近五年(2017-2021)高考数学真题分类汇编07 数列

合集下载

2021高考数学(文)分项汇编《专题12 数列》(含近几年真题)(解析版)

2021高考数学(文)分项汇编《专题12 数列》(含近几年真题)(解析版)

专题12 数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a bb b b =+++.(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}nB x x n ==∈N .将AB 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=.【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++()()135212142632n n n a a a a a b a b a b a b -=+++++++++123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦()2123613233n n n =+⨯+⨯++⨯.记1213233n n T n =⨯+⨯++⨯,① 则231313233n n T n +=⨯+⨯++⨯,②②−①得,()12311313(21)332333331332n n n n nn n T n n +++--+=---⨯=-+⨯=--+-. 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即12k c c c +++<.那么,当1n k =+时,121k k c c c c +++++<<<==.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式12n c c c +++<对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1.【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{b n }的通项公式,借助于{b n }的通项公式求得数列{a n }的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n a aa+++.【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-.∴12e e e n a a a +++1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---由12()4n n n n S T T T a b ++++=+可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+.设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅ 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围; (2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立.因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值().75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111 |1|2,3,,(1())n b n d b q b n m -+--≤=+2,3,,1n m =+1111211n n q q b d b n n ---≤≤--q ∈112n m q q -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+2,3,,1n m =+12{}1n q n ---1{}1n q n --2,3,,1n m =+①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21xf x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. (1)由等比数列通项公式解得2q =-,12a =-即可求解; (2)利用等差中项证明S n +1,S n ,S n +2成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)b n =2n−1;(2)当q =−5时, S 3=21.当q =4时, S 3=−6. 【解析】设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d , b n =q n−1. 由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1.(2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和. 27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2, 所以a n =22n−1 (n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n−1.(2)记{an2n+1}的前n 项和为S n ,由(1)知a n2n+1 =2(2n+1)(2n−1) =12n−1−12n+1.则 S n = 11 − 13 + 13 − 15 +…+ 12n−1 − 12n+1 = 2n2n+1 .【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++.【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=.【名师点睛】本题考查了数列求和,一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式;②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【答案】(1)2nn a =;(2)2552n nn T +=-【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2nn a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,1+=n n n a a cc nn c c n ++=1令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n n n n T c c c --+=+++=+++++ 又234113572121222222n nn n n T +-+=+++++, 两式相减得2111311121()222222n n n n T -++=++++-, 所以2552n nn T +=-. 【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2n n b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,上述两式相减,得23112(12)42626262(62)24(612n n n n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d , 则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 【名师点睛】本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.。

近五年(2017-2021)高考数学真题分类汇编01 集合

近五年(2017-2021)高考数学真题分类汇编01 集合
设集合 ,且 , ,
则 ,且 ,则 ,
同理 , , , , ,
若 ,则 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 ,故 ,矛盾,舍.
若 ,则 ,故 即 ,
又 ,故 ,所以 ,
故 ,此时 .
若 ,则 ,故 ,故 ,
即 ,故 ,
此时 即 中有7个元素.
13.D
【解析】由 解得 ,所以 ,
又因为 ,所以 ,故选:D.
A.(1,2)B.(1,2]C.(-2,1)D.[-2,1)
46.(2017·浙江)已知集合 ,那么
A.(-1,2)B.(0,1)C.(-1,0)D.(1,2)
47.(2017·全国(文))已知集合A={1,2,3,4},B={2,4,6,8},则A B中元素的个数为
A.1B.2C.3D.4
48.(2017·全国(理))设集合 , .若 ,则 ()
55.{3,4}.
【解析】 , .
56.1
【解析】由题意 ,显然 ,所以 ,此时 ,满足题意,故答案为1.
A. B. C. D.
28.(2018·全国(文))已知集合 , ,则
A. B. C. D.
29.(2018·北京(理))已知集合A={x|丨x丨<2)},B={−2,0,1,2},则 ()
A.{0,1}B.{−1,0,1}
C.{−2,0,1,2}D.{−1,0,1,2}
30.(2018·浙江)已知全集 , ,则 ()
A.(–1,+∞)B.(–∞,2)
C.(–1,2)D.
25.(2019·全国(文))已知集合 ,则
A. B. C. D.
26.(2019·全国(理))设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=

