触摸按键和触摸屏PPT课件
合集下载
课题八 触摸屏的使用PPT课件

(4)电动机停止。触摸用户画面1中〖停止〗按钮,变频器无运转信 号,电动机停止。
(5)电动机正转点动。触摸用户画面1中〖正转点动〗按钮,变频器 获正转信号,电动机正转点动运行。
(6)电动机反转点动。触摸用户画面1中〖反转点动〗按钮,变频器 获反转信号,电动机反转点动运行。
(7)紧急停车。在运行状态下,按下【紧急停止】按钮SB,电动机 停止。显示故障画面7,排除紧急情况后,触摸故障画面〖返回操作〗按 钮,返回操作画面1。
第57页/共64页
四、PLC程序
2. 设置故障控制字与显示故障画面
第58页/共64页3.来自数模转换四、PLC程序
第59页/共64页
4. 输出控制
四、PLC程序
第60页/共64页
五、变频器参数修改
变频器型号为FR-E540,参数修改操作步骤如下。
(1)恢复变频器出厂设定值。有关出厂设定值如下: 参数【1 = 120】,上限频率为120Hz; 参数【2 = 0】,下限频率为0Hz; 参数【3 = 50】,基准频率为50Hz; 参数【7 = 5】,启动加速时间为5s; 参数【8 = 5】,停止减速时间为5s; 参数【38 = 50】,5V(10V)输入时频率为50Hz; 参数【73 = 0】,选择5V的输入电压; 参数【78 = 0】,正转、反转均可; 参数【79 = 0】,外部操作模式,【EXT】灯亮。
3. 编辑触摸屏用户画面3~7
第54页/共64页
三、触摸屏显示画面与关联部件
3. 编辑触摸屏用户画面3~7
第55页/共64页
四、PLC程序
PLC步进指令程序如图8.52~图8.55所示,程序由初始状态继电器 S0~S2构成,各状态继电器主要功能见表8.9。
第56页/共64页
(5)电动机正转点动。触摸用户画面1中〖正转点动〗按钮,变频器 获正转信号,电动机正转点动运行。
(6)电动机反转点动。触摸用户画面1中〖反转点动〗按钮,变频器 获反转信号,电动机反转点动运行。
(7)紧急停车。在运行状态下,按下【紧急停止】按钮SB,电动机 停止。显示故障画面7,排除紧急情况后,触摸故障画面〖返回操作〗按 钮,返回操作画面1。
第57页/共64页
四、PLC程序
2. 设置故障控制字与显示故障画面
第58页/共64页3.来自数模转换四、PLC程序
第59页/共64页
4. 输出控制
四、PLC程序
第60页/共64页
五、变频器参数修改
变频器型号为FR-E540,参数修改操作步骤如下。
(1)恢复变频器出厂设定值。有关出厂设定值如下: 参数【1 = 120】,上限频率为120Hz; 参数【2 = 0】,下限频率为0Hz; 参数【3 = 50】,基准频率为50Hz; 参数【7 = 5】,启动加速时间为5s; 参数【8 = 5】,停止减速时间为5s; 参数【38 = 50】,5V(10V)输入时频率为50Hz; 参数【73 = 0】,选择5V的输入电压; 参数【78 = 0】,正转、反转均可; 参数【79 = 0】,外部操作模式,【EXT】灯亮。
3. 编辑触摸屏用户画面3~7
第54页/共64页
三、触摸屏显示画面与关联部件
3. 编辑触摸屏用户画面3~7
第55页/共64页
四、PLC程序
PLC步进指令程序如图8.52~图8.55所示,程序由初始状态继电器 S0~S2构成,各状态继电器主要功能见表8.9。
第56页/共64页
触摸屏知识简介要点课件

同时,随着柔性屏幕技术的不断发展,触摸屏的应用情势也将更加多样化,如可穿 着设备、智能家居等。
03
触摸屏的优缺点分析
触摸屏的优点
直观易用
触摸屏操作简单直观,用户可以直 接在屏幕上进行点击、拖动等操作 ,无需学习复杂的键盘和鼠标操作
