总复习——统计与概率

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

小学六年级数学总复习统计与概率

小学六年级数学总复习统计与概率

小学六年级数学总复习统计与概率Revised by BETTY on December 25,2020小学六年级数学总复习统计与概率复习建议一、统计统计知识在生产和生活中,特别是进行科学研究时,应用非常广泛。

小学阶段,学习内容是统计学中最初步的知识,它包括单式、复式统计表和条形、折线、扇形统计图的用途、结构及绘制方法等问题。

在这里我谈谈自己对统计与概率的认识。

复习内容:1、数据的收集、整理、统计图表。

2、对图表进行分析,解决问题。

3、条形(单式,复式),折线(单式,复式),扇形统计图的特点及选择方法。

4、统计图的选用与制作。

复习目标:1、通过复习已学过的统计的初步知识,加深学生对统计的意义及其应用的理解。

2、培养学生会看、会分析、会制作简单统计图表的能力和综合运用统计知识解决实际问题的能力。

3、通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。

复习重难点:重点:1、体会统计在实际生活中的应用,发展统计观念。

2、用自己的语言描各种统计图的特点。

难点:用自己的语言描述各种统计图的特点。

复习要点:1、统计表:把统计数据填写在一定的表格内,用来反映情况说明问题。

种类:单式统计表、复式统计表、百分数统计表。

2、统计图:用点、线、面积等来表示相关的量之间的数量关系的图形。

分类:(1)、条形统计图:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。

优点:很容易看出来各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区分开,并在制图日期下面注明图列。

(2)、折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次联系起来。

优点:不但可以表示数量的多少而且能够清楚表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间,不同时间之间的距离要根据年份或月份的间隔来确定。

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。

以下是对这些知识点的详细梳理。

1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。

概率的计算方法包括:理论概率、几何概率和频率概率。

-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。

-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。

-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。

2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。

统计的主要目的是对研究对象进行客观的描述和分析。

-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。

-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。

-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。

3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。

抽样调查的方法包括概率抽样和非概率抽样。

-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。

-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。

4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。

高考复习概率与统计知识点归纳总结

高考复习概率与统计知识点归纳总结

概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。

人教版五年级下册数学《总复习—统计与概率》课件

人教版五年级下册数学《总复习—统计与概率》课件

60
91
95
89 86
92 77
100 94
王林 李丽
0
一、二 三
四 期中 五、六 七、八 单元
(2)
四年级下学期各个单元的测试成绩情况统计图
成绩/分
王林
100
90
100
李丽
91
95
92
Байду номын сангаас90
85
80
88
89 86
94
70
74
77
60
0
一、二 三
四 期中 五、六 七、八 单元
王林哪一单元的成绩最低?李丽哪一单元的成绩最好?
你还能发现什么?
答:2000-2010年学龄 儿童呈下降趋势。
7. 看统计图,完成下面各题。
2020年6月1日至6月5日甲、乙两个城市每日的最高气温情况统计图
气温 单位:℃
甲市 乙市
33
30
30
30
27
24
24
24
27
25
21
21
21
18
18
15
单位:日
0
1日
2日
3日
4日
5日
日期
①乙市6月1日的最高气温是_2_1_℃。
100
95
95 90
87 90
85
84
80 80
93 95
绩 最 好 的 是 第 75
_五__、__七__ 单 元 , 考 了
70 65
__9_5__分;考得最不 理 想 的 是 第 __一__ 单
60 0 一 二 三 四 五 六 七 单元
元,考了__8_0__分。

