风光互补LED路灯控制器的设计

合集下载

基于风光互补型的智能式LED太阳能路灯系统设计

基于风光互补型的智能式LED太阳能路灯系统设计
2 . 2路 灯控 制 器部 分设 计
路 灯控 制器 部 分 设 计 框 图如 图3 所示 。 此 部 分 主 要 包 括ARM处
理器 , 均衡 电路 、 电压 电流 采集 电路 、 风机过载保 护 电路 、 充放 电及
供 电切换 电路 。 A RM处理器采用L M3 S 9 B 9 6 , 是整个系统中的核心
1引 言
太 阳能和风 能作为新 能源 , 既清洁环保又 “ 取之 不尽 、 用之 不
竭” , 正得到广 泛的应用。 L E D 的体积小 、 坚固耐用 、 寿命 长 、 绿 色 环
保、 高效节能等特点, 已逐步取代传统 的路灯照明。 考虑到路灯的经
图 1系统 框 图
图 2路 灯 系统 供 电 部 分 设 计 框 图
用, 太阳能电池和 风力 发电机 的输 出存储在蓄 电池 中。 当蓄 电池 过 充后 , 太阳能电池停止对其充电, 风力发电机输 出切换到卸载上 , 也
停 止 对 蓄 电池 的充 电 。 蓄 电池 的容 量 和 电 压 是 首要 考虑 的 , 此 系 统 中 的蓄 电池 的容 量 受 天气 情 况 、 路灯的发光时间和亮度等影响 。 2 . 4路 灯 输 出 部 分 设 计
3系 统软 件 设计
3 . 1主程 序 流 程设 计
主 程 序 流 程 图 图4 所示 :
3 . 2系统相 关 子程 序设 计
本系统主程序在完成 自检及初始化后 , 读取工作模 式、 蓄 电池
图 5蓄 电池 充放 电控 制 子 程 序 流 程 图 济性 、 可靠 性 和 安 全 性 , 可 以采 用 风 光 互补 型… 的L E D 太 阳能 路 灯 系 类型、 卸载类型等 , 然 后 进 入 风光 互 补 选 择 程 序 , 其 中包 括 白 天 、 黑 夜判 断程 序 和 风 速 判 断程 序 。 白天 黑 夜 的判 断可 以通 过光 电探 测 器

基于Zigbee风光互补路灯控制系统的设计

基于Zigbee风光互补路灯控制系统的设计

基于Zigbee风光互补路灯控制系统的设计由于当前能源危机的日益加剧,人类开始加快对新型能源的开发和利用。

风光互补路灯则是其中一个重要的应用。

本文首先介绍了国内外在风光互补路灯的发展现状,并对已有的风光互补路灯进行了重新的设计,主要涉及电源的选型以及管理问题、路灯的开关控制、系统的控制以及路灯状态信息的传输等问题。

然后介绍了该新型路灯的整体结构,系统主要由五部分组成:风力发电模块、光伏发电模块、控制器、蓄电池、以及路灯。

通过对风力发电机结构和原理的分析,本系统选用的是直驱永磁风力发电机。

对光伏板的发电原理的分析,本系统选用多晶硅材料的光伏电池板。

储电设备选用的是铅酸蓄电池,根据蓄电池的状态来判断是否需要充电。

在路灯的选择上,本系统选择亮度最高、能耗较低的LED路灯作为照明设备。

在系统的控制方面本系统采用的是德州仪器(TI)公司的CC2530来作为主控制器。

在对蓄电池充电电路的设计上,其主要通过BUCK电路来做稳压处理,同时控制光伏电池的充电,由于各个模块所需电压不完全相同,有必要对蓄电池的输出电压做变压处理,来满足各个模块的需求。

最后采集光照度、路灯和蓄电池灯的端电压等信息,来作为系统健康状况的指标。

在通信模块上,本系统选用Zigbee局域网和远程通信相结合的方式,把采集的数据传递给远程监控中心。

其中远程通信选用的是移动M6312芯片。

同时结合移动公司推出的ONE/NET,来作为远程监控中心的操作平台。

软件部分是则根据对电源充电模块设计了相应的流程图、根据信息之间传递结构而设计了Zigbee信息传递流程图以及建立远程通信的流程图。

并借助于ONE/Net设计了一个操作界面,便于维护人员能及时的掌握系统整体以及各模块之间的状态。

基于风光互补LED节能路灯控制系统的设计

基于风光互补LED节能路灯控制系统的设计

基于风光互补LED节能路灯控制系统的设计摘要:大部分道路路灯采用恒亮照明方式,造成严重的浪费,本设计通过调节PWM占空比来调节LED亮度的调节,根据需要调节路灯的亮度。