。
节省空间
触摸屏设备通常体积较小,便于携 带,可以节省桌面空间。
丰富的交互体验
触摸屏可以提供丰富的交互方式, 如手势辨认、多点触控等,增强了 用户的互动体验。
易于维护
触摸屏的表面相对较硬,不易磨损 ,维护成本较低。
触摸屏的缺点
01
手部卫生问题
触摸屏表面容易沾染细菌和污 垢,如果用户没有经常清洁手 部,可能会对健康造成影响。
02
不合适所有用户
对于一些手部活动不便或视力 不佳的用户来说,使用触摸屏
触摸屏的工作原理
工作原理
通过检测触摸产生的物理信号( 如电压、电流或声波),触摸屏 控制器能够辨认触摸点的位置和 操作。
信号处理
触摸屏控制器将物理信号转换为 数字信号,并传输到计算机或其 他设备进行处理。
触摸屏的应用领域
移动设备
智能手机、平板电脑等移动终端广泛采 用触摸屏技术,提供便利的操作体验。
触摸屏知识简介要点课件
目录
• 触摸屏基础知识 • 触摸屏技术发展历程 • 触摸屏的优缺点分析 • 触摸屏的常见问题及解决方案 • 触摸屏产品推举 • 触摸屏的发展前景
01
触摸屏基础知识
触摸屏的定义与分类
01
02
定义
分类
触摸屏是一种人机交互设备,允许用户通过触摸屏幕进行操作和输入 。
根据技术原理和应用场景,触摸屏可分为电阻式、电容式、红外式和 表面声波式等类型。
03
触摸屏的优缺点分析
触摸屏的优点
直观易用
触摸屏操作简单直观,用户可以直 接在屏幕上进行点击、拖动等操作 ,无需学习复杂的键盘和鼠标操作
。
节省空间
触摸屏设备通常体积较小,便于携 带,可以节省桌面空间。
丰富的交互体验
触摸屏可以提供丰富的交互方式, 如手势辨认、多点触控等,增强了 用户的互动体验。
易于维护
触摸屏的表面相对较硬,不易磨损 ,维护成本较低。
触摸屏的缺点
01
手部卫生问题
触摸屏表面容易沾染细菌和污 垢,如果用户没有经常清洁手 部,可能会对健康造成影响。
02
不合适所有用户
对于一些手部活动不便或视力 不佳的用户来说,使用触摸屏
触摸屏的工作原理
工作原理
通过检测触摸产生的物理信号( 如电压、电流或声波),触摸屏 控制器能够辨认触摸点的位置和 操作。
信号处理
触摸屏控制器将物理信号转换为 数字信号,并传输到计算机或其 他设备进行处理。
触摸屏的应用领域
移动设备
智能手机、平板电脑等移动终端广泛采 用触摸屏技术,提供便利的操作体验。
触摸屏知识简介要点课件
目录
• 触摸屏基础知识 • 触摸屏技术发展历程 • 触摸屏的优缺点分析 • 触摸屏的常见问题及解决方案 • 触摸屏产品推举 • 触摸屏的发展前景
01
触摸屏基础知识
触摸屏的定义与分类
01
02
定义
分类
触摸屏是一种人机交互设备,允许用户通过触摸屏幕进行操作和输入 。
根据技术原理和应用场景,触摸屏可分为电阻式、电容式、红外式和 表面声波式等类型。
2024版Proface触摸屏基础课PPT课件

20
编程实例:数据采集与处理
01
数据采集方法
通过Proface触摸屏的输入设备(如触摸屏、按键等)或外部传感器,
可以实时采集各种数据。这些数据可以通过编程进行处理和分析。
02
数据处理流程
采集到的数据需要经过一系列的处理步骤,包括数据清洗、格式转换、
统计分析等,以便得到有用的信息。
2024/1/24
2024/1/24
工具栏提供常用命令的快 捷按钮,方便用户快速执 行相关操作。
属性窗口用于显示和编辑 选中对象的属性信息,如 大小、位置、颜色等。
项目树展示当前项目的结 构层次,方便用户管理和 浏览项目资源。
17
基本操作演示
新建项目
在菜单栏中选择“文件”->“新建”,输入项 目名称和保存路径,创建新的触摸屏项目。
06
预览效果 在项目树中选择需要预览的页面,然后点击工 具栏中的预览按钮,即可查看页面的实际效果。
