】此题考查了正多边形的内角与外角的计算,熟记正多边形内角和公式及外角和度数是解此类题的关键.10. 一个多边形截取一个角后,形成另一个多边形的内角和是1440°,则原来多边形的边数可能是( )A. 9,10,11B. 12,11,10C. 8,9,10D. 9,10【答案】A【解析】【分析】首先求得内角和为1440︒的多边形的边数,即可确定原多边形的边数.【详解】解:设内角和为1440︒的多边形的边数是,n 则(2)1801440n -⨯=,解得:10n =.∵一个多边形截取一个角后,变成的多边形可能比原来少一边,也可能相同,也可能多一边;∴原来多边形的边数可能是9或10或11故选:A .【点睛】本题考查了多边形的内角和定理,理解分三种情况是关键.11. 如图,在△ABC 中,AB =6,AC =8,AD 是边BC 上的中线,则AD 长的取值范围是( )A. 6<AD <8B. 6≤AD ≤8C. 1<AD <7D. 1≤AD ≤7【答案】C【解析】 【分析】先延长AD 到E ,且AD =DE ,并连接CE ,利用SAS 易证△ADB ≌△EDC ,从而可得AB =CE ,在△ABE 中,再利用三角形三边的关系,可得AC -CE <AE <AC +CE ,从而易求1<AD <7.【详解】解:如图,延长AD 至点E ,使AD =DE ,连接CE ,∵AD 是边BC 上的中线,∴CD =BD ,在△ABD 和△CED 中,AD DE ADB EDC CD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CED ,∴AB =CE =6,在△ACE 中,8-6<AE <6+8,即2<AE <14,∴1<AD <7,故选:C .【点睛】此题主要考查全等三角形的判定及性质和三角形三边关系,掌握利用倍长中线法构造全等三角形是解决此题的关键.12. 如图,在Rt △ABC 中,∠BAC =90°,点D 在BC 上,过D 作DF ⊥BC 交BA 的延长线于F ,连接AD ,CF ,若∠CFE =32°,∠ADB =45°,则∠B 的大小是( )A. 32°B. 64°C. 77°D. 87°【答案】C【解析】 【分析】取CF 的中点T ,连接DT ,AT .证明∠TDA =∠TAD ,∠TDC =∠TCD ,进而证明CT =TF ,得到∠AFC =45°,∠BFD =13°,最后求出∠B =77°.【详解】解:如图,取CF 的中点T ,连接DT ,AT .∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,CF,∴AT=DT=12∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°.故选:C【点睛】本题考查了直角三角形斜边上的直线等于斜边一半、等腰三角形的性质、三角形的角的计算等知识,根据题意添加辅助线,构造等腰三角形是解题关键.二、填空(每小题3分,共18分)13. 若一个多边形的每一个外角都等于40°,则这个多边形的边数是_____.【答案】9【解析】【详解】解:360÷40=9,即这个多边形的边数是9.故答案为:9.14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE 的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.【答案】2【解析】【分析】先根据平行线的性质可得,A ECF ADE F ∠=∠∠=∠,再根据AAS 定理证出ADE CFE ≅,然后根据全等三角形的性质可得3AD CF ==,最后根据线段和差即可得.【详解】解:CF AB ∥,,A ECF ADE F ∴∠=∠∠=∠,在ADE 和CFE 中,A ECF ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ADE CFE ∴≅,AD CF ∴=,5,3AB CF ==,532BD AB AD AB CF ∴=-=-=-=,故答案为:2.【点睛】本题考查了平行线的性质、三角形全等的判定与性质,正确找出两个全等三角形是解题关键.15. 一个三角形的三边为3、5、x ,另一个三角形的三边为y 、3、6,若这两个三角形全等,则x +y =_______.【答案】11【解析】【详解】三边为3,5,x 的三角形与三边为,3,6y 的三角形全等,6, 5.x y ∴==6511.x y +=+=故答案为11.16. 在直角三角形中,锐角α是另一个内角的一半,则锐角α的度数为__________【答案】45°或30°.【解析】【分析】需要分类讨论:锐角α是直角的一半和锐角α是另一锐角的一半.【详解】解:①当锐角α是直角的一半时,α=12×90°=45°;②当锐角α是另一锐角的一半时,α=12(90°-α),此时α=30°.综上所述,锐角α的度数为45°或30°.故答案是:45°或30°.【点睛】本题主要考查了直角三角形的性质,解答该题时,需要进行分类讨论,以防漏解.17. 如图,在ABC中,AD⊥BC,BE⊥AC,垂足分别为点D、E,AD与BE交于点F,BF=AC,∠ABE=20°,则∠CAD的度数是___________.【答案】25°##25度【解析】【分析】先证明DBF≅DAC,根据全等三角形的性质得出AD=BD,求出∠ABD=∠DAB=45°,即可得出答案.【详解】解:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=90°,∠BEC=∠ADC=90°,∴∠DAC+∠C=90°,∠DBF+∠C=90°,∴∠DBF=∠DAC,在DBF和DAC中,===BDF ADCDBF DACBF AC∠∠∠∠⎧⎪⎨⎪⎩,∴DBF≅DAC(AAS),∴AD=BD,∵∠ADB=90°,∴∠ABD=∠DAB=45°,∵∠ABE=20°,∴∠CAD=∠DBF=∠ABD-∠ABE=45°-20°=25°,故答案为:25°.【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的判定与性质,熟练掌握等腰直角三角形的判定与性质,证明三角形全等是解此题的关键.18. 如图,在Rt △ABC 中,∠ABC =90°,∠ACB 的角平分线CF 交AB 于点F ,∠BAC 的角平分线AE 分别交CF 和BC 于点D 、E ,连接EF ,过点D 作AE 的垂线分别交AB 和CB 的延长线于点P 、H ,连接EP ,则下列结论①∠ADF =45°;②AE =DH +DP ;③EP 平分∠BEF ;④S 四边形ACEF =2S △ACD ,其中正确的序号是 ___.【答案】①②④【解析】【分析】根据直角三角形的性质及角平分线定义可判断①;根据ASA 可得△ACD ≌△HCD ,得出AD =DH ,然后根据△ADP ≌△HDE ,得出DE =DP ,最后根据AE =DE +AD =DP +HD 可判断②;根据△DEP 为等腰三角形直角三角形,得出EP ∥CF ,再根据EF 不一定平行AC ,得出EP 不一定平分∠BEF ,只有当AB =BC 时才平分可判断③;根据同底等高三角形的面积相等得出DEF DFP S S =,最后利用2ACD CDH ACD ACEF S S S S =+=四边形全可判断④;【详解】解:在Rt △ABC 中,∵∠ACB =90°,∴∠BAC +∠ABC =90°,∵CF 是∠ACB 的角平分线,AE 是∠BAC 的角平分线,∴∠CAE +∠ACF =12(∠BAC +∠ABC )=45°,∴∠ADF =∠CAE +∠ACF =45°,故①正确;∵∠ADF =∠CDE =45°,∴∠ADC =180º-45º=135º,∴DH ⊥AE ,∴∠EDH =90º,∴∠CDH =∠EDH +∠CDE =90°+45°=135°,∴∠CDH =∠ADC ,∵CD =CD ,∠ACD =∠BCD ,∴△ACD ≌△HCD (ASA ),∴AD =DH ,∵∠APD =∠HPB ,∠ADP =∠PBH ,∴∠DAP =∠DHE ,∵∠ADP =∠HDE ,AD =DH ,∴△ADP ≌△HDE ,∴DE =DP ,∴AE =DE +AD =DP +HD ,故②正确;由②得△DEP 为等腰三角形直角三角形,∴∠DEP =45º=∠ADP , ∴EP ∥CF ,∴∠PEB =∠FCB =∠DCE ,∠DFE =∠FEP ,∵EF 不一定平行AC ,∴∠ACD ≠∠DFE +∠FCE ,∴∠FEP ≠∠PEB ,∴EP 不一定平分∠BEF ,只有当AB =BC 时才平分,故③错误;∵EP ∥CF ,∴DEF DFP SS =(同底等高), ∴ADF DEF ADF DEP SS S S +=+ ∴AEF ADP DEH SS S ==, ∴ACE AEF ACE DEH S S SS +=+, ∴2ACD CDH ACD ACEF S S S S =+=四边形,故④正确,故答案为:①②④.【点睛】本题考查了角平分线的性质,全等三角形的判定与性质,直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题.