探究单摆周期与摆长的关系

合集下载

实验一 探究单摆的周期与摆长的关系

实验一 探究单摆的周期与摆长的关系

(2)作l-T2图线解决物理问题,可以提示我们:若摆球的质 量分布不均匀,对测量结果将________(填“有影响”或 “没有影响”)。
要点整合 热点聚焦
解析 (1)由单摆的周期公式 T=2π gl ,得摆长与周期的关系 为 l=4gπ2T2,图象的斜率 k=4gπ2,由图象中的 A、B 两点坐标 可得:4gπ2=xy22--yx11,解得重力加速度为 g=4πx22y-2-x1y1。(2)摆 球的质量分布不影响图象的斜率,对测量结果没有影响。 答案 (1)4πx22y-2-x1y1 (2)没有影响
要点整合 热点聚焦
热点二 对实验数据处理的考查 【例2】 在用单摆测重力加速度的实验中: (1)某同学实验
时改变摆长,测出几组摆长l和对应的周期T的数据,作 出l-T2图线,如图4所示。利用图线上任两点A、B的坐 标(x1,y1)、(x2,y2),便可求得重力加速度g=________。
图4
要点整合 热点聚焦
实验一 探究单摆的周期与摆长的关系
要点整合 热点聚焦
要点整合 热点聚焦
注意事项 1.悬线顶端不能晃动,需用夹子夹住,保证顶点固定。 2.强调在同一平面内振动且摆角小于10°。 3.选择在摆球摆到平衡位置处开始计时,并数准全振动的
次数。 4.小球自然下垂时,用毫米刻度尺量出悬线长l′,用游标卡
尺测量小球的直径,然后算出摆球的半径r,则摆长l=l′ +r。 5.选用一米左右的细线。
要点整合 热点聚焦
要点整合 热点聚焦
解析 由单摆周期公式 T=2π h+g l,即 T2=4gπ2l+4πg2h,纵 轴截距大于 0,图线应为题图乙中的图线 a;由图象的截距得 h =0.3 m;由斜率可求得 g=4kπ2=41π.22 m/s2=π2 m/s2≈9.86 m/s2。

探究单摆与摆长的关系

探究单摆与摆长的关系

探究单摆周期与摆长关系
5.【数据处理】 1.结论:
单摆周期随摆长增大而增大。
探究单摆周期与摆长关系 5.【数据处理】
(2)建立直角坐标系,纵坐标表示周期T,横坐标
3 表示摆长L(或L2、 L 、 L 等),作出图象。如果图象是一Fra bibliotek过原点的倾斜直线,
、 T∝ 3 L 等)。 说明T∝L(或T∝L2、T∝ L
实验:探究单摆周期与摆长的关系
1.单摆的构成(理想化模型): (1)可以忽略质量、忽略伸缩的细线; (2)质量大,体积小的钢球。 通常实验中,球直径比线长短的多。
2.单摆的回复力
(1)回复力的提供: 摆球重力沿 切线 方向的分力。 (2)运动性质: 偏角很小(小于5°)时, 单摆看做简谐运动。
探究单摆周期与摆长关系
16.5 32.2 16.5
1.8
1.8 1.4 1.4
练习:(1)用单摆测定重力加速度的实验中,有如 下器材供选用,请把应选用的器材填在横线上 __________________(填字母)。
A.1m长的粗绳 B.1m长的细线
C.半径为1cm的小木球 D.半径为1cm的小铅球
B、D、F、G、I
E.时钟 F.秒表 G.最小刻度为mm米尺 H. 最小刻度为cm米尺 I.铁架台 J.附砝码的天平
如图为半径很大的光滑凹形槽,将有一小球 从A点由静止释放。小球将做什么运动?
求运动的周期?
L
O
A
细线穿过小球,然后打一个比小孔稍大一些的线结。
把线的上端用铁夹固定在铁架台上,把铁架台放在
实验桌边,使铁夹伸到桌面之外,让摆球自由下垂, 在单摆平衡位置处做上标记,如图。
【注意事项】 单摆摆线的上端应夹紧,不能卷在铁夹的