18
05
编程开发与实例分析
2024/1/24
19
编程语言支持及环境搭建
支持的编程语言
Proface触摸屏支持多种编程语言,如C/C、Python、Java等,方便用户根据需求选择合适 的语言进行开发。
学员C
3
通过与其他学员的交流和分享,我发现了自己在 操作过程中的一些不足,今后将更加注重细节和 规范操作。
2024/1/24
29
行业发展趋势展望
工业自动化程度不断提升
随着工业4.0的推进和智能制造的发展,工业自动化程度将不断提升,对触摸屏的需求
也将持续增长。
多功能、高性能触摸屏成为主流
未来触摸屏将更加注重多功能和高性能的发展,如支持多点触控、手势识别、高清显示 等功能,以满足不同应用场景的需求。
编程实例:数据采集与处理
01
数据采集方法
通过Proface触摸屏的输入设备(如触摸屏、按键等)或外部传感器,
可以实时采集各种数据。这些数据可以通过编程进行处理和分析。
02
数据处理流程
采集到的数据需要经过一系列的处理步骤,包括数据清洗、格式转换、
统计分析等,以便得到有用的信息。
2024/1/24
2024/1/24
工具栏提供常用命令的快 捷按钮,方便用户快速执 行相关操作。
属性窗口用于显示和编辑 选中对象的属性信息,如 大小、位置、颜色等。
项目树展示当前项目的结 构层次,方便用户管理和 浏览项目资源。
17
基本操作演示
新建项目
在菜单栏中选择“文件”->“新建”,输入项 目名称和保存路径,创建新的触摸屏项目。
06
预览效果 在项目树中选择需要预览的页面,然后点击工 具栏中的预览按钮,即可查看页面的实际效果。
18
05
编程开发与实例分析
2024/1/24
19
编程语言支持及环境搭建
支持的编程语言
Proface触摸屏支持多种编程语言,如C/C、Python、Java等,方便用户根据需求选择合适 的语言进行开发。
学员C
3
通过与其他学员的交流和分享,我发现了自己在 操作过程中的一些不足,今后将更加注重细节和 规范操作。
2024/1/24
29
行业发展趋势展望
工业自动化程度不断提升
随着工业4.0的推进和智能制造的发展,工业自动化程度将不断提升,对触摸屏的需求
也将持续增长。
多功能、高性能触摸屏成为主流
未来触摸屏将更加注重多功能和高性能的发展,如支持多点触控、手势识别、高清显示 等功能,以满足不同应用场景的需求。
《触摸屏培训资料》课件

操作步骤:打开语 音识别软件,选择 语言,开始说话, 等待识别结果
注意事项:保持环 境安静,避免背景 噪音干扰识别效果
01
触摸屏软件应用
操作系统
触摸屏软件应用 需要操作系统的 支持
常见的操作系统 包括Windows、 Android、iOS 等
操作系统为触摸 屏软件应用提供 了运行环境
操作系统的功能 包括资源管理、 任务调度、用户 界面等
估
屏幕尺寸
屏幕尺寸:4.3英寸 屏幕分辨率:1280x720 屏幕材质:IPS
屏幕亮度:450cd/m² 屏幕对比度:1000:1 屏幕色域:NTSC 72%
01
触摸屏操作方式
单点触控
操作方式:通过手指或触控笔在触摸屏上点击 功能:选择、拖动、缩放等 应用场景:手机、平板电脑、触摸屏电脑等 注意事项:避免用力按压,以免损坏触摸屏
软件优化与升级
软件优化:提高 软件运行效率, 减少资源占用
升级目的:增加 新功能,修复已 知问题源自升级方式:自动 升级、手动升级
升级注意事项: 备份数据,避免 数据丢失
01
触摸屏硬件设备
触控面板
触控面板是触摸屏的核心部件,负责接收用户的触摸信号 触控面板的种类包括电阻式、电容式、红外式等 触控面板的性能指标包括响应速度、精度、耐用性等 触控面板的应用领域包括智能手机、平板电脑、笔记本电脑等