三、解答题(共46分)19. 如图,在ABC 中,∠ABC =82°,∠C =58°,BD ⊥AC 于D ,AE 平分∠CAB ,BD 与AE 交于点F ,求∠AFB .【答案】∠AFB=110°.【解析】【分析】首先利用三角形的内角和求出∠CAB=40°,然后利用角平分线的性质求出∠DAF=20°,最后利用三角形的外角与内角的关系及垂直的定义即可求解.【详解】解:∵∠CAB=180°-∠ABC-∠C,而∠ABC=82°,∠C=58°,∴∠CAB=40°,∵AE平分∠CAB,∴∠DAF=20°,∵BD⊥AC于D,∴∠ADB=90°,∴∠AFB=∠ADB+∠DAF=90°+20°=110°.【点睛】本题考查了三角形的内角和等于180°求解,是基础题,准确识别图形是解题的关键.20. 如图,在ABC中,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为D、E(1)求证:CD=BE;(2)若DE=3,BE=2,求AD的长.【答案】(1)见解析;(2)5【解析】【分析】(1)根据条件可以得出∠ACD=∠CBE,进而得出ADC CEB,就可以得出BE=DC;(2)利用(1)中结论,根据全等三角形的性质即可解决问题;【小问1详解】证明:∵∠ACB =90°,AD ⊥CE ,BE ⊥CE ,∴∠ACD +∠BCE =90°,∠CBE +∠BCE =90°,∠BEC =∠CDA =90°,∴∠ACD =∠CBE , 在ADC 与CEB 中,===ACD CBE BEC CDA AC BC ∠∠∠∠⎧⎪⎨⎪⎩, ∴ADC ≅CEB (AAS ),∴CD =BE ;【小问2详解】∵△ADC ≅△CEB ,∴AD =CE ,CD =BE ,∴AD =CD +DE =BE +DE =2+3=5.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.21. 如图,ABC 中,=AB BC ,90ABC ∠=︒,F 为AB 延长线上一点,点E 在BC 上,且AE=CF .(1)求证:Rt ABE Rt CBF ≅△△;(2)判断FE 和AC 的位置关系并证明.【答案】(1)证明过程见详解(2)FE 和AC 的位置关系是垂直,证明过程见详解【解析】【分析】(1)根据直角三角形的全等的条件:斜边直角边即可求证;(2)延长FE 与线段AC 相交,根据全等,可找出线段与角的关系,由此即可求解.【小问1详解】解:在Rt ABE △,Rt CBF △中,∵==AE CF AB CB⎧⎨⎩∴Rt ABE Rt CBF ≅△△(HL)【小问2详解】解:根据题意,画图如下,延长FE 交AC 于点D ,由(1)可知,=BE BF ,90EBF EBA ∠=∠=︒,∴在Rt BEF △中,45EFB FEB ∠=∠=︒,∵在Rt ABC △中,=AB BC ,∴45ACB BAC ∠=∠=︒,∵45BEF CED ∠=∠=︒,∴在CDE △中,454590CED DCE ∠+∠=︒+︒=︒,∴CDE △是直角三角形,即ED AC ⊥,∵点F 、E 、D 在同一条线段上,∴FE AC ⊥,故FE 和AC 的位置关系是垂直.【点睛】本题主要考查直角三角形的全等及线段的关系,理解三角形全等的条件,合理构造线段关系是解题的关键.22. 如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,点E 在AC 上,且DE =BD .(1)求证:∠B =∠CED ;(2)若AB =16,AE =6,求CE 的长.【答案】(1)见解析;(2)5【解析】【分析】(1)过点D 作DF ⊥AB ,垂足为点F ,由角平分线的性质得出DC =DF ,再由HL 证明Rt △DCE ≌Rt △DFB 即可得证;(2)由Rt △DCE ≌Rt △DFB ,可得BF =CE ,由HL 证明Rt △ADC ≌Rt △ADF ,得出AC =AF ,结合(1)中CE =BF 进而得出AB =AF +BF =AC +CE ,即可求解.【小问1详解】解:过点D 作DF ⊥AB ,垂足为点F ,∵∠C =90°,AD 平分∠BAC 交BC 于点D ,DF ⊥AB ,∴DC =DF ,在Rt △DCE 与Rt △DFB 中,==DC DF DE DB⎧⎨⎩, ∴Rt △DCE ≌Rt △DFB (HL ),∴∠B =∠CED ;【小问2详解】∵Rt △DCE ≌Rt △DFB ,∴BF =CE ,设CE =BF =x ,在Rt △ADC 与Rt △ADF 中,==DC DF AD AD ⎧⎨⎩, ∴Rt △ADC ≌Rt △ADF (HL ),∴AC =AF ,∴AB =AF +BF =AC +CE ,∴AB -BF =AE +CE ,∴16-x =6+x解得:x =5,即CE =5.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,关键是根据HL 证明直角三角形的全等解答.23. 已知在四边形ABCD 中,∠ABC +∠ADC =180°,∠BAD +∠BCD =180°,AB =BC (1)如图1,连接BD ,若∠BAD =90°,AD =7,求DC 的长度.(2)如图2,点P 、Q 分别在线段AD 、DC 上,满足PQ =AP +CQ ,求证:∠PBQ =∠ABP +∠QBC(3)若点Q 在DC 的延长线上,点P 在DA 的延长线上,如图3所示,仍然满足PQ =AP +CQ ,请写出∠PBQ 与∠ADC 的数量关系,并给出证明过程.【答案】(1)7DC =;(2)见解析;(3)1902PBQ ADC ∠=︒+∠,证明见解析 【解析】 【分析】(1)根据已知条件得出BDC 为直角三角形,再根据HL 证出△≌△Rt BAD Rt BCD ,从而证出AD CD =即可得出结论;(2)如图2,延长DC 到 K ,使得CK=AP ,连接BK ,通过证△BPA ≌△BCK (SAS )得到:∠1=∠2,BP=BK .然后根据SSS 证明得≌PBQ BKQ ,从而得出21PBQ CBQ CBQ ∠=∠+∠=∠+∠,然后得出结论;(3)如图3,在CD 延长线上找一点K ,使得KC=AP ,连接BK ,构建全等三角形:△BPA ≌△BCK (SAS ),由该全等三角形的性质和全等三角形的判定定理SSS 证得:△PBQ ≌△BKQ ,则其对应角相等:∠PBQ=∠KBQ ,结合四边形的内角和是360°可以推得:∠PBQ=90°+12∠ADC . 【详解】(1)证明:如图1,∵180ABC ADC ∠+∠=︒,90BAD ∠=︒,∴90BCD BAD ∠=∠=︒,在Rt BAD 和Rt BCD △中,BD BD AB BC =⎧⎨=⎩∴()△≌△Rt BAD Rt BCD HL ,∴AD DC =,∴7DC =;(2)如图2,延长DC 至点K ,使得CK AP =,连接BK∵180ABC ADC ∠+∠=︒,∴180BAD BCD ∠+∠=︒,∵180BCD BCK ∠+∠=︒,∴BAD BCK ∠=∠,∵AP CK =,AB BC =,∴()△≌△BPA BCK SAS ,∴12∠=∠,BP BK =,∵PQ AP CQ =+,QK CK CQ =+,∴PQ QK =,∵BP BK =,BQ BQ =,∴()≌PBQ BKQ SSS ,∴21PBQ CBQ CBQ ∠=∠+∠=∠+∠,∴PBQ ABP QBC ∠=∠+∠;(3)1902PBQ ADC ∠=︒+∠; 如图3,在CD 延长线上找一点K ,使得KC AP =,连接BK ,∵180ABC ADC ∠+∠=︒,∴180BAD BCD ∠+∠=︒,∵180BAD PAB ∠+∠=︒,∴PAB BCK ∠=∠,在BPA △和BCK 中,AP CK BAP BCK AB BC =⎧⎪∠=∠⎨⎪=⎩∴()△≌△BPA BCK SAS ,∴ABP CBK ∠=∠,BP BK =,∴PBK ABC ∠=∠,∵PQ AP CQ =+,∴PQ QK =,在PBQ 和BKQ 中,BP BK BQ BQ PQ KQ =⎧⎪=⎨⎪=⎩∴()≌PBQ BKQ SSS ,∴PBQ KBQ ∠=∠,∴22360PBQ PBK PBQ ABC ∠+∠=∠+∠=︒,∴()2180360PBQ ADC ∠+︒-∠=︒, ∴1902PBQ ADC ∠=︒+∠.【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24. 等腰三角形的两边长为6cm和3cm,则它的周长为__________cm.【答案】15【解析】【分析】题目给出等腰三角形有两条边长为6cm和3cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:解:根据三角形三边关系可得出:等腰三角形的腰长为6cm,底长为3cm,因此其周长=6+6+3=15cm.当底边为6cm,腰为3cm时,不符合三角形三边关系,此情况不成立.故答案为:15.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.25. 