六年级数学《统计与概率可能性》总复习

六年级数学《统计与概率可能性》总复习
学生常常因为概念混淆而做错
详细描述
在统计与概率可能性这部分内容中,有很多 相近或容易混淆的概念,如中位数、众数、 平均数等。如果学生不能准确地理解这些概 念,很容易在解题时出现错误。例如,中位 数和众数都是用来描述数据集中趋势和离散 程度的指标,但它们的计算方法和应用场景
是不同的,学生需要仔细区分。
可能性的大小与随机 变量的关系
随机变量的取值可以表示随机事件可 能发生的结果,因此可能性的大小可 以通过随机变量的取值情况来表示。
可能性的大小与不确 定性的关系
不确定性是指对于某个事件未来发展 的趋势和结果无法做出准确预测的情 况。可能性的大小可以用来衡量不确 定性的大小,但不能完全代替不确定 性。
2023
六年级数学《统计与概率 可能性》总复习
目录
• 统计表与统计图 • 数据的收集与整理 • 概率与事件发生的可能性 • 综合练习 • 错题解析
01
统计表与统计图
复习统计表
收集数据
根据统计目的,确定需要收集 哪些数据,选择合适的调查方
法,如普查、抽样调查等。
制表和读表
将收集到的数据整理成表格,注 意表格的规范性和清晰度,同时 要学会阅读统计表,提取有用信 息。
学生常常因为对图表信息分析失误而做错
详细描述
统计图表是一种重要的信息载体,包括柱状图、折线图、饼图等。学生需要学会从图表中获取信息,并进行分 析和计算。如果对图表信息理解不准确或分析失误,很容易导致答题错误。例如,柱状图的高度代表各类信息 的数量,学生需要准确地理解每个高度所代表的含义。
概念混淆
总结词
数据清洗
对数据进行清洗和预处理 ,去除无效和异常数据, 确保数据分析的准确性。
复习数据

第四年级上册数学教案 总复习——统计与概率-北师大版

第四年级上册数学教案 总复习——统计与概率-北师大版

第四年级上册数学教案总复习——统计与概率-北师大版一、教学目标1. 让学生理解统计与概率的基本概念,掌握数据收集、整理、描述和分析的方法。

2. 培养学生运用统计与概率知识解决实际问题的能力,提高学生的数据分析素养。

3. 培养学生合作交流的意识,提高学生的团队协作能力。

二、教学内容1. 统计与概率的基本概念:数据、统计表、统计图、概率等。

2. 数据的收集与整理:问卷调查、观察法、实验法等。

3. 数据的描述与分析:平均数、中位数、众数、方差等。

4. 概率:必然事件、不可能事件、随机事件、概率的计算等。

三、教学重点与难点1. 教学重点:统计与概率的基本概念,数据的收集、整理、描述和分析方法,概率的计算。

2. 教学难点:数据的描述与分析方法,概率的计算。

四、教学方法1. 讲授法:讲解统计与概率的基本概念、数据收集与整理方法、数据的描述与分析方法、概率的计算等。

2. 案例分析法:通过具体案例,让学生了解统计与概率在实际生活中的应用。

3. 小组讨论法:分组讨论,培养学生的合作交流能力和团队协作能力。

4. 练习法:布置相关练习题,巩固所学知识。

五、教学过程1. 导入:简要回顾本学期所学的统计与概率知识,激发学生的学习兴趣。

2. 讲授新课:(1) 统计与概率的基本概念:数据、统计表、统计图、概率等。

(2) 数据的收集与整理:问卷调查、观察法、实验法等。

(3) 数据的描述与分析:平均数、中位数、众数、方差等。

(4) 概率:必然事件、不可能事件、随机事件、概率的计算等。

3. 案例分析:通过具体案例,让学生了解统计与概率在实际生活中的应用。

4. 小组讨论:分组讨论,培养学生的合作交流能力和团队协作能力。

5. 练习:布置相关练习题,巩固所学知识。

6. 总结:对本节课所学内容进行总结,强调重点知识。

7. 作业布置:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、积极性和合作交流能力。

2023-2024学年四年级下学期数学总复习统计与概率(教案)

2023-2024学年四年级下学期数学总复习统计与概率(教案)