触摸屏由触摸感应器和触摸 控制器组成
触摸控制器负责处理触摸信 号,并将处理结果传递给主
机
主机根据触摸控制器的处理 结果,执行相应的操作
触摸屏的应用领域
智能手机:触摸屏已成为智能手机的标准配置
平板电脑:触摸屏是平板电脑的主要输入方式
笔记本电脑:越来越多的笔记本电脑采用触摸屏设计
《任务一触摸屏》课件

PPT,a click to unlimited possibilities
汇报人:PPT
目录
任务一背景
触摸屏技术发展历程
触摸屏的应用领域
触摸屏的工作原理
触摸屏的优缺点
任务一目标
学习触摸屏的基本原理和结构
掌握触摸屏的种类和特点
理解触摸屏的应用场景和优势
学会使用触摸屏进行交互操作
触摸屏的基本原理
触摸屏反应迟钝:检查触摸屏 是否沾染污渍,或调整触摸屏 灵敏度
触摸屏无法识别:检查触摸屏 是否损坏,或重新安装驱动程 序
触摸屏无法拖动:检查触摸屏 是否损坏,或重新安装驱动程
序
触摸屏无法滚动:检查触摸屏 是否损坏,或重新安装驱动程
序
触摸屏无法缩放:检查触摸屏 是否损坏,或重新安装驱动程
序
工业控制领域
案例启示:触摸屏技术在医疗设备领域的应用,为医疗设备的智能化发展提供了新的方向和思路,推动了医疗设备 的智能化发展。
案例三:智能家居领域应用案例
智能家居系统: 通过触摸屏控制 家中的电器、照 明、安防等设备
应用场景:家庭、 办公室、酒店等 场所
功能特点:智能 控制、节能环保、 安全便捷
发展趋势:随着 科技的发展,智 能家居领域将越 来越普及,应用 范围将越来越广 泛。
工业自动化:通过 触摸屏实现设备的 自动化控制
生产监控:实时监 控生产线的运行状 态和生产进度
设备维护:通过触 摸屏进行设备的故 障诊断和维护
操作培训:通过触 摸屏进行设备的操 作培训和技能提升
医疗设备领域
应用场景:医院、诊所、家 庭等
功能:实时监测患者生理数 据,为医生提供诊断依据
医疗设备:如血压计、血糖 仪、心电图机等
汇报人:PPT
目录
任务一背景
触摸屏技术发展历程
触摸屏的应用领域
触摸屏的工作原理
触摸屏的优缺点
任务一目标
学习触摸屏的基本原理和结构
掌握触摸屏的种类和特点
理解触摸屏的应用场景和优势
学会使用触摸屏进行交互操作
触摸屏的基本原理
触摸屏反应迟钝:检查触摸屏 是否沾染污渍,或调整触摸屏 灵敏度
触摸屏无法识别:检查触摸屏 是否损坏,或重新安装驱动程 序
触摸屏无法拖动:检查触摸屏 是否损坏,或重新安装驱动程
序
触摸屏无法滚动:检查触摸屏 是否损坏,或重新安装驱动程
序
触摸屏无法缩放:检查触摸屏 是否损坏,或重新安装驱动程
序
工业控制领域
案例启示:触摸屏技术在医疗设备领域的应用,为医疗设备的智能化发展提供了新的方向和思路,推动了医疗设备 的智能化发展。
案例三:智能家居领域应用案例
智能家居系统: 通过触摸屏控制 家中的电器、照 明、安防等设备
应用场景:家庭、 办公室、酒店等 场所
功能特点:智能 控制、节能环保、 安全便捷
发展趋势:随着 科技的发展,智 能家居领域将越 来越普及,应用 范围将越来越广 泛。
工业自动化:通过 触摸屏实现设备的 自动化控制
生产监控:实时监 控生产线的运行状 态和生产进度
设备维护:通过触 摸屏进行设备的故 障诊断和维护
操作培训:通过触 摸屏进行设备的操 作培训和技能提升
医疗设备领域
应用场景:医院、诊所、家 庭等
功能:实时监测患者生理数 据,为医生提供诊断依据
医疗设备:如血压计、血糖 仪、心电图机等
触摸屏原理ppt课件

12
三、触摸屏的原理
• 表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不 容易被损坏,适于各种场合,缺点是屏幕表面如果有水 滴和尘土会使触摸屏变的迟钝,甚至不工作。