本设计对路灯进行智能控制及节能研究有着积极的意义。

关键词:风光互补,LED 智能路灯,单片机引言风能和太阳能是可再生的绿色能源,各国为进行研究和利用都投入了巨额资金。

嘉兴市位于杭嘉湖平原的中心地带,而且冬夏季风交替显著,季风特征明显,风力资源丰富。

因此高校路灯智能调节亮度并采用风光互补LED节能路灯一种非常好的节能方案。

1控制系统整体方案本设计包括风光互补和LED亮度智能调节,两系统共用一个控制器,风光互补系统主要是将太阳能和风能进行有效结合,并且把电能存储在蓄电池中,通过控制蓄电池实现对LED路灯的供电时间和亮度控制。

同时加入市电接入,保证LED路灯的正常使用。

2节能道路路灯系统结构在风光互补系统种,白天主要是风力和太阳能光伏同时发电,这时系统的电能来自于太阳能光伏板和风机产生的电能;夜间,太阳能光伏板无法发电,因此主要依靠风机进行发电。

本设计对电能的存储使用蓄电池存储,并对路灯进行供电。

控制器是系统中最重要的,它决定了整个系统的性能的优劣,它的功能是对电能进行管理以及控制。

系统结构框图如图1所示。

图1系统结构框图3节能道路路灯控制系统设计3.1智能控制器硬件电路设计智能控制器的设计是本课题的重点。

控制器的设计方案直接影响着系统的整体性能。

根据系统的特点,智能控制器使用单片机STC89C52RC来实现,该单片机具有高速、低功耗、超强抗干扰的优点,在8位单片机中性能优异。

3.2光信号采集模块设计在本设计方案中,如果出现阴雨天气,光照强度不足需要自动开启路灯,是根据光信号采集模块来对外界光照强度进行判断,本设计使用光敏电阻作为传感器。

光敏电阻的阻值随着外界光照强度的变化而变化,使得采集的电流大小发生改变,采用LM358作为运算放大器对电路中的电流进行放大,在通过A/D转换器将电信号传回到单片机之后,控制器通过判断电信号阈值来决定是否打开还是关闭路灯。

风光互补LED路灯控制器的设计

风光互补LED路灯控制器的设计

风光互补LED路灯控制器的设计摘要:本文介绍了风光互补及风光互补的技术原理、技术结构及技术优势和风光互补系统的组成、风光互补路灯的优势;以及介绍了风光互补控制器,风光互补控制器的特点,风光互补控制器的工作原理。

關键词:风光互补;工作原理;技术结构一、风光互补的概念及技术原理风光互补是一套发电应用系统,该系统是利用太阳能单晶硅电池板、风力发电机将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。

是风力发电机和太阳电池方阵两种发电设备共同发电。

二、风光互补的技术构成(一)发电部分:由1台风力发电机和太阳能电池板组成,完成风一电;光一电的转换,作。

(二)蓄电部分:由多节蓄电池组成,完成系统的全部电能储备任务。

(三)风光互补控制器:集光控亮灯,时控关灯,自动功率跟踪,自动泄荷,过充过放保护功能于一体,对负载进行全方面的控制。

(四)负载部分:本项目由于未使用逆变器,所以直接使用直流LED照明灯作为负载。

三、风光互补控制器(一)风光互补控制器的概述。

风光互补控制器是专门为风能、太阳能发电系统设计的;集风能控制、太阳能于一体的智能型控制器。

充分利用风能和光能资源发电,可减少采用单一能源可能造成的电力供应不足或不平衡的情况。

设备不仅能够高效率地转化风力发电机和太阳能电池板所发出的电能对蓄电池进行充电,而且还提供了强大的控制功能。

集光控亮灯,时控关灯,自动功率跟踪,自动泄荷,过充过放保护功能于一身,性能稳定可靠。

(二)风光互补控制器的特点及功能1.风光互补控制器的主要功能(1)白天对太阳能电池板的电压和电流进行检测太阳能电池板最大输出功率点,使太阳能电池板以最大输出功率给蓄电池充电,并控制太阳能电池对蓄电池进行充电的方式;(2)控制光电互补自动转换,晚上控制蓄电池放电,驱动LED负载照明;(3)对蓄电池实行过放电保护、过充电保护、短路保护、反接保护和极性保护;(4)控制LED灯的开关,通过对外环境监测,可以控制LED 灯开灯、关灯时间。