探究单摆周期与摆长的关系

探究单摆周期与摆长的关系

4、为了提高实验精度,在试验中可改变几次
摆长L,测出相应的周期T,从而得出一组 对应的L与T的数值,再以L为横坐标T2为
纵坐标,将所得数据连成直线如下图所示,
则测得的重力加速度g= 。
9.86m/s2
T2/s2 4
3
2
0
0.5 0.8 1.0 l/m
10分度游标卡尺
0
1
0
5
10
主尺的最小分度是1mm,游标尺上有10个 小的等分刻度它们的总长等于9mm,因此游 标尺的每一分度与主尺的最小分度相差0.1mm, 当左右测脚合在一起,游标的零刻度线与主尺 的零刻度线重合时,只有游标的第10条刻度线 与主尺的9mm刻度线重合,其余的刻度线都不 重合。游标的第一条刻度线在主尺的1mm刻度 左边0.1mm处,游标的第二条刻度线在主尺的 2mm刻度左边0.2mm处,等等。
①A、B、C、D项正确
②只有E、F项正确
③ACDEF正确
④都正确
2、某同学测定的g的数值比当地公认值大, 造成的原因可能是( ② ⑤ ) ①摆球质量太大了; ②量摆长时从悬点量到球的最下端; ③摆角太大了(摆角仍小于10°); ④计算摆长时忘记把小球半径加进去; ⑤计算周期时,将(n-1)次全振动误记为n 次全振动.
8 39
10 41 12 43 45 14
2分7.6秒
1分51.4秒
0
59
31
28 57
14 0 1
13
2
2
26
12
3
55 24
11
4
10
5
9
6
87
53
33 4 35 6
37
22 51
20 49 18 47 16