现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地面砖密铺地面,选择的方式有___________种.【答案】3【解析】【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.因为正三角形、正方形、正六边形、正八边形的内角分别为60°、90°、120°、135°,根据多边形镶嵌成平面图形的条件可知.【详解】解:①正三角形、正方形,由于60°×3+90°×2=360°,故能铺满;②正三角形、正六边形,由于60°×2+120°×2=360°,或60°×4+120°×1=360°,故能铺满;③正三角形、正八边形,显然不能构成360°的周角,故不能铺满;④正方形、正六边形,显然不能构成360°的周角,故不能铺满;⑤正方形、正八边形,由于90°+135°×2=360°,故能铺满;⑥正六边形、正八边形,显然不能构成360°的周角,故不能铺满.故选择的方式有3种.故答案为:3.【点睛】本题考查了平面镶嵌,解决本题的关键是掌握平面镶嵌定义.用形状,大小完全相同的一种或几种平面图形进行拼接.彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.26. ABC为等腰直角三角形,若A(-4,0),C(0,2),则点B的坐标为___________.【答案】(2,-2)【解析】【分析】过点B作BT⊥y轴于点T .证明AOC ≅CTB,可得结论.【详解】解:如图中,过点B作BT⊥y轴于点T.∵A(-4,0),C(0,2),∴OA=4,OC=2,∵∠AOC=∠ACB=∠CTB=90°,∴∠ACO+∠BCT=90°,∠BCT+∠CBT=90°,∴∠ACO=∠CBT,在△AOC和△CTB中,===AOC CTBACO CBTAC CB∠∠∠∠⎧⎪⎨⎪⎩,∴AOC ≅CTB(AAS),∴AO=CT=4,BT=CO=2,∴OT =CT -CO =2,∴B (2,-2),故答案为:(2,-2).【点睛】本题考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.27. 如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为_______.【答案】64︒【解析】【分析】作FH 垂直于FE ,交AC 于点H ,可证得()FAH FCE ASA ≅△△,由对应边、对应角相等可得出()HDF EDF SAS ≅△△,进而可求出58DEF ∠=︒,则64DEC CEF DEF ∠=∠-∠=︒.【详解】作FH 垂直于FE ,交AC 于点H ,∵90AFC EFH ∠=∠=︒又∵AFC AFH CFH ∠=∠+∠,HFE CFE CFH ∠=∠+∠∴13AFH CFE ∠=∠=︒∵45A FCE ∠=∠=︒,FA =CF∴()FAH FCE ASA ≅△△∴FH =FE∵321345DFE DFC EFC ∠=∠+∠=︒+︒=︒∵904545DFH HFE DFE ∠=∠-∠=︒-︒=︒∴DFE DFH ∠=∠又∵DF =DF∴()HDF EDF SAS ≅△△∴DHF DEF ∠=∠∵451358DHF A HFA ∠=∠+∠=︒+︒=︒∴58DEF ∠=︒∵180CFE CEF FCE ∠+∠+∠=︒∴1801801345122CEF CFE FCE ∠=︒-∠-∠=︒-︒-︒=︒∴1225864DEC CEF DEF ∠=∠-∠=︒-︒=︒故答案为:64︒.【点睛】本题考查了等腰三角形的性质,全等三角形的判定及其性质,作辅助线HF 垂直于FE 是解题的关键.28. 如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____【答案】46︒【解析】【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒. 【详解】解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DFAC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DFAC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.。
人教版数学八年级上册第一次月考数学试卷带答案解析

人教版数学八年级上册第一次月考数学试卷一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.162.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.1010.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=度.参考答案与试题解析一、选择题(每题2分,共30分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.2.适合条件∠A=∠B=∠C的三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形【考点】三角形内角和定理.【分析】由三角形内角和为180°和∠A=∠B=∠C,可得∠A+∠B+∠C=2∠C=180°,得∠C=90°,故该三角形的形状为直角三角形.【解答】解:∵角形内角和为180°.∴∠A+∠B+∠C=180°.又∵∠A=∠B=∠C的.∴2∠C=180°.解得∠C=90°.故适合条件∠A=∠B=∠C的三角形是直角三角形.故选项A错误,选项B错误,选项C错误,选项D正确.故选D.3.如果CD平分含30°三角板的∠ACB,则∠1等于()A.110°B.105°C.100°D.95°【考点】三角形内角和定理.【分析】先根据角平分线定义得到∠ACD=45°,然后在△ACD中根据三角形内角和求∠1的度数.【解答】解:∵CD平分∠ACB,∴∠ACD=×90°=45°,在△ACD中,∵∠1+∠A+∠ACD=180°,∴∠1=180°﹣30°﹣45°=105°.故选B.4.下列说法错误的是()A.一个三角形中至少有一个角不少于60°B.三角形的中线不可能在三角形的外部C.三角形的中线把三角形的面积平均分成相等的两部分D.直角三角形只有一条高【考点】三角形内角和定理;三角形的角平分线、中线和高;三角形的面积.【分析】分别根据三角形内角和定理,三角形的角平分线、中线和高对各选项进行逐一分析即可.【解答】解:A、∵三角形的内角和等于180°,∴一个三角形中至少有一个角不少于60°,故本选项正确;B、三角形的中线一定在三角形的内部,故本选项正确;C、三角形的中线把三角形的面积平均分成相等的两部分,故本选项正确;D、直角三角形有三条高,故本选项错误.故选D.5.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的判定.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.6.下列说法:①全等三角形的形状相同、大小相等②全等三角形的对应边相等、对应角相等③面积相等的两个三角形全等④全等三角形的周长相等其中正确的说法为()A.①②③④B.①②③ C.②③④ D.①②④【考点】全等图形.【分析】根据全等三角形概念:能够完全重合的两个三角形叫做全等三角形可得答案.【解答】解:①全等三角形的形状相同、大小相等,说法正确;②全等三角形的对应边相等、对应角相等,说法正确;③面积相等的两个三角形全等,说法错误;④全等三角形的周长相等,说法正确;故选:D.7.如图,∠BAC=40°,AD平分∠BAC,BD∥AC,则∠D的度数为()A.20°B.30°C.40°D.50°【考点】三角形内角和定理.【分析】由∠BAC=40°,AD平分∠BAC可得∠BAD=∠CAD=20°,由BD∥AC可知∠D=∠CAD,从而求得∠D的度数.【解答】解:∵∠BAC=40°,AD平分∠BAC,∴∠BAD=∠CAD=20°.又∵BD∥AC,∴∠D=∠CAD.∴∠D=20°.故选项A正确,选项B错误,选项C错误,选项D错误.故选A.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.9.如果一个多边形的每一个内角都是135°,那么这个多边形的边数是()A.5 B.6 C.8 D.10【考点】多边形内角与外角.【分析】已知每一个内角都等于135°,就可以知道每个外角是45度,根据多边形的外角和是360度就可以求出多边形的边数.【解答】解:多边形的边数是:n==8,即该多边形是八边形.故选:C.10.已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【考点】全等图形.【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.11.在△ABC和△FED中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件()A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F【考点】全等三角形的判定.