2021全国高考数学真题汇编:等差数列(教师版)

2021全国高考数学真题汇编:等差数列(教师版)

一.选择题(共1小题)1.(2021•北京)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长a1,a2,a3,a4,a5(单位:cm)成等差数列,对应的宽为b1,b2,b3,b4,b5(单位:cm),且长与宽之比都相等.已知a1=288,a5=96,b1=192,则b3=()A.64B.96C.128D.160二.填空题(共1小题)2.(2021•上海)已知等差数列{a n}的首项为3,公差为2,则a10=.三.解答题(共3小题)3.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅱ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.4.(2021•甲卷)记S n为数列{a n}的前n项和,已知a n>0,a2=3a1,且数列{}是等差数列,证明:{a n}是等差数列.5.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知+=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.参考答案与试题解析一.选择题(共1小题)1.(2021•北京)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长a1,a2,a3,a4,a5(单位:cm)成等差数列,对应的宽为b1,b2,b3,b4,b5(单位:cm),且长与宽之比都相等.已知a1=288,a5=96,b1=192,则b3=()A.64B.96C.128D.160【分析】直接利用数列的等差中项的应用求出结果.【解答】解:{a n}和{b n}是两个等差数列,且(1≤k≤5)是常值6=288,a5=96,故,由于所以b3=128.另解:,解得:故:.故选:C.【点评】本题考查的知识要点:数列的等差中项的应用,主要考查学生的运算能力和数学思维能力,属于基础题.二.填空题(共1小题)2.(2021•上海)已知等差数列{a n}的首项为3,公差为2,则a10=21.【分析】由已知结合等差数列的通项公式即可直接求解.【解答】解:因为等差数列{a n}的首项为3,公差为2,则a10=a7+9d=3+5×2=21.故答案为:21.【点评】本题主要考查了等差数列的通项公式,属于基础题.三.解答题(共3小题)3.(2021•新高考Ⅱ)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(Ⅱ)求数列{a n}的通项公式a n;(Ⅱ)求使S n>a n成立的n的最小值.【分析】(Ⅱ)直接利用等差数列的性质和前n项和的应用求出数列的通项公式;(Ⅱ)直接利用作差法的应用和数列的分解因式的应用求出结果.【解答】解:(Ⅱ)数列S n是公差d不为0的等差数列{a n}的前n项和,若a3=S2,a2a4=S6.根据等差数列的性质,a3=S5=5a3,故a3=4,根据a2a4=S6可得(a3﹣d)(a3+d)=(a6﹣2d)+(a3﹣d)+a8+(a3+d),整理得﹣d2=﹣2d,可得d=2(d=0不合题意),故a n=a7+(n﹣3)d=2n﹣4.(Ⅱ)a n=2n﹣6,a8=﹣4,S n=﹣4n+×2=n7﹣5n,S n>a n,即n2﹣4n>2n﹣6,整理可得n3﹣7n+6>3,当n>6或n<1时,S n>a n成立,由于n为正整数,故n的最小正值为3.【点评】本题考查的知识要点:数列的通项公式的求法,数列的求和,主要考查学生的运算能力和数学思维能力,属于基础题.4.(2021•甲卷)记S n为数列{a n}的前n项和,已知a n>0,a2=3a1,且数列{}是等差数列,证明:{a n}是等差数列.【分析】设等差数列{}的公差为d,可用、求出d,得到S n的通项公式,利用a n=S n﹣S n﹣1可求出a n的通项,从而证明{a n}是等差数列.【解答】证明:设等差数列{}的公差为d,由题意得=;===2,则d=﹣=6﹣==+(n﹣1),所以S n=n2a4①;当n≥2时,有S n﹣1=(n﹣8)2a1②.由①②,得a n=S n﹣S n﹣3=n2a1﹣(n﹣3)2a1=(6n﹣1)a1③,经检验,当n=8时也满足③.所以a n=(2n﹣1)a7,n∈N+,当n≥2时,a n﹣a n﹣1=(8n﹣1)a1﹣(8n﹣3)a1=2a1,所以数列{a n}是等差数列.【点评】本题考查了等差数列的概念和性质,涉及逻辑推理,数学运算等数学学科核心素养,属于中档题.5.(2021•乙卷)记S n为数列{a n}的前n项和,b n为数列{S n}的前n项积,已知+=2.(1)证明:数列{b n}是等差数列;(2)求{a n}的通项公式.【分析】(1)由题意当n=1时,b1=S1,代入已知等式可得b1的值,当n≥2时,将=S n,代入+=2,可得b n﹣b n﹣1=,进一步得到数列{b n}是等差数列;(2)由a1=S1=b1=,可得b n=,代入已知等式可得S n=,当n≥2时,a n=S n﹣S n﹣1=﹣,进一步得到数列{a n}的通项公式.【解答】解:(1)证明:当n=1时,b1=S4,由+=24=,当n≥3时,=S n,代入+=2,消去S n,可得+=2n﹣b n﹣4=,所以{b n}是以为首项,.(2)由题意,得a1=S1=b7=,由(1),可得b n=+(n﹣1)×=,由+=4n=,当n≥8时,a n=S n﹣S n﹣1=﹣=﹣1不满足该式,所以a n=.【点评】本题考查了等差数列的概念,性质和通项公式,考查了方程思想,是基础题.。