风光互补型智能路灯系统设计

风光互补型智能路灯系统设计

风光互补型智能路灯系统设计主考院校:专业:指导老师:考生姓名:准考证号:二零一二年四月十日摘要随着科技的发展,我们的生活变好了,但是我们周围的环境越来越差,而且自然界中一次性能源也越来越少,这样就被迫我们要去寻找新的能源。

太阳能和风能在资源条件和技术应用上都有很好的互补特性。

由于风能和太阳能的随机性、间歇性,为满足稳定、持续的给路灯供电的需要,而新的能源单一化的使用却不能解决我们所面临的问题,能源的合理利用也越来越成为世界各国研究的主题。

本文介绍了风光互补型智能路灯系统设计,此系统可将风能与太阳能合理的结合互补,风光互补型路灯是利用太阳能组件的光生伏特效应,将光能转换为电能,以及风力发电将风能转化为电能,并储存在蓄电池中供负载使用,它是集太阳能光伏技术、风能发电技术、蓄电池技术、照明光源技术于一体的新兴技术。

由于小型风光互补路灯控制器的结构复杂,影响运行控制的因素很多,此文只着重考虑了在整个风光互补系统的经济性、可靠性的基础上进行蓄电池充放电控制系统和路灯控制系统的研究,为小型风光互补路灯控制器运行控制的深入研究和控制系统的不断完善提供了参考,以及用MCS-51中AT89C51单片机系统来控制整个电路,在电路中利用光敏电阻来对路灯的开与关进行控制,构成反馈电路来对路灯出现故障时的软件反馈,来对路灯的整体设计加以完整。

关键词:新型能源;智能型路灯;单片机;能源互补目录第一章绪论1.1 研究背景1.2 我国太阳能、风能发电的发展趋势1.2.1 太阳能发电的发展趋势1.2.2 风能发电的发展趋势1.3 本课题的研究内容第二章太阳能和风能发电系统的工作原理 2.1 传统的电力给电系统的原理2.1.1 传统的电力给电系统的原理2.1.2 传统的电力给电系统的弊端2.2 传统的光伏发电系统的原理2.2.1 传统的光伏发电系统的原理2.2.2 光伏发电系统的弊端2.3 传统的风力发电系统的原理2.3.1 风力发电系统的原理2.3.2 风力发电系统的不足2.4 风光互补发电系统的原理2.4.1 最合理的独立电源系统2.4.2 技术方案的最优配置第三章风光互补发电系统中蓄电池的工作原理 3.1 蓄电池的工作特性3.1.1 铅蓄电池的工作原理3.1.2 蓄电池的工作温度影响3.2 蓄电池的检测第四章路灯定时控制4.1 路灯的开关与外界光照强度的关系4.2 采用光敏开关检测环境照度第五章控制器硬件部分及外围电路设计5.1 风光互补控制器方框原理图5.2 硬件设计原则5.3 时钟电路5.4 复位电路5.4.1 可靠性5.4.2 人工复位5.5 按键电路5.6 显示电路5.6.1 显示方式选择5.6.2 LED的驱动和显示第六章软件设计6.1 主程序6.2 计时程序6.3 中断程序第七章系统的硬件抗干扰设计 7.1 抗干扰概念7.2 干扰的消除第一章绪论1.1 研究背景随着科技的发展,我们的生活变好了,但是我们周围的环境越来越差,而且自然界中一次性能源也越来越少,这样就被迫我们要去寻找新的能源。

低功率风光互补LED控制器设计分析

低功率风光互补LED控制器设计分析

低功率风光互补LED控制器设计分析摘要:本文主要根据普通的风光互补的控制器效率较低与耗电的一些缺点,以MEGA16的单片机做为控制的核心,利用最大功率的点跟踪技术,设计出一款新的风光互补的路灯控制器。