2023-2024学年四年级下学期数学总复习统计与概率(教案)一、教学目标1. 让学生理解和掌握统计与概率的基本概念和原理,提高学生的数据分析能力。

2. 培养学生运用统计与概率知识解决实际问题的能力,增强学生的数学应用意识。

3. 通过对统计与概率知识的复习,提高学生对数学学科的兴趣,培养学生的自主学习能力。

二、教学内容1. 统计与概率的基本概念:数据、统计表、统计图、概率等。

2. 统计方法:平均数、中位数、众数、极差、方差等。

3. 概率计算:可能性、不可能性、必然性、随机事件等。

4. 统计与概率在实际生活中的应用。

三、教学重点与难点1. 教学重点:统计与概率的基本概念和原理,统计方法的应用,概率计算。

2. 教学难点:统计方法的灵活运用,概率计算公式的理解和应用。

四、教学方法1. 讲授法:讲解统计与概率的基本概念和原理,分析统计方法的应用,解释概率计算公式。

2. 案例分析法:通过具体案例,让学生了解统计与概率在实际生活中的应用。

3. 练习法:布置相关练习题,让学生巩固所学知识,提高解决问题的能力。

4. 小组讨论法:分组讨论,培养学生的合作意识和团队精神。

五、教学步骤1. 导入:简要回顾上学期所学内容,引入本节课的主题——统计与概率。

2. 讲解:讲解统计与概率的基本概念和原理,如数据、统计表、统计图、概率等。

3. 分析:分析统计方法的应用,如平均数、中位数、众数、极差、方差等。

4. 计算:讲解概率计算公式,如可能性、不可能性、必然性、随机事件等。

5. 应用:通过具体案例,让学生了解统计与概率在实际生活中的应用。

6. 练习:布置相关练习题,让学生巩固所学知识,提高解决问题的能力。

7. 小组讨论:分组讨论,培养学生的合作意识和团队精神。

8. 总结:对本节课的内容进行总结,强调重点知识。

9. 作业:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、积极性和合作意识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

服装店
星星 阳光
1~2月 3~4月 5~6月 7~8月 9~10 11~12 月
600 450 300 400 380 650
500 300 250 350 500 600
【例5】下面是星星服装店和阳光服装店销售时装情况 统计图. ②根据提供的信息,你认为哪家服装店的生意 差一些?如果你是这家服装店的老板,你将从 哪几个方面进行改进?
总复习——统计与概率
【加油站】 ①常用的统计图有条形统计图、折线统计图、扇形统计图三种. ②平均数、中位数、众数的定义 ③如何表示事件的可能性的大小
【例1】在学过的统计图中
①要很容易的看出数量的多少,用( 图比较合适
)统计
②要表示数量增减变化的情况,用( 图比较合适
)统计
③要反映部分与整体之间的关系,用( 计图比较合适
2
【例6】 ①数据1、2、3、5、3、9、5、4、5、4的众数 是( ),中位数是( )。
②数据11、9、7、10、14、7、6、5的中位数是

),众数是(
)。
③数据8、9、9、8、10、8、9、9、8、10、7、 9、9、8、10、7的众数是( ),中位数是 ( )。
【例7】判断对错 ①几个数据中,最中间的数就是中位数( ) ②数据的排列对中位数没有影响( ) ③平均数就是中位数( ) ④一组数据的众数只能有1个( ) ⑤一组数据的平均数、中位数、众数不可能是 同一个( )
)统
【例2】六(3)班参加省级数学竞赛,及格的有6人, 不及格的有4人,及格率是60%,制成扇形统计 图时,表示及格人数的圆心角是( )度。
【例3】①科技小组占
%;
②若参加美术小组的人数比音乐小组多3人,这
个班共有
人.
科技 小组
音乐小 组
40%
美术小 组
45%
1
【例4】育才小学组织师生参观自然博物馆,各年级人数如图
①学校打算把全校师生分成三批去参观,可以怎样安 排?(博物馆规定:每批参观人数不超过230人)
【例4】育才小学组织师生参观自然博物馆,各年级人数如图
②学生参观门票每张4.5元,成人参观门票每张10元 ,每批各需付门票多少元?
【例5】下面是星星服装店和阳光服装店销售时装情况 统计图.
①根据图中的数据制作统计表【例12】32张数字卡片上分别写上1~32各数,将卡片打
乱,从中任意取一张,抽到比20大的数的可能
性为 ,抽到5的倍数的可能性是
,抽
到素数的可能性是
,抽到既不是素数也
不是合数的可能性是

4
掷出每个数的可能性都是
,单数朝上的
可能性是 ,双数朝上的可能性是

如果掷30次,“3”朝上的次数大约是

【例11】桌子上有4张扑克牌,分别是2、3、4、5,背面 都朝上,随意从中抽出3张摆成一个三位数。
摆出的三位数是2的倍数的可能性是( ),
摆出的三位数是3的倍数的可能性是( 摆出的三位数是5的倍数的可能性是(
【例8】五个数的平均数是50,如果把这五个数从小到 大排列,那么前三个数的平均数是45,后三个 数的平均数是52,中间那个数是( )。
【例9】 转动转盘上的指针,指针停在黄色区域的可能
性是
,如果转动指针90次,估计

次指针会停在红色区域.
3
【例10】 小正方体的各面分别写着1、2、3、4、5、6.
相关文档
最新文档