【分析】考查三角形全等的判定定理,有AAS,SSS,SAS,ASA四种.根据题目给出的两个已知条件,要证明△ABC≌△FED,需要已知一对对应边相等即可.【解答】解:∵∠C=∠D,∠B=∠E,说明:点C与D,B与E,A与F是对应顶点,AC的对应边应是FD,根据三角形全等的判定,当AC=FD时,有△ABC≌△FED.故选C.12.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()A.15°B.25°C.30°D.10°【考点】三角形的外角性质.【分析】先由三角形外角的性质求出∠BDF的度数,根据三角形内角和定理即可得出结论.【解答】解:∵Rt△CDE中,∠C=90°,∠E=30°,∴∠BDF=∠C+∠E=90°+30°=120°,∵△BDF中,∠B=45°,∠BDF=120°,∴∠BFD=180°﹣45°﹣120°=15°.故选A.13.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC中,∠C+2∠C+90°=180°∴∠C=30°故选D.14.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】和△ABC全等,那么必然有一边等于3,有一边等于,又一角等于45°.据此找点即可,注意还需要有一条公共边.【解答】解:分三种情况找点,①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D.15.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=a,则下列结论正确的是()A.2a+∠A=180°B.a+∠A=90°C.2a+∠A=90°D.a+∠A=180°【考点】全等三角形的判定与性质.【分析】根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系.【解答】解:在△BDE和△CFD中,,∴△BDE≌△CFD,∴∠BED=∠CDF,∵∠A+∠B+∠C=180°,∴∠B=,∵∠BDE+∠EDF+∠CDF=180°,∴180°﹣∠B﹣∠BED+a+∠CDF=180°,∴∠B=a,即=a,整理得2a+∠A=180°.故选A.二、填空题(每题3分,共15分)16.已知一个多边形的内角和与外角和之比为5:2,则它的边数是7.【考点】多边形内角与外角.【分析】设内角的度数是5x°,则外角是2x°,根据内角与相邻的外角互补,即可求得外角的度数,然后根据外角和是360度,即可求得边数.【解答】解:设内角的度数是5x°,则外角是2x°,根据题意得:5x+2x=180,解得:x=,则2x=,故多边形的边数是:=7.故答案为7.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠B=26°,∠DAE=24°,则∠C=74°.【考点】三角形内角和定理.【分析】根据直角三角形两锐角互余求出∠BAD,再求出∠BAE,然后根据角平分线的定义求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD⊥BC,∴∠BAD=90°﹣∠B=90°﹣26°=64°,∵∠DAE=24°,∴∠BAE=∠BAD﹣∠DAE=64°﹣24°=40°,∵AE平分∠BAC,∴∠BAC=2∠BAE=2×40°=80°,在△ABC中,∠C=180°﹣∠BAC﹣∠B=180°﹣80°﹣26°=74°.故答案为:74°.18.如图B点在A处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B北偏东80°方向,则∠ACB=85°.【考点】方向角.【分析】根据方向角的定义,即可求得∠DBA,∠DBC,∠EAC的度数,然后根据三角形内角和定理即可求解.【解答】解:如图,∵AE,DB是正南正北方向,∴BD∥AE,∵∠DBA=45°,∴∠BAE=∠DBA=45°,∵∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°,又∵∠DBC=80°,∴∠ABC=80°﹣45°=35°,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣35°=85°.故答案是:85°.19.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,则其斜边上的高CD为cm.【考点】勾股定理;三角形的面积.【分析】首先利用勾股定理计算出AB的长,再根据三角形的面积计算出CD长即可.【解答】解:∵AC=5cm,BC=12cm,∴AB==13(cm),=AC•CB=AB•CD,∴S△ACB∴5×12=13×CD,解得:CD=,故答案为:.20.如图,△ABD,△ACE都是正三角形,BE和CD交于O点,则∠BOC=120度.【考点】等边三角形的性质;全等三角形的判定与性质.【分析】根据等边三角形的性质及全等三角形的判定SAS判定△DAC≌△BAE,得出对应角相等,再根据角与角之间的关系得出∠BOC=120°.【解答】解:∵△ABD,△ACE都是正三角形∴AD=AB,∠DAB=∠EAC=60°,AC=AE,∴∠DAC=∠EAB∴△DAC≌△BAE(SAS)∴DC=BE,∠ADC=∠ABE,∠AEB=∠ACD,∴∠BOC=∠CDB+∠DBE=∠CDB+∠DBA+∠ABE=∠ADC+∠CDB+∠DBA=120°.故填120.。
初中月考成绩分析总结与反思范文(通用16篇)

初中月考成绩分析总结与反思初中月考成绩分析总结与反思范文(通用16篇)总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如静下心来好好写写总结吧。
我们该怎么写总结呢?下面是小编帮大家整理的初中月考成绩分析总结与反思范文,欢迎阅读,希望大家能够喜欢。
初中月考成绩分析总结与反思篇1时间过得飞快,一眨眼之间开学的第一次月考已经结束了。
然而留给我的是无法挽回的时间,面对一张张伏而不尖和“绊脚石”是的分数令我不禁陷入沉思,看看一道道不该错的题目被打上大大的叉号时,心底里感到无限的自责。
虽然有的同学说:“有的题目没有讲到。
”现在回想起来,才觉得自己是多么的可笑,多么的无知!“没讲到”只不过是推脱自己责任的理由,掩盖自己平时没有定时定量认真预习的错误。
如果说,自己按老师教导的那样,从开始就认真预习的话,即使老师没有讲到又有多大关系呢?所以责任只能在自己身上。
预习历来是学习的一个重要环节,如果我们做不到课前预习和复习,那么一定会使自己的学习大打折扣的。
知识是靠日积月累的,人不可能在极短的时间内把大量的学习内容灌输到大脑里去,“饥一顿,饱一顿”的,“三天打鱼两天晒网。
”“临时抱佛脚,”这才是学习赶不上去的根本原因。
另外,还要做到举一反三,不但做到把老师要求背的内容一定背熟,还要用理解性的方法去记忆!做到融合贯通,举一反三,这样才能在遇到变通灵活的题目时,才不会手忙脚乱,出现错误。
俗话说:“宝剑锋从磨砺出,梅花香自苦寒来。
”学习是要经过长时间刻苦努力才能看到成果的。
如果每天应该完成的学习任务没有完成,负债累累,重压之下,更难取得好成绩。
因此必须:一要当天功课当天毕,注意知识积累;二要专心致志;三要灵活运用,熟能生巧。
这样才能在任何情况下都能做到得心应手。
学习靠积累,学习靠努力,学习靠自己,机会只有一次,要把握好每一次考试,让每一次考试都化作自己前进的动力把!初中月考成绩分析总结与反思篇2升入初中的第一次月考成绩已经出炉,语文92分全班第一,数学98分居次席,英语100,综合91,第一次月考的反思。
八年级第一次月考数学分析总结

八年级第一次月考数学分析总结八年级第一次月考已经结束,经过对试题的的批改和讲评,发现本人的教学存在一定问题,现将结果分析如下:一、考试总体情况。
本次月考考了八年级数学上册十一至十二章共两章内容,即三角形和全等三角形。
全年级共55人参加考试,及格33人,优秀19人,及格率为60%,优秀率为34.5%。
二、试卷分析本次月考共三大题,选择题10题共30分,填空题5题共15分,解答题7题共55分。
三、得失分情况。
在第一大题的10道选择题中,没有全错的,全对不是很多.而第8题的错误率达98%。
在第二大题的5道填空题中,出现全错的人,其中第13题失分最多。
在第三大题的7道解答题中,没有人全对的,得分率占80%的题有第17、18题,失分率占80%的题有21、22题。
结论:本次考试是提交简单,但是基础性题目得分率还是很低。
说明这段时间教学,虽然太重视基础教学,看似满足了成绩在中下等的学生的学习,实则不然。
同事忽视了优秀生的培养,本次试题应该优秀在78%—80%,但是由于对优秀学生的放松,导致优秀学生进步缓慢,所以在后面的教学中要注意两头兼顾。
五、存在问题。
1、本人在近期的教学投入的精力和时间不足。
“有投入不一定有收获,没投入一定没有收获”。
由于其他工作导致了教学上分配的时间减少,只是能够保证正常的上课辅导,课后无法给学生辅导。
2、学生没有形成良好的学习习惯。