单摆运动的周期与摆长的关系探究

单摆运动的周期与摆长的关系探究

单摆运动的周期与摆长的关系探究摆是我们日常生活中非常常见的物体,如钟摆、秋千等。

而单摆作为一种简单的物理振动系统,也是研究摆动现象的基础。

在单摆运动中,周期是一个重要的物理量,它与摆长之间存在着一定的关系。

一、周期的定义和测量方法周期是指一个周期性现象从起点到终点并回到起点所经历的时间间隔。

在单摆运动中,周期可以通过测量摆动一次所需的时间来确定。

测量单摆的周期可以使用简单的实验方法。

首先,将一根线或者细线拴在一个固定的支点上,然后在线的另一端挂上一个重物。

当重物被拉向一侧后释放,它将开始进行摆动。

使用计时器来记录从某一固定位置(例如摆球运动的最高点)开始,到下一次回到固定位置所经历的时间。

重复多次测量,然后取平均值作为实验结果。

二、周期与摆长的关系在单摆运动中,周期与摆长之间存在着一定的关系,可以表达为周期的平方与摆长的比例关系。

考虑一个简单的单摆系统,重物的质量为m,线的长度为L,重力加速度为g。

摆球在摆动过程中,受力有两个分量:沿摆线方向的重力分量和垂直摆线方向的张力分量。

根据牛顿第二定律,可以得到运动方程。

解决运动方程可以得到单摆运动的周期T的表达式:T = 2π * √(L/g)从上式可以看出,周期T与摆长L成正比。

当摆长增加时,周期也会随之增加。

这是因为较长的摆长对应着更大的牵引力,使得摆球运动的速度更慢,从而导致周期增加。

三、单摆周期与摆长关系的实验验证为了验证周期与摆长之间的关系,可以进行一系列实验。

首先,固定摆球的质量和重力加速度,分别改变摆线的长度,测量不同摆长下的周期。

在实验中选择不同的摆长,可以使用一个可调节的固定支点,或者调节线的长度。

固定起点、记录时间,进行多次测量取平均值。

通过计算周期的平方与摆长之间的比值,可以验证周期与摆长的关系。

实验结果会呈现出周期的平方与摆长的线性关系,验证了周期与摆长之间的关系。

结论通过对单摆运动的周期与摆长的关系进行探究,可以发现它们之间存在着一定的关联。

实验九 探究单摆的周期与摆长的关系

实验九  探究单摆的周期与摆长的关系

2.数据处理 (1)公式法:利用多次测得的单摆周期及对应摆长,借助公式 4π2l g= T2 求出加速度 g,然后算出 g 的平均值. 4π2l (2)图象法:由公式 g= T2 ,分别测出一系 列摆长 l 对应的周期 T, 作出 l-T2 的图象, 如图实-9-2 所示,图象应是一条通过原 点的直线,求出图线的斜率 k,即可求得 g 值. l Δl g=4π k,k=T2=ΔT2.
[解析 ]
本实验主要考查用单摆测定重力加速度的实验步
骤、实验方法和数据处理方法. (1)测量筒的下端口到摆球球心之间的距离 L,用到毫米刻 度尺,测单摆的周期用秒表,所以测量工具选 B、D. (2)设摆线在筒内部分的长度为 h,由 T=2π
2 2 4π 4π T2= g L+ g h,可知 T2-L 关系图象为 a.
近速率甚小,滞留时间不易确定,引起的时间误差较 大. 8.要准确记好摆动次数,不要多记或少记次数.
六、误差分析
1.本实验的系统误差主要来源于单摆模型本身是否符合 要求,即:悬点是否固定,球、线是否符合要求,振 动是圆锥摆还是在同一竖直平面内的振动等. 2.本实验的偶然误差主要来自时间的测量,因此,要从
(4)BD
[例2] 将一单摆装置竖直悬挂于某一深度为h(未知)且开口 向下的小筒中(单摆的下部分露于筒外),如图实-9-4甲所 示,将悬线拉离平衡位置一个小角度后由静止释放,设单 摆摆动过程中悬线不会碰到筒壁,如果本实验的长度测量
工具只能测量出筒的下端口到摆球球心的距离L,并通过改
变L而测出对应的摆动周期T,再以T2为纵轴、L为横轴作出 函数关系图象,那么就可以通过此图象得出小筒的深度h和 当地的重力加速度g.
台(带铁夹)、刻度尺、秒表、游标卡尺.

实验九 探究单摆的周期与摆长的关系

实验九  探究单摆的周期与摆长的关系

(3)将T2=0,L=-30 cm代入上式可得:
h=30 cm=0.3 m;
将T2=1.20,L=0代入上式可求得:g=π2 m/s2=9.86 m/s2. [答案] (1)BD (2)a (3)0.3 9.86
1.(2011· 北京海淀区测试)某同学做“用单摆测定重力加速 度”的实验时,测得的重力加速度数值明显大于当地的重 力加速度的实际值.造成这一情况的可能原因是 A.测量摆长时,把悬挂状态的摆线长当成摆长 B.测量周期时,当摆球通过平衡位置时启动秒表,此后 摆球第 30 次通过平衡位置时制动秒表,读出经历的时 t 间为 t,并由计算式 T= 求得周期 30 C.开始摆动时振幅过小 D.所用摆球的质量过大 ( )
图实-9-9
(2)如果测得的g值偏小,可能的原因是________(填写代号). A.测摆长时,忘记了摆球的半径 B.摆线上端悬点未固定,振动中出现松动,使摆线长度增 加了
C.开始计时时,秒表过早按下
D.实验中误将39次全振动次数记为40次
(3)某同学在实验中,测量6种不同摆长情况下单摆的振动 周期,记录表格如下: l/m 0.4 0.5 0.8 0.9 1.0 1.2
图实-9-7
解析:(1)小球应放在测脚下部位置,图乙正确. (2)由R随t的变化图象可知,单摆半个周期的时间为(t1+
t0)-t1=t0,所以单摆的周期为2t0.当换用直径为原来2倍
的小球做实验时,该单摆的摆长将会变大,故周期T将会 变大.Δt表示小球通过光敏电阻与激光器之间的时间, 当摆球直径变大时,通过的时间将变长. 答案:(1)乙 (2)2t0 变大 变大
台(带铁夹)、刻度尺、秒表、游标卡尺.
四、实验操作
1.实验步骤 (1)做单摆:让细线的一端穿过小球的小孔, 并打一个比小孔大一些的结,然后把线 的另一端用铁夹固定在铁架台上,并把