13
三、触摸屏的原理
• 红外线式触摸屏 红外扫描触摸屏,由装在触摸 屏外框上的红外线发射与接收感 测元件构成,采用红外线发射和 阻断原理,在屏幕表面上形成红 外线探测网,任何触摸物体可改 变触点上的红外线而实现触摸屏 操作。
9
三、触摸屏的原理
• 电容技术触摸屏 在触摸屏四边均镀上狭长的电极,在导电体内形成一个 低电压交流电场。感应方式为电压连接到玻璃层的四个 角,通过电极将电压散布在玻璃层,并建立一无变化的 电压电场。当用户触摸到玻璃表面屏幕时,由于人体电 场,手指与导体层间会形成一个耦合电容,四边电极发 出的电流从玻璃层的四个角汇集流向触点,而电流强弱 与手指到电极的距离成正比,位于触摸屏幕后的控制器 便会计算电流的比例及强弱,准确算出触摸点的位置。
10
三、触摸屏的原理
• 电容屏反光严重, 而且,电容技术 的四层复合触摸 屏对各波长光的 透光率不均匀, 存在色彩失真的 问题,由于光线 在各层间的反射, 还造成图像字符 的模糊。
11
三、触摸屏的原理
• 表面声波触摸屏 表面声波是一种沿介质表面 传播的机械波。表面声波触 摸屏采用表面声波传输与接 收的技术,实现触摸的准确 定位。该种触摸屏由触摸屏、 声波发生器、反射器和声波 接受器组成,其中声波发生 器能发送一种高频声波跨越 屏幕表面,当手指触及屏幕 时,触点上的声波即被阻止, 由此确定坐标位置。
5
三、触摸屏的原理
• 矢量压力传感技术触摸屏(已退出历史舞台) • 电阻技术触摸屏 • 电容技术触摸屏 • 红外线技术触摸屏 • 表面声波技术触摸屏
三、触摸屏的原理
• 表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰不 容易被损坏,适于各种场合,缺点是屏幕表面如果有水 滴和尘土会使触摸屏变的迟钝,甚至不工作。
13
三、触摸屏的原理
• 红外线式触摸屏 红外扫描触摸屏,由装在触摸 屏外框上的红外线发射与接收感 测元件构成,采用红外线发射和 阻断原理,在屏幕表面上形成红 外线探测网,任何触摸物体可改 变触点上的红外线而实现触摸屏 操作。
9
三、触摸屏的原理
• 电容技术触摸屏 在触摸屏四边均镀上狭长的电极,在导电体内形成一个 低电压交流电场。感应方式为电压连接到玻璃层的四个 角,通过电极将电压散布在玻璃层,并建立一无变化的 电压电场。当用户触摸到玻璃表面屏幕时,由于人体电 场,手指与导体层间会形成一个耦合电容,四边电极发 出的电流从玻璃层的四个角汇集流向触点,而电流强弱 与手指到电极的距离成正比,位于触摸屏幕后的控制器 便会计算电流的比例及强弱,准确算出触摸点的位置。
10
三、触摸屏的原理
• 电容屏反光严重, 而且,电容技术 的四层复合触摸 屏对各波长光的 透光率不均匀, 存在色彩失真的 问题,由于光线 在各层间的反射, 还造成图像字符 的模糊。
11
三、触摸屏的原理
• 表面声波触摸屏 表面声波是一种沿介质表面 传播的机械波。表面声波触 摸屏采用表面声波传输与接 收的技术,实现触摸的准确 定位。该种触摸屏由触摸屏、 声波发生器、反射器和声波 接受器组成,其中声波发生 器能发送一种高频声波跨越 屏幕表面,当手指触及屏幕 时,触点上的声波即被阻止, 由此确定坐标位置。
5
三、触摸屏的原理
• 矢量压力传感技术触摸屏(已退出历史舞台) • 电阻技术触摸屏 • 电容技术触摸屏 • 红外线技术触摸屏 • 表面声波技术触摸屏
《触摸屏培训资料》课件

灰尘或污垢
触摸屏表面如果有灰尘或污垢,会影响触摸的灵敏度。解 决方案是定期清洁触摸屏表面,使用柔软的布或纸巾,避 免使用过于粗糙的物品。
软件故障