先介绍了关于风光互补的控制系统,最后设计出系统硬件的电路与软件的流程,蓄电池使用的是自适应的智能控制的三段式充电的方法。

结果显示,该控制器的运行稳定,比普通控制器的效率提高10%,可以小幅度地提高系统发电的效率。

关键词:低功率;风光互补;LED;控制器1 引言缓解关于石化能源的消耗和污染环境问题有效的方法是利用可再生的能源,综合地使用和开发可再生的能源利于保护环境,推进社会可持续发展。

在能源开发与利用当中,在我国主要以煤炭和石油一些化石的资源为主,在开发绿色的可再生能源方面有所欠缺。

对于日益严重的污染问题和资源枯竭的问题,风能与太阳能因为储量丰富,安全且清洁无污染优势日益被人们得到关注。

在目前,风能与太阳能应用的领域非常广泛,例如可在海岛或者高速公路的路灯供电,可以应用到无人区的通讯基站以及海上的航标,其效果较好,在改善关于偏远地区的居民的生活质量方面也起到非常重要的作用。

在照明的领域,在离网的地区风光互补的发电系统发挥着非常重要作用,其与LED结合可发挥对于绿色能源最大的效益。

本文结合了西藏昌都的太阳能路灯的项目对风光互补的系统控制器进行设计,对风能与太阳能实现最大功率的控制,并且管理与保护蓄电池,在一定的程度上来提高效率。

2 风光互补的路灯的控制系统风光互补的路灯的控制系统由太阳能的电池,风力的发电机,不可控的整流的AC/DC的模块,风光互补的控制器,蓄电池组以及直流的负载等构成。

风光互补的控制器在整个控制的系统中是核心,它的工作状态和性能直接会使路灯的系统工作的效率受到影响以及各个模块的工作的寿命,特别是蓄电池工作的寿命。

蓄电池工作的寿命与放电的深度,工作的电压以及温度有非常大的关系,因此对控制的策略与系统关键的参数都要有很高要求。

风光互补路灯设计实例与配置方案

风光互补路灯设计实例与配置方案

风光互补路灯应用设计实例与典型配置方案一、任务导入风光互补路灯的技术优势在于利用了太阳能和风能在时间上和地域上的互补性,使风光互补发电系统在资源上具有最佳的匹配性。

风光互补路灯控制系统还可以根据用户的用电负荷情况和当地资源进行系统容量的合理配置,既可保证系统供电的可靠性,又可降低路灯系统的造价。

风光互补路灯系统可依据使用地的环境资源做出最优化的系统设计方案来满足用户的要求。

因此,风光互补路灯系统可以说是最合理的独立电源的照明系统。

这种合理性既表现在资源配置上,又体现在技术方案和性能价格上,正是这种合理性保证了风光互补路灯系统的可靠性。

从而为它的应用奠定了坚实的基础。

二、相关知识学习情境1风光互补路灯(一)风光互补路灯的技术特点风光互补路灯主要为夜间照明使用,采用两种工作模式:纯光控模式和光控+定时模式。

两种模式的设定和控制是通过路灯控制器的拨码来实现的,并且风光互补路灯控制系统对风力发电机、太阳能电池组件和蓄电池提供多种保护,使系统可以更可靠的稳定工作。

风光互补路灯使用方便,实现无人值守,免解缆;低风速启动,合理吸收风能和光能,大风切出保护系统使整个系统更加安全可靠,大大减少太阳能电池组件的配比,降低了灯具的设计成本,可以收到良好的社会效益和经济效益。

小功率风力发电机组的风力机体积小、质量小而且发电效率高。

风力发电机独特的电磁设计技术使其具有低的启动阻力矩。

按照风能公式,风中可用能量是风速的3次方。

这表示风速提高1倍时,风能将提高8倍。

一般风力发电机组的效率通常是线性的,因此无法利用风力的3次方效益。

发电机只在沿能量曲线上的1点或2点有效率。

通过改进风力机组的效率曲线,使其符合风中可用能量的分布,使它沿整个曲线都有效率。

(二)风光互补路灯的构成风光互补路灯具备了风能和太阳能产品的双重优点,没有风能的时候可以通过太阳能电池组件来发电并储存在蓄电池中,有风能没有光能的时候可以通过风力发电机来发电并储存在蓄电池中。

风光互补路灯控制器设计

风光互补路灯控制器设计

-风光互补路灯控制器的研究与设计摘要无论是时代的发展还是人们生活的所需,都不可避免的要使用能源,然而如今能源消耗十分巨大且难以减少,旧的煤,石油,天然气等一次能源终会耗尽,因此需要尽快开发利用新能源。