习惯成就未来,没有良好的学习习惯,学生学习要有进步很困难,教师教学常常事倍功半。
不良习惯主要表现在上课注意力不能集中,抄袭作业,无恒心和喜欢口算等。
3、学校的数学教具缺乏,使教学中一些教学展示无法展示,对学生对该知识的理解掌握有一定的影响。
六、今后工作思路1、强化全面意识,加强补差工作。
这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱困境,以适应后续的学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展。
华师大版八年级数学上册第一次月考试卷【解析】

2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.7.下列图形中成轴对称的是()A.B.C.D.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= .16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= .17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是(只需添加一个条件即可.)18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有对.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是(填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.2014-2015学年山东省潍坊市高密四中文慧学校八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.下列交通标志图案是轴对称图形的是()A.B.C.D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列说法中正确的是()A.全等三角形是指形状相同的三角形B.全等三角形的周长和面积分别相等C.所有的等边三角形是全等三角形D.有两个角对应相等的两个三角形全等考点:全等图形.分析:根据能够完全重合的两个三角形叫做全等三角形,全等三角形的判定方法:AAS、AAS进行分析即可.解答:解:A、全等三角形是指形状相同的三角形,说法错误;B、全等三角形的周长和面积分别相等,说法正确;C、所有的等边三角形是全等三角形,说法错误;D、有两个角对应相等的两个三角形全等,说法错误;故选:B.点评:此题主要考查了全等三角形,关键是掌握全等三角形形状和大小都相等.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)考点:关于x轴、y轴对称的点的坐标.分析:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.解答:解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.如图,△ABC≌△BAD,如果AB=6cm,BD=4cm,AD=5cm,那么BC的长是()A.4cm B.5cm C.6cm D.无法确定考点:全等三角形的性质.分析:根据全等三角形的性质得出BC=AD,代入求出即可.解答:解:∵△ABC≌△BAD,AD=5cm,∴BC=AD=5cm,故选B.点评:本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.5.如图,已知:在△ABC和△DEF中,如果AB=DE,BC=EF.在下列条件中不能保证△ABC≌△DEF的是()A.∠B=∠DEF B.AC=DF C.AB∥DE D.∠A=∠D考点:全等三角形的判定.分析:已知AB=DE,BC=EF,只需再找一个夹角或者一条边相等,即可判定△ABC≌△DEF.解答:解:A、可根据SAS判定△ABC≌△DEF,故本选项错误;B、可根据SSS判定△ABC≌△DEF,故本选项错误;C、根据AB∥DE,可得∠B=∠DEF,可根据SAS判定△ABC≌△DEF,故本选项错误;D、不能根据SSA判定△ABC≌△DEF,故本选项正确.故选D.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A.B.C.D.考点:轴对称的性质.分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可.解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误.故选C.点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题.7.下列图形中成轴对称的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:根据轴对称图形的概念可得:是轴对称图形的是:B.故选:B.点评:考查了轴对称图形,掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.8.如图是经过轴对称变换后所得的图形,与原图形相比()A.形状没有改变,大小没有改变B.形状没有改变,大小有改变C.形状有改变,大小没有改变D.形状有改变,大小有改变考点:轴对称的性质.分析:根据轴对称不改变图形的形状与大小解答.解答:解:∵轴对称变换不改变图形的形状与大小,∴与原图形相比,形状没有改变,大小没有改变.故选:A.点评:本题考虑轴对称的性质,是基础题,熟记轴对称变换不改变图形的形状与大小是解题的关键.9.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.(S.S.S.)B.(S.A.S.)C.(A.S.A.)D.(A.A.S.)考点:全等三角形的判定.专题:作图题.分析:我们可以通过其作图的步骤来进行分析,作图时满足了三条边对应相等,于是我们可以判定是运用SSS,答案可得.解答:解:作图的步骤:①以O为圆心,任意长为半径画弧,分别交OA、OB于点C、D;②任意作一点O′,作射线O′A′,以O′为圆心,OC长为半径画弧,交O′A′于点C′;③以C′为圆心,CD长为半径画弧,交前弧于点D′;④过点D′作射线O′B′.所以∠A′O′B′就是与∠AOB相等的角;作图完毕.在△OCD与△O′C′D′,,∴△OCD≌△O′C′D′(SSS),∴∠A′O′B′=∠AOB,显然运用的判定方法是SSS.故选:A.点评:本题考查了全等三角形的判定与性质;由全等得到角相等是用的全等三角形的性质,熟练掌握三角形全等的性质是正确解答本题的关键.10.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD考点:全等三角形的判定与性质.专题:常规题型.分析:根据题干给出的条件可以证明△ABD≌△CDB,可以求得A、C、D选项正确.解答:解:∵在△ABD和△CDB中,,∴△ABD≌△CDB,∴∠ADB=∠CBD,∠ABD=∠CDB,∠A=∠C∴AD∥BC,AB∥CD,∴A、C、D选项正确.故选B.点评:本题考查了全等三角形的判定,考查了全等三角形对应边、对应角相等的性质,本题中求证△ABD≌△CDB是解题的关键.11.如图是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACD B.AF垂直平分EG C.∠B=∠C D.DE=EG考点:轴对称的性质.分析:认真观察图形,根据轴对称图形的性质得选项A、B、C都是正确的,没有理由能够证明△DEG 是等边三角形.解答:解:A、因为此图形是轴对称图形,正确;B、对称轴垂直平分对应点连线,正确;C、由三角形全等可知,∠B=∠C,正确;D、题目中没有60°条件,不能判断是等边三角形,故不能得到DE=EG错误.故选D.点评:本题考查了轴对称的性质;解决此题要注意,不要受图形误导,要找准各选项正误的具体原因是正确解答本题的关键.12.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙考点:全等三角形的判定.分析:全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理逐个判断即可.解答:解:图甲不符合三角形全等的判定定理,即图甲和△ABC不全等;图乙符合SAS定理,即图乙和△ABC全等;图丙符合AAS定理,即图丙和△ABC全等;故选B.点评:本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.二、填空题(共8个小题,每小题3分,共24分)13.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.考点:轴对称图形.分析:根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.解答:解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.