某些情况下,触摸屏不灵敏可能是由于软件故障或系统更 新引起的。解决方案是尝试更新系统或软件,或恢复出厂 设置。
触摸屏死机问题
总结词
强制重启
触摸屏死机是常见的问题之一,可能导致 无法操作或响应。
工作原理
触摸屏由触摸检测和触摸点定位两部 分组成,通过检测用户的触摸动作并 定位触摸点,将指令传输给计算机或 相关设备进行响应。
触摸屏的分类与特点
分类
根据技术原理,触摸屏可分为电 阻式、电容式、红外式和超声波 式等类型。
特点
触摸屏具有直观、易用、节省空 间等优点,同时也有精度、稳定 性、耐久性等方面的差异。
未来触摸屏技术将与AI技术相结合, 实现智能化的触控识别和自动优化, 提高用户体验。
多点触控
随着多点触控技术的发展,未来触摸 屏将支持多个手指同时触控,实现更 丰富的交互方式。
03
触摸屏的硬件组成
触摸屏控制器
控制器是触摸屏的核心组件, 负责处理触摸屏上的触摸事件 ,并将触摸位置信息传输给计 算机。
选择优质品牌和型 号
不同品牌和型号的触摸屏质量和 性能有所不同。选择知名品牌和 高质量的触摸屏可以保证其性能 和使用寿命。同时,遵循制造商 的使用说明和维护建议,以确保 正确使用和维护触摸屏。
THANKS
THANK YOU FOR YOUR WATCHING
控制器通常具有高集成度,能 够实现快速响应和精确的触摸 定位。
控制器还具备校准功能,以确 保触摸屏的准确性和稳定性。
触摸屏传感器
触摸感应按键介绍课件

减少材料浪费
由于不需要物理接触,可 以减少对实体按键材料的 需求,从而降低对环境的 影响。
便于维护和更新
触摸感应按键通常采用模 块化设计,方便进行维护 和更新,延长了产品的使 用寿命。
03 触摸感应按键的技术发展
技术原理的演变
电阻式触摸感应技术
利用触摸产生的压力改变电阻值,从而检测 触摸位置。
红外线触摸感应技术
触摸感应按键介绍课 件
目录
CONTENTS
• 触摸感应按键概述 • 触摸感应按键的优势与特点 • 触摸感应按键的技术发展 • 触摸感应按键的设计与实现 • 触摸感应按键的未来展望 • 实际应用案例分析
01 触摸感应按键概述
定义与工作原理
定义
触摸感应按键是一种基于触摸感 应技术的控制装置,通过感知手 指或触摸物体的接触来触发相应 的操作或信号。
功能测试
01
对按键的各项功能进行测试,确保满足设计要求。
环境适应性测试
02
在不同温度、湿度等环境下进行测试,验证其可靠性。
优化改进
03
根据测试结果进行优化改进,提高性能和稳定性。
05 触摸感应按键的未来展望
技术创新与突破
新型材料
采用更轻、更耐用、更环保的材料,提高按键的耐用性和环保性。
人工智能集成
详细描述
触摸屏不仅提供了直观、便捷的操作方式,还集成了多种交互功能,如滑动、 缩放、多点触控等,使手机操作更加高效。
案例二:智能家居控制面板
总结词
智能家居控制的关键组件
详细描述
触摸感应按键被广泛应用于智能家居控制面板,如智能灯光、智能音响等,提供 简单、直观的控制方式,提升居住体验。
案例三:公共设施导向标识系统
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
触摸按键的原理与实现
软件识别方法:
1、初始化定时器,捕获模式,上升沿捕获,计数器寄存器置零; 2、初始化IO为推挽输出,置IO输出0,给电容放电; 3、延时; 4、初始化IO为浮空输入,如果需要(不同MCU),设置复用模式为定时器输入通道; 5、开启定时器上升沿捕获中断,启动定时器计时; 6、等待定时器上升沿中断; 7、在中断中,关闭中断源,读取捕获值; 8、主循环中与原始值比较,判断是否被触摸了。 9、重复2~9。
猜一下,哪几个是“鬼点”?