其次新型清洁能源由于对环境产生的危害极小,所以其开发显得更加重要。

此次对风光互补控制器的研究,便利用了太阳能和风能,它们对环境无害且储量大。

以单片机STC89C52为主,外设器件为辅,将上述两种能源转换成电能,为路灯供电产生照明。

本设计包含的器件主要有LED灯,太阳能电池组,风力发电机,太阳能专用蓄电池,风光互补控制器等。

设计的路灯工作时有两种模式,分别是自动工作模式和手动工作模式;自动工作模式下路灯可以根据光照强度自动打开或关闭路灯,手动工作模式则是用户开关电灯。

关键词:太阳能风能互补;路灯;STC89C52abstractNo matter the development of the times or the needs of people's life, it is inevitable to use energy. However, today's energy consumption is very huge and hard to reduce. The old primary energy such as coal, oil and natural gas will eventually be exhausted, so it is necessary to develop and use new energy as soon as possible. Secondly, the development of new clean energy is more important because of its little harm to the environment. In this study, solar energy and wind energy are used conveniently. They are harmless to the environment and have large reserves. With STC89C52 as the main chip and peripheral devices as the auxiliary, the above two kinds of energy are converted into electric energy to supply power for street lamps and generate lighting. This design includes LED lights, solar cells, wind turbines, solar batteries, wind complementary controller and so on. There are two working modes in the design of street lamp, which are automatic working mode and manual working mode. Under the automatic working mode, street lamp can be turned on or off automatically according to the light intensity, and the manual working mode is that the user switches on and off the electric lamp.Key words: solar energy and wind energy complementary; street lamp; STC89C52目录第一章绪论1.1课题背景及其意义1.2 国内外的能源状况1.3本文的主要研究内容及论文结构安排第二章中心论点第三章硬件电路的设计3.1系统的功能分析及体系结构设计3.1.1系统功能分析3.1.2系统总体结构3.2模块电路的设计3.2.1 STC89C52单片机核心系统电路设计3.2.2 高亮LED灯照明电路(低电平有效)设计3.2.3 GMDZ光敏电阻传感器模块电路设计3.2.4 二挡拨动开关检测电路设计3.2.5 太阳能发电电路设计3.2.6 风能发电电路设计3.2.7 TP4056锂电池充电模块电路设计3.2.8 USB-5V升压模块电路设计3.2.9 完整电路图设计3.3小结第四章系统软件设计4.1 编程语言选择4.2单片机程序开发环境4.3 Keil uVision4软件开发流程4.4 程序流程图4.5 小结第五章总结致谢参考文献第一章绪论1.1课题背景及其意义众所周知,能源一直是困扰着人类发展的一个重要问题,尤其是现在我国正在工业发展的一个重要时期,然后慢慢的过渡到服务业为主的国家,所以能源消耗巨大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

^风光互补LED路灯控制器的设计摘要本文主要首先介绍了产生新能源的必要性及风能和太阳能快速发展的背景。

其次介绍了什么是风光互补及风光互补的技术原理、技术结构及技术优势和风光互补系统的组成、风光互补路灯的优势。

然后介绍了什么是风光互补控制器,风光互补控制器的特点,风光互补控制器的工作原理及风光互补路灯控制器的结构图和电路原理图。

关键词:控制器,工作原理,路灯,风能,太阳能目录1、绪论................................................... 错误!未定义书签。

2、风光互补的概述......................................... 错误!未定义书签。

、风光互补的技术原理................................... 错误!未定义书签。

、风光互补的技术构成................................... 错误!未定义书签。

、风光互补的技术优势................................... 错误!未定义书签。

、风光互补的典型案例................................... 错误!未定义书签。

3、风光互补系统........................................... 错误!未定义书签。

、风光互补系统的组成................................... 错误!未定义书签。

、风光互补路灯的优势................................... 错误!未定义书签。

4、风光互补控制器......................................... 错误!未定义书签。

、风光互补控制器的概述................................. 错误!未定义书签。

、风光互补控制器的特点及功能........................... 错误!未定义书签。

、风光互补路灯控制器的结构图........................... 错误!未定义书签。

、风光互补控制器的原理图............................... 错误!未定义书签。

、风光互补控制器的工作原理............................. 错误!未定义书签。

总结.................................................... 错误!未定义书签。

致谢.................................................... 错误!未定义书签。

参考文献.................................................. 错误!未定义书签。

1、绪论随着世界人口的持续增长和经济的不断发展,对于能源的需求日益增加,目前的能源消费结构中,煤炭、石油和天然气等化石燃料虽然仍占有很重要的地位,但是化石燃料的燃烧造成环境污染,致使全球气候变暖、冰山融化、海平面上升等自然灾害频繁发生和能源危机日益临近,新能源已经成为今后世界上的主要能源之一。