近五年(2017-2021)高考数学真题分类汇编04 不等式

近五年(2017-2021)高考数学真题分类汇编04 不等式
19.4
【解析】 , ,
,当且仅当 =4时取等号,
结合 ,解得 ,或 时,等号成立.
故答案为:
20.
【解析】∵ ∴ 且
∴ ,当且仅当 ,即 时取等号.∴ 的最小值为 .故答案为: .
21.7
【解析】不等式组所表示的可行域如图
因为 ,所以 ,易知截距 越大,则 越大,
平移直线 ,当 经过A点时截距最大,此时z最大,
7.D
【分析】
首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得 ,得到结果.
【解析】
由 解得 ,
所以 ,
又因为 ,所以 ,
故选:D.
【小结】
本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.
8.A
【分析】
根据题意可画出平面区域再结合命题可判断出真命题.
12.B
【解析】.
,即
又 即 故选B.
13.A
【解析】作出不等式组表示的可行域,如图所示,
目标函数 ,z表示直线 的纵截距,

数形结合知函数 在点B(-6,-3)处纵截距取得最小值,
所以z的最小值为-12-3=-15.故选:A
14.A
【解析】不等式 为 (*),
当 时,(*)式即为 , ,
又 ( 时取等号),
A. B.1
C. D.3
16.(2017·山东(理))若a>b>0,且ab=1,则下列不等式成立的是
A. B.
C. D.
17.(2017·浙江)若x,y满足约束条件 的取值范围是
A.[0,6]B.[0,4]C.[6, D.[4,
二、多选题

2021年高考数学解答题专项复习-《数列》(含答案)

2021年高考数学解答题专项复习-《数列》(含答案)

2021年高考数学解答题专项复习-《数列》1.设{a}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.n(1)求{a n}的通项公式;(2)记{a n}的前n项和为S n,求S n的最小值.2.设{a}是等差数列,且a1=ln2,a2+a3=5ln2.n(1)求{a n}的通项公式;(2)求错误!未找到引用源。