单摆的周期跟摆长的关系

单摆的周期跟摆长的关系

单摆的周期跟摆长的关系
在探究单摆的周期跟哪些因素有关的实验中,得出周期跟摆长的关系是本实验的主要任务,为了探究二者的关系,实际教学过程中可以参考如下思路进行。

一、理论指导
单摆的周期指单摆做简谐运动时,完成一次全振动的时间。

单摆的摆长指悬挂小球的细线长度跟小球半径之和。

一个单摆制作完工以后,其摆长为定值,不同摆长的单摆振动过程中,振动周期与摆长有关,在某一地点,重力加速度g一定,单摆的摆长不同,振动周期就不同。

二、实验指导
1.定性探究:由对比实验不难发现摆长L越大,周期T越大。

2.猜想:有可能T跟L成正比,也可能T2跟L成正比。

3.定量探究:先设计数据表,然后通过实验获取相关数据,最后根据表中数据作出T2--L 图象,就会发现图线是一条直线,从而验证了T2跟L成正比的猜想。

数据表如下:。

第十三章 实验:探究单摆周期与摆长的关系

第十三章 实验:探究单摆周期与摆长的关系
12
03
考点二 拓展创新实验
例2 (2020·山东菏泽市调研)在探究单摆运动的实验中: (1)图6(a)是用力传感器对单摆振动过程进行测量的装置图,图(b)是与力 传感器连接的计算机屏幕所显示的F-t图象,根据图(b)的信息可得,从t =0时刻开始摆球第一次摆到最低点的时刻为_0_.5_s,摆长为_0_._6_4_m(取π2 =10,重力加速度大小g=10 m/s2).
加速度
解析 测得摆长应为l+d2,选项B错误; 若让小球在水平面内做圆周运动,则为圆锥摆运动,测得的摆动周期不 是单摆运动周期,选项D错误.
例3 在“探究单摆周期与摆长的关系”的实验中,摆球在垂直纸面的 平面内摆动.如图7甲所示,在摆球运动最低点的左、右两侧分别放置一 激光光源与光敏电阻.光敏电阻(光照时电阻比较小)与某一自动记录仪相 连,该仪器显示的光敏电阻阻值R随时间t的变化图线如图乙所示,则该 单摆的振动周期为_2_t_0_.若保持悬点到小球顶点的绳长不变,改用直径是 原小球直径2倍的另一小球进行实验,则该单摆的周期将_变__大__(填“变 大”“不变”或“变小”).
12
(2)实验测得的g值比实际值偏大,可能的原因是__B____. A.摆球的密度过小 B.摆球经平衡位置时启动停表并开始计数,当摆球第50次经过平衡位置
时制动停表,若读数为t,则周期为T=4t9 C.摆线上端未固定牢,摆动过程中出现松动,使摆线增长
12
解析 根据单摆的周期公式T=2π
gl ,可得g=
解析 单摆振动的回复力是摆球重力在垂直摆线方向上的分力,而摆球 所受重力和摆线对摆球拉力的合力在径向上提供向心力,选项B正确.
(3)某同学的操作步骤如下,其中正确的是_A__C__. A.取一根细线,下端系住直径为d的金属小球,上端固定在铁架台上 B.用米尺量得细线长度l,测得摆长为l C.在摆线偏离竖直方向5°位置静止释放小球 D.让小球在水平面内做圆周运动,测得摆动周期,再根据公式计算重力
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档