其中,风能、太阳能等洁净能源备受关注。

太阳能、风能作为未来的能源是一种非常理想的清洁能源。

近年来由于人们对能源、环境问题的日益关注,太阳能、风能的应用与普及越来越受到人们的重视。

若能合理地利用太阳能、风能将会为人类提供充足的能源。

对太阳能、风能技术而言,照明应用并非是其最主要的应用领域,也不是最能体现应用优势的领域,但就其作为能源的表现形式来说,太阳能、风能在照明领域的互补应用最直观。

而在当前技术水平下,太阳能、风能技术作为能源的高成本、低效率是不容回避的问题,特别是在单体照明应用中,如不与LED技术相结合,按照常规设计太阳能、风能照明系统,往往要面对系统变换效率低及经济效益不佳等问题。

LED因具有低能耗、直流工作等优势,成为配合风光互补路灯照明光源的理想产品。

就目前技术和政策而言,在我国最有希望快速普及应用太阳能、风能发电技术的领域,应是风光互补LED路灯照明工程。

LED是一种可将电能转变为光能的半导体发光器件,属于固态光源。

在通用照明领域,LED照明灯具有体积小、重量轻、方向性好、节能、寿命长、容易控制、耐受各种恶劣环境条件等优点,是典型的绿色照明光源。

尤其随着大功率白光LED的研发成功,使它在照明领域应用更加广泛。

LED 作为新型固态绿色光源与风光互补发电技术结合应用于路灯领域,是可再生能源与高新固态绿色光源的结合,与其他电能变换技术和照明技术相比更加符合产业政策及推广应用的市场。

2、风光互补的概述风光互补,是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。

是风力发电机和太阳电池方阵两种发电设备共同发电。

其中,风光互补发电站是针对通信基站、微波站、边防哨所、边远牧区、无电户地区及海岛,在远离大电网,处于无电状态、人烟稀少,用电负荷低且交通不便的情况下,利用本地区充裕的风能、太阳能建设的一种经济实用性发电站。

、风光互补的技术原理风光互补是一套发电应用系统,该系统是利用太阳能电池方阵、风力发电机(将交流电转化为直流电)将发出的电能存储到蓄电池组中,当用户需要用电时,逆变器将蓄电池组中储存的直流电转变为交流电,通过输电线路送到用户负载处。

是风力发电机和太阳电池方阵两种发电设备共同发电。

风光互补发电站采用风光互补发电系统,风光互补发电站系统主要由风力发电机、太阳能电池方阵、智能控制器、蓄电池组、多功能逆变器、电缆及支撑和辅助件等组成一个发电系统,将电力并网送入常规电网中。

夜间和阴雨天无阳光时由风能发电,晴天由太阳能发电,在既有风又有太阳的情况下两者同时发挥作用,实现了全天候的发电功能,比单用风机和太阳能更经济、科学、实用。

适用于道路照明、农业、牧业、种植、养殖业、旅游业、广告业、服务业、港口、山区、林区、铁路、石油、部队边防哨所、通讯中继站、公路和铁路信号站、地质勘探和野外考察工作站及其它用电不便地区。

、风光互补的技术构成1.发电部分:由1台或者几台风力发电机和太阳能电池板矩阵组成,完成风-电;光-电的转换,并且通过充电控制器与直流中心完成给蓄电池组自动充电的工作。

2. 蓄电部分:由多节蓄电池组成,完成系统的全部电能储备任务。

3. 充电控制器及直流中心部分:由风能和太阳能充电控制器、直流中心、控制柜、避雷器等组成。

完成系统各部分的连接、组合以及对于蓄电池组充电的自动控制。

4.供电部分:由一台或者几台逆变电源组成,可把蓄电池中的直流电能变换成标准的220V交流电能,供给各种用电器。

、风光互补的技术优势风光互补发电系统由太阳能光电板、小型风力发电机组、系统控制器、蓄电池组和逆变器等几部分组成,发电系统各部分容量的合理配置对保证发电系统的可靠性非常重要。