点评:此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.14.如图,把两根钢条AC、BD的中点O连在一起,可以做成一个测量工件内槽宽的工具,若测得CD=5cm,则该内槽的宽AB为5cm .考点:全等三角形的应用.分析:本题让我们了解测量两点之间的距离,只要符合全等三角形全等的条件之一SAS,得出CD=AB 即可得出答案.解答:解:连接AB,CD,如图,∵点O分别是AC、BD的中点,∴OA=OC,OB=OD.在△AOB和△COD中,∵∴△AOB≌△COD(SAS).∴CD=AB=5cm.故答案为:5cm.点评:本题考查全等三角形的应用.在实际生活中,对于难以实地测量的线段,常常通过两个全等三角形,转化需要测量的线段到易测量的边上或者已知边上来,从而求解.15.如图,△ABC与△A′B′C′关于直线l成轴对称,已知∠A=50°,∠C′=30°,则∠B= 100°.考点:轴对称的性质.分析:由已知条件,根据轴对称的性质可得∠C=∠C′=30°,利用三角形的内角和等于180°可求答案.解答:解:∵△ABC与△A′B′C′关于直线l对称,∴∠A=∠A′=50°,∠C=∠C′=30°;∴∠B=180°﹣80°=100°.故答案为:100°.点评:主要考查了轴对称的性质与三角形的内角和是180度;求角的度数常常要用到“三角形的内角和是180°这一条件,得到∠C=∠C′=35°是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b= 6 .考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.解答:解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.点评:此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,∠1=∠2,BC=EF,需要添加一个条件,才能使△ABC≌△DEF,你添加的条件是AC=FD (只需添加一个条件即可.)考点:全等三角形的判定.专题:开放型.分析:添加条件:AC=FD,可利用SAS定理判定△ABC≌△DEF.解答:解:添加条件:AC=FD,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),故答案为:AC=FD.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,在△ABC中,AB=AC,两条高BD、CE相交于点O,则图中全等三角形共有 3 对.考点:全等三角形的判定.分析:首先证明△ACE≌△ABD可得AD=AE,EC=BD,根据等式的性质可得AB﹣AE=AC﹣AD,即EB=DC;再证明△EBC≌△DCB,△EOB≌△DOC即可.解答:解:△ACE≌△ABD,△EBC≌△DCB,△EOB≌△DOC,∵BD、CE为高,∴∠ADB=∠AEC=,90°,在△AEC和△ADB中,,∴△ACE≌△ABD(ASA);∴AD=AE,EC=BD,∴AB﹣AE=AC﹣AD,即EB=DC,在△EBC和△DCB中,,∴△EBC≌△DCB(SSS),在△EOB和△DOC中,,∴△EOB≌△DOC(AAS).故答案为:3.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出 4 个.考点:作图—复杂作图.分析:能画4个,分别是:以D为圆心,AB为半径画圆;以E为圆心,AC为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D,E连接后,可得到两个三角形.因此最多能画出4个解答:解:如图,可以作出这样的三角形4个.点评:本题考查了学生利用基本作图来做三角形的能力.20.如图所示,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为20°.考点:翻折变换(折叠问题);平行线的性质;矩形的性质.分析:由折叠的性质知:∠EBC′、∠BC′F都是直角,∠BEF=∠DEF,因此BE∥C′F,那么∠EFC ′和∠BEF互补,这样可得出∠BEF的度数,进而可求得∠AEB的度数,则∠ABE可在Rt△ABE中求得.解答:解:由折叠的性质知,∠BEF=∠DEF,∠EBC′=∠D=90°,∠BC′F=∠C=90°,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=125°,∴∠BEF=∠DEF=55°,在Rt△ABE中,可求得∠ABE=90°﹣∠AEB=20°.故答案为20°.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应角相等.三、解答题(共8个小题,共60分)21.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.考点:全等三角形的判定.专题:证明题.分析:首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.解答:证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:可通过证△ABF≌△DCE,来得出∠A=∠D的结论.解答:证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.点评:此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.23.请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)考点:利用轴对称设计图案.专题:作图题.分析:可分别选择不同的直线当对称轴,得到相关图形即可.解答:解:点评:考查利用轴对称设计图案;选择不同的直线当对称轴是解决本题的突破点.24.如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1(﹣1,2)B1(﹣3,1)C1(2,﹣1).考点:作图-轴对称变换;点的坐标.专题:作图题.分析:(1)利用轴对称性质,作出A、B、C关于y轴的对称点A1、B1、C1,顺次连接A1B1、B1C1、C1A1,即得到关于y轴对称的△A1B1C1;(2)根据点关于y轴对称的性质,纵坐标相同,横坐标互为相反数,即可求出A1、B1、C1各点的坐标.解答:解:(1)所作图形如下所示:(2)A1,B1,C1的坐标分别为:(﹣1,2),(﹣3,1),(2,﹣1).故答案为:(﹣1,2),(﹣3,1),(2,﹣1).点评:本题主要考查了轴对称变换作图,难度不大,注意作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.25.已知△ABC,利用直尺和圆规,作一个与△ABC全等的△A′B′C′(保留作图痕迹,不要求写作法).考点:作图—复杂作图;全等三角形的判定.分析:利用圆规作B′C′=BC,A′B′=AB,A′C′=AC即可.解答:解:如图所示:.点评:此题主要考查了复杂作图,关键是掌握三边对应相等的两个三角形全等.26.在学习“轴对称现象”内容时,王老师让同学们寻找身边的轴对称图形,小明有一副三角尺和一个量角器(如图所示).(1)小明的这三件文具中,可以看做是轴对称图形的是BC (填字母代号);(2)请用这三个图形中的两个拼成一个轴对称图案,并画出草图(只须画出一种)考点:利用轴对称设计图案.专题:常规题型.分析:(1)找到沿某条直线折叠,直线两旁的部分能够互相重合的图形即可;(2)由(1)得到的两个轴对称图形让对称轴重合组合即可.解答:解:(1)B,C.(2)所设计如下:点评:本题考查了轴对称的知识,用到的知识点为:沿某条直线折叠,直线两旁的部分能够互相重合的图形叫轴对称图形;两个图形组成轴对称图形,对称轴需重合.27.如图,已知AB⊥AC,AB=AC,DE过点A,且CD⊥DE,BE⊥DE,垂足分别为点D,E.(1)∠DCA与∠EAB相等吗?说明理由;(2)△ADC与△BEA全等吗?说明理由.考点:全等三角形的判定与性质.专题:常规题型.分析:(1)根据AB⊥AC和CD⊥DE可以求得∠DCA=∠EAB;(2)根据(1)中的∠DCA=∠EAB和AB=AC可以求证△ADC≌△BEA.解答:解:(1)∵AB⊥AC CD⊥DE∴∠BAE+∠CAD=90°,∠CAD+∠DCA=90°,∴∠DCA=∠EAB;(2)∵CD⊥DE,BE⊥DE,∴在△ADC和△BEA中,,∴△ADC≌△BEA.(AAS)点评:本题考查了全等三角形的判定,熟练运用AAS方法求证三角形全等是解题的关键.28.如图,AB=AC,OB=OC.求证:∠ADC=∠ADB.考点:全等三角形的判定与性质.专题:证明题.分析:易证△OAC≌△OAB,可得∠OAC=∠OAB,可证明△ACD≌△ABD,可得∠ADC=∠ADB.解答:解:∵在△ACD和△ABD中,,∴△OAC≌△OAB,(SSS)∴∠OAC=∠OAB,∵在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴∠ADC=∠ADB.点评:本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证△ACD≌△ABD是解题的关键.初中数学试卷金戈铁骑制作。