Thank you
还有什么疑问请提出,联系本人: 也可以以发送邮件到
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
电阻屏简介
四线,五线,六线之分:
1、五线电阻屏测量原理和四线电阻屏一样; 2、不同点在于,五线电阻屏的X、Y电极位于同一个ITO导电层, 分时加载X电场和Y电场。另一个ITO导电层仅作为导体用。 3、五线电阻屏没有Z坐标。
五线电阻屏(四千万)要比四线电阻屏(一百万)耐用,经常按压 的ITO导电层不参与电阻分压测量,不必考虑导电层的厚薄是否均匀,此 外,即使导电层受按压破裂,也影响不大,只要有电气连接即可。
六线电阻屏,比五线电阻屏多了接地层,用于屏蔽电磁干扰。
还有七线、八线电阻屏,用得较少,原理同四线电阻屏,仅仅是 提高精度,减少线上电阻的影响。
电容屏简介
原理:
表面式触摸屏
投射式触摸屏
在ITO导电层施加电场,当有 手指触碰屏表面时,屏表面和手指 之间形成电容,电流就从导电层的 四个角的导线流向手指。测量四个 角的电流大小,根据比例可算出手 指的触摸位置。
触摸按键的原理与实现
如何适应不同的硬件,抛砖引玉:
1、不同材质、极板面积、极板距离的触摸按键: 设置电容值增量因子;
2、相同性质的触摸按键,数量不同: 构造触摸按键结构体,修改数组大小适应不同数量的触摸按键。
······
电阻屏简介
原理: 以四线电阻屏为例:
电阻屏简介
原理:
距离之比 = 电阻之比 = 电压之比 1、通常(RX1+RX2)和( RY1+RY2 )值是已知的。 2、X方向和Y方向的分压比 = 距离之比,可以算出RX1、RX2、RY1、RY2四个电阻值。 3、RZ是触点电阻,按压力越大,RZ越小。 4、根据测量值Z1、Z2的电压比值和RX1、RY2阻值,可算出RZ,即Z坐标。
该电场镂空,形成点阵形式的电容,通过扫描 行列电容的变化,感知触摸位置。
定位精度取决于点阵电容的数量, 以及屏的大小。
电容屏简介
多点触控之反射式电容屏:
表面电容式触摸屏只有单点触控。 投射电容式触摸屏有多点触控的概念。 但是,投射式电容屏在多点触控时,会出现“鬼点”,需要特殊处理。
触摸按键的原理与实现
影响触摸灵敏度的因素(提高电容增量):
1、基准电容: 板材、板厚、电极面积、杂散电容(走线电容)
2、形状(规则形状,不规则形状) 3、布局(触摸焊盘和走线方式) 4、外部干扰 5、上拉电阻大小 6、采样时钟的频率
触摸盘的面积尽 可能与手指触摸面积 一样大,无关手指触 摸的部分的寄生电容 尽量小。
讲述内容
一、触摸按键的原理和实现
1、原理 2、影响触摸灵敏度的因素 3、软件识别方法 4、如何适应不同硬件,抛砖引玉
二、电阻屏简介
1、原理 2、四线、五线、七线、八线之分
三、电容屏简介
1、原理 2、多点触控之反射式电容屏
触摸按键的原理与实现
原理:
VCC
R
C0
无触摸时的电路模型
VCC
R
C0
C’
有触摸时的电路模型