由于太阳能与风能的互补性强,风光互补发电系统在资源上弥补了风电和光电独立系统在资源上的缺陷。

同时,风电和光电系统在蓄电池组和逆变环节是可以通用的,所以风光互补发电系统的造价可以降低,系统成本趋于合理。

、风光互补的典型案例2009年中国兵器装备集团自主研制了一套具有国内先进水平的40千瓦风光互补示范发电站,风光互补发电站成功建成并投入运行。

该系统为兵器装备集团自主开发生产,拥有完全自主知识产权,除了实现风光互补发电,还具有以下三方面优势:一是高精度实时跟踪太阳位置,使光伏系统日发电量比传统的固定式系统提高了30%以上;二是自主研制的并网逆变器技术水平先进,部分指标达到国际领先水平,确保发电站可靠高效运行;三是采用了风光合一的调度与控制系统,实现了柔性并网发电,减少对电网的冲击。

这标志着兵器装备集团成功进入风力发电新能源领域,并同时拥有了太阳能、风能两大绿色能源产业,为两大绿色能源产业找到了一个结合点,对兵器装备集团进入国内外风光合一发电市场打下了坚实基础。

3、风光互补系统、风光互补系统的组成风光互补路灯系统完全利用风力和太阳光能为路灯供电,无需外接市电网。

系统兼具风能和太阳能产品的双重优点,由风力和太阳能协同发电,电能储存于蓄电池中,自动感应外界光线变化,无需人工操作。

主要适用于道路供电以及景观照明灯。

风光互补路灯系统主要由风力发电机、太阳能电池板、风光互补路灯控制器、风光互补专用蓄电池与LED路灯光源几个主要部件和灯杆,太阳能电池板支架等相关配件组合而成,利用风能和太阳能环保能源作为动力的新型节能路灯系统。

风力发电机与太阳能电池板,充分利用风力和太阳能资源,为路灯系统提供源源不断的能源。

当夜幕降临时,路灯控制器向LED光源发出亮灯指令,LED风光互补路灯光源通过蓄电池所储存的电能自动点亮,当LED风光光源亮灯时间到达控制器预先设定的时间,LED光源自动熄灭,由充电到亮灯到最后关灯,整个过程完全由风光互补路灯控制器自动完成,无需人工干预。

、风光互补路灯的优势传统的风能或太阳能单一发电系统会造成我国的大部分地区在特定的时候就会出现能源部够用的枯竭,而如果采用风光互补就可以解决单一能源的不足。

了解了大部分城市,我国在风光互补的路灯上面运用的几乎没有,现在路灯已经成为我们城市建设的必不可少的设施,然而我国目前所用的绝大多数都是单一的传统供给电能。

城市的发展,道路的建设,路灯的架设,这是多么庞大的能源消耗,在这个能源短缺的时代,怎能如此消耗寻去新的措施减少能源的消耗但又不能影响城市的发展,就要寻找能够代替的能源,这也成为我所写的课题的重要关键所在,根据上述的介绍也能初步了解了风光互补能源的利用,既不浪费大量的能源消耗,又不污染环境的风光互补新型路灯就成为我们新型城市的环保低碳生活的大势所需。

风电和光电系统都存在一个共同的缺陷,就是资源的不确定性导致发电与用电负荷的不平衡,风电和光电系统都必须通过蓄电池储能才能稳定供电,但每天的发电量受天气的影响很大,会导致系统的蓄电池组长期处于亏电状态,这也是引起蓄电池组使用寿命降低的主要原因。

风光互补发电系统可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,即可保证系统供电的可靠性,又可降低发电系统的造价。

无论是怎样的环境和怎样的用电要求,风光互补发电系统都可作出最优化的系统设计方案来满足用户的要求。

应该说,风光互补发电系统是最合理的独立电源系统。

目前,推广风光互补发电系统的最大障碍是小型风力发电机的可靠性问题。

风光互补LED路灯与传统路灯相比,LED风光互补路灯具备以下优势:日夜发电、智能控制、节能减排、独立发电、安装简单、符合节能型社会的发展方向。

相关文档
最新文档