人教版八年级上册数学第一次月考数学试卷及答案

人教版八年级上册数学第一次月考数学试卷及答案人教版数学八年级上册第一次月考数学试卷一、选择题(共10小题,每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A。
3cm,4cm,5cmB。
4cm,6cm,10cmC。
1cm,1cm,3cmD。
3cm,4cm,9cm2.已知等腰三角形的一边长等于4,一边长等于9,则它的周长为()A。
22B。
17C。
17或22D。
263.一个三角形的两边长分别为3和8,第三边长是一个偶数,则第三边的长不能为()A。
6B。
8C。
10D。
124.在如图中,正确画出AC边上高的是()A。
B。
C。
D。
5.如图,线段AD把△ABC分为面积相等的两部分,则线段AD是()A。
三角形的角平分线B。
三角形的中线C。
三角形的高D。
以上都不对6.适合条件∠A=∠B=∠C的三角形是()A。
锐角三角形B。
等边三角形C。
钝角三角形D。
直角三角形7.过多边形的一个顶点的所有对角线把多边形分成8个三角形,这个多边形的边数是()A。
8B。
9C。
10D。
118.若一个多边形的内角和等于1080°,则这个多边形的边数是()A。
9B。
8C。
7D。
69.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A。
5B。
6C。
7D。
810.三角形的一个外角是锐角,则此三角形的形状是()A。
锐角三角形B。
钝角三角形C。
直角三角形D。
无法确定二、填空题(共10小题,每小题3分,共30分)13.如图,共有10个三角形。
14.如图所示,∠CAB的外角等于120°,∠B等于40°,则∠C的度数是 100°。
15.如图,∠1,∠2,∠3是△XXX的不同的三个外角,则∠1+∠2+∠3= 360°。
16.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条。
17.一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形是11边形。
初二数学三美月考试卷分析

三美初二数学第一次月考试卷分析1、考试范围:考查初二上册前两章,即三角形、全等三角形2、考试题型:接近中考题型,考查了很多中考必考的题型,如:实数、科学记数法、作图题、数据统计、三角形全等证明题、方案设计题3、试卷的难易程度分析本张试卷较难的题目最多占20%,填空和选择的最后一题对于学生来说都是有一定的难度的,接下来就是方案设计题与试卷的压轴题,这两题占的分值较大,也是容易拉分的题目。
4、易错点及原因分析《三角形》这一章的内容不难,但是有不少的易错点,如“已知等腰三角形的两条边长,求三角形的周长”,这种类型的题目学生出错的原因在于答案不唯一,还有学生没有考虑到得出的两组数据是否都能构成三角形。
还有求多边形的边数及计算题,这里也是一个易错点,学生通常是觉得自己很熟练了,所以粗心大意丢分,再加上大部分学生的检查习惯没有或是检查的方式不对。
有的学生虽然写完试卷也检查了,但是他们的检查方式就是大概的浏览过去一遍,也发现不了什么错误之处。
个人认为要达到检查的效果,应该是把题目重新做过一遍,特别是计算题,光看是很难发现问题的。
这类问题以后要经常提醒和督促学生养成习惯。
5、考试的内容分析除了考查初二上学期的前两章以外,还考查了初一的内容,初一的内容占的分值有六十几分这样,可见初一的内容还是需要经常去给学生复习的,特别是上面点到的一些必考题型。
很多学生可能也是因为没有考虑到复习之前所学过的内容,导致考试考得不理想。
不等式这一知识点在本次月考就考了不少的题目,选择、填空、计算、应用题都分别考了一题,还没掌握好不等式的内容的学生,就要抓紧时间把之前落下的内容给补上。
6、学生案例分析黄霄扬,三美学校初二年级的一个女学生,她的成绩在上学期期末考试排名是全班41名,后面暑假来这里补习之后开学考试考了全班32名,其实霄扬的成绩还算不错,每次数学考试都可以考个九十多分左右,暑假给她补了平行线与相交线及不等式的部分,在这次的月考中都有考到,学生基本上都可以拿到分数,就是在方案设计问题上学生还是出现了一些小问题,导致丢了几分,这个属于考虑不周全而漏掉一种符合题意的方案。
2022-2023学年上海市宝鸡市八年级上册数学第一次考模拟卷(卷一卷二)含解析

2022-2023学年上海市宝鸡市八年级上册数学第一次月考模拟卷(卷一)一、选一选(每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑)1. 下列运算正确的是( )A. x 2+x 3=x 5B. (-x 2)3=x 6C. x 6÷x 2=x 3D. -2x ·x 2=-2x 32. 已知=6,=3,则的值为( )mx n x 2-m nxA. 9B. C. 12D. 34433. 下列各式中,是完全平方式的是()A.B.22x xy y ++222x xy y --C.D. 2296p pq q -+2242m mn n-+4. 如图所示,在下列条件中,没有能判断△ABD ≌△BAC 的条件是( )A. ∠D=∠C ,∠BAD=∠ABCB. BD=AC ,∠BAD=∠ABCC. ∠D=∠C=90°,BD=ACD. AD=BC ,BD=AC5. 若是完全平方式,则m 的值等于( )22(3)16x m x +-+A .1或5B. 5C. 7D. 7或1-6. 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b )(如图1),将余下的部分拼成一个梯形(如图2),根据两个图形阴影部分面积的关系,可以得到个关于的等,a b式为( )A. (a﹣b)2=a2﹣2ab+b2B. (a+b)2=a2+2ab+b2C. a2﹣b2=(a+b)(a﹣b)D. a2+ab=a(a+b)7. 如图,已知△ABC,求作一点P,使P到∠CAB的两边的距离相等,且PA=PB,下列确定P 点的方确的是()A. P是∠CAB与∠CBA两角平分线的交点B. P为∠CAB的角平分线与AB的垂直平分线的交点C. P为AC、AB两边上的高的交点D. P为AC、AB两边的垂直平分线的交点8. 如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是( )A.10cmB. 12cmC. 15cmD. 17cm9. 用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是( )A. 34B. 40C. 37D. 3510. 已知,点P 在的内部.与P 关于OB 对称,与P 关于OA 对称,45AOB ∠=︒AOB ∠1P 2P 则O 、、三点所构成的三角形是( )1P 2P A. 直角三角形 B. 等腰直角三角形C. 等腰三角形D. 等边三角形11. 如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE=36°,那么∠BED 的度数为( )A. 108°B. 120°C. 126°D. 144°12. 如右图,在△ABC 中,点Q ,P 分别是边AC ,BC 上的点,AQ=PQ ,PR ⊥AB 于R ,PS ⊥AC 于S ,且PR=PS ,下面四个结论:①AP 平分∠BAC ;②AS=AR ;③BP=QP ;④QP ∥AB .其中一定正确的是()A. ①②③B. ①③④C. ①②④D. ②③④二、填 空 题(每小题4分,共24分)13. 点P (2,-3)关于x 轴对称的点P ′的坐标是_________.14. 分解因式:ax 2-9a=____________________.15. 已知的展开式中没有含项和项,则m·n=___________ .()()2212xmx x x n ++-+3x x 16. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA于M,交OB于N,P1P2=15,则△PMN的周长为___________.17. 如图,在△ABC中,∠ACB=90°,AB的垂直平分线DE交AB于E,交AC于D,∠DBC=30°,BD=4.6,则D到AB的距离为__________.18. 如图,C为线段AE上一动点(没有与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有_____.(把你认为正确的序号都填上)三、解答题:解答时每小题必须给出必要的演算过程和推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学上册第一次月考分析
这篇关于初二数学上册第一次月考分析,是特地为大家整理的,希望对大家有所帮助!
一、考试总体情况。
本次月考考了八年级数学上册十一至十三章共三章内容,即全等三角形、轴对称和实数。
全年级共 72 人参加考试,有32 人及格, 100 人以上的有 1 人, 90 分以上有 6 人, 80 分以上有14 人, 70 分以上有 18 人, 60 分以上有 32 人, 40 分以下有 13 人,平均分为 56.6,低分率为
18%,优秀率为 8.33%,及格率为 41.67%。
二、试卷分析
本次月考共三大题即24 小题,选择题14 题共 42 分,填空题 4 题共 12 分,解答题6题共56分。
三、得失分情况。
在第一大题的12 道选择题中,没有全错的,只有一人全对,71 人半对半错。
其中第 2 和 6 题正确率达 80%,而第 9 题的错误率达 98%。
在第二大题的 4 道填空题中,全对的有 2 人,全错的有 5 人,其余的均为半对半错。
其中第
15 的正确率为90%,第 18 题错误率为 80%。
在第三大题的 5 道解答题中,有 1 人全对的,也没有全错的,得分率占80%的题有第19、
20 和 21 题,失分率占80%的题有 22 和 24 题。
四、比较分析
1、与七年级第一次月考对比:
平均分名次
及格率名次
优秀率名次
低分率名次
七年级
21
21
21
18
本次
12
13
14
9
结论:学生有了很大进步,说明有许多学生是想学好并有能力学好,作为教师要给予帮助,不要给学生太大的打击,帮助学生树立信心。
2、与七年级最后一月考对比:
平均分及格率优秀率低分率七年级60
50 23.6 31
本次56.6 41.7
8.3
18.0
结论:和上次对比只有低分率有进步,其余全部都在后退,说明这段时间教学,太重视基础
教学,满足了成绩在中下等的学生的学习,而忽视了优秀生的培养,而上次月考说明太重视优
秀生的学习忽视了学困生的培养,总之要注意两头兼顾。
五、存在问题。
1、本人在近期的教学投入的精力和时间不足。
“有投入不一定有收获,没投入一定没有收获”。
近期由于学校工作较多,本人把工作的重点投入在学校工作上,投入在教学上的时间较少,
连正常上课的时间都没有保证,更别说给学生时间练习和作业讲评了。
2、学生没有形成良好的学习习惯。
习惯成就未来,没有良好的学习习惯,学生学习要有进
步很困难,教师教学常常事倍功半。
不良习惯主要表现在上课注意力不能集中,抄袭作业,
无恒心和喜欢口算等。
3、学校的数学教具缺乏,使本人在教学中要花费一定时间制作教具,影响了本人的教学,
甚至整个学校的数学教学质量。
六、今后工作思路
1、强化全面意识,加强补差工作。
这次考试数学的统计数据进一步说明,在数学学习上的困难生还比较多,怎样使这些学生尽快“脱贫”、摆脱中考成绩个位数的困境,以适应在高一级学校的继续学习和当今的信息时代,这是我们每一个初中数学教育工作者的一个重要研究课题.重视培优,更应关注补差.课堂教学中,要根据本班的学情,选择好教学内容,合理
地确定教学的起点和进程.课外要多给学习有困难的学生开“小灶”,满腔热情地关心每一位
后进生,让他们尽快地跟上其他同学,促进全体学生的进步和发展。
2、提高本人的教学水平。
既然我不能改变现实教学过中的各种不利因素,只好改变自己的
教学方式,以提高教学效率。
即做好“两个为什么,四个怎样做”。
(1)为什么要上这堂课?这就是要求我上课前要想好这堂课与学生以前所学有什么联系,
与以后的学习有什么联系和考试又有什么联系。
只有想好后才能真正抓住这堂课的重点和难
点。
(2)为什么要这样上这堂课?教学方法有许多种,我一定要想清楚为什么要用这种教学方
法,它是不是这堂课教学中的一种,好在哪里,别的方法不好在哪里?只有想清楚这些才能确
定科学的符合学生实际的教学方法。
(3)怎样让更多学生参与到教学中来。
教学过程是一个教与学的互动过程,如果只有“教师
的教而没学生的学”是一堂失败的课。
因此在教学设计时,每出现的一个问题和每一个教学
行为,我都要多想想“这样做对学生有吸引力吗?能激发学生的学习兴趣吗?”
(4)怎样让学生掌握重点突破难点。
每一堂课必有其重难点,因此我要多想想用什么方法
让学生掌握重点。
何谓难点就是学生容易错的地方和学生不容易理解的地方。
对于这些要我要多讲精讲,更要学生多练。
(5)怎样让学生在课堂中感到快乐。
我一直致力于“让课学成为学生健康成长的乐园,让课
堂成为学生思维激情迸发的天地,让课堂成为展现自我感受幸福的舞台。
”因此在教学中我要广泛阅读各种书籍,把数学知识和一切学生感兴趣的事情(故事、新闻、游戏、演示和操
作等)联系起来,让学生在数学学习中感受快乐,在快乐中学习数学。
(6)怎样让学生形成良好的学习习惯。
要想成功必然先要有一个良好的习惯,本班却有许
多学生学习有不良的习惯。
因此在教学中我要重视学生学习习惯的培养,在计算中培养学生的细心与恒心,在证明中培养学生的逻辑思维,在数学书写中培养学生的法规意识,在练习
中培养学生的自主学习能力自我探究能力,在作业中培养学生自信能力等等。
把学生的学习习惯放在教学重中之重。