.3.设数列{a}的前n项和为S n.已知2S n=3n+3.n(1)求{a n}的通项公式;(2)若数列{b n}满足a n·b n=log3a n,求{b n}的前n项和T n.4.已知{a}是公差为1的等差数列,且a1,a2,a4成等比数列.n(1)求{a n}的通项公式;(2)求数列的前n项和.5.已知数列{a}前n项和为S n,且S n=2n2+n,n∈N+,数列{b n}满足a n=4log2b n+3,n∈N+.n(1)求a n和b n的通项公式;(2)求数列{a n·b n}的前n项和T n.6.已知数列{a}和{b n}满足a1=1,b1=0,,.n(1)证明:{a n+b n}是等比数列,{a n–b n}是等差数列;(2)求{a n}和{b n}的通项公式.7.S为数列{a n}的前n项和.已知a n>0,=.n(1)求{a n}的通项公式;(2)设 ,求数列{b n}的前n项和.8.已知等差数列{a}满足a3=6,前7项和为S7=49.n(1)求{a n}的通项公式(2)设数列{b n}满足b n=(a n-3)·3n,求{b n}的前n项和T n.9.设数列{a}满足a1+3a2+...+(2n-1)a n=2n.n(1)求{a n}通项公式;(2)求数列的前n项和.10.已知等比数列{a}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{b n}满足b1=1,n数列{(b n+1-b n)a n}的前n项和为2n2+n.(1)求q的值;(2)求数列{b n}的通项公式.11.已知数列{a}是递增的等比数列,且a1+a4=9,a2a3=8.n(1)求数列{a n}的通项公式;(2)设S n为数列{a n}的前n项和,,求数列{b n}的前n项和T n.12.已知数列{a}为递增的等差数列,其中a3=5,且a1,a2,a5成等比数列.n(1)求{a n}的通项公式;(2)设记数列{b n}的前n项和为T n,求使得成立的m的最小正整数.13.等比数列{a}的各项均为正数,且.n(1)求数列{a n}的通项公式;(2)设,求数列的前n项和T n.14.已知数列{a}是首项为正数的等差数列,数列的前n项和为.n(1)求数列{a n}的通项公式;(2)设错误!未找到引用源。

2021年北京市高考数学总复习专题7:数列与集合新定义解答题(附答案解析)

2021年北京市高考数学总复习专题7:数列与集合新定义解答题(附答案解析)
(Ⅲ)给定正整数 .对所有满足 的数列 ,求集合 的元素个数的最小值.
14.(2020北京石景山区4月模拟)有限个元素组成的集合 , ,记集合 中的元素个数为 ,即 .定义 ,集合 中的元素个数记为 ,当 时,称集合 具有性质 .
(1) , ,判断集合 , 是否具有性质 ,并说明理由;
(2)设集合 , 且 ( ),若集合 具有性质 ,求 的最大值;
②对任意 ,存在 ,使得 (其中 ).
(Ⅰ)判断 能否等于 或 ;(结论不需要证明).
(Ⅱ)求 的最小值;
(Ⅲ)研究 是否存在最大值,若存在,求出 的最大值;若不在在,说明理由.
5.(2020·北京朝阳区高三一模)设数列 ( )的各项均为正整数,且 .若对任意 ,存在正整数 使得 ,则称数列 具有性质 .
8.(2020·北京牛栏山一中高三月考)给定数列 .对 ,该数列前 项的最大值记为 ,后 项 的最小值记为 , .
(1)设数列 为 , , , ,写出 , , 的值;
(2)设 是公比大于 的等比数列,且 .证明: 是等比数列.
(3)设 是公差大于 的等差数列,且 ,证明: 是等差数列.
9.(2020·北京高三东城区一模)已知数列 ,记集合 .
(3)设集合 ,其中数列 为等比数列, ( )且公比为有理数,判断集合 是否具有性质 并说明理由.
15.(2020·北京海定区一模)给定整数 ,数列 、 、 、 每项均为整数,在 中去掉一项 ,并将剩下的数分成个数相同的两组,其中一组数的和与另外一组数的和之差的最大值记为 .将 、 、 、 中的最小值称为数列 的特征值.
(1)对于数列 ,写出集合 ;
(2)若 ,是否存在 ,使得 ?若存在,求出一组符合条件的 ;若不存在,说明理由.

专题12 数列-三年(2017-2019)高考真题数学(理)分项汇编附解析

专题12 数列1.【2019年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =-B .310n a n =-C .228n S n n =-D .2122n S n n =- 【答案】A【解析】由题知,41514430245d S a a a d ⎧=+⨯⨯=⎪⎨⎪=+=⎩,解得132a d =-⎧⎨=⎩,∴25n a n =-,24n S n n =-,故选A . 【名师点睛】本题主要考查等差数列通项公式与前n 项和公式,渗透方程思想与数学计算等素养.利用等差数列通项公式与前n 项公式即可列出关于首项与公差的方程,解出首项与公差,再适当计算即可做了判断. 2.【2019年高考全国III 卷理数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 3.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=,则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得1142ba ±-=, 当114102b +-≤时,即90b -…时,总存在1142ba +-=,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a ab b b =+≥+, ()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.4.【2018年高考全国I 卷理数】设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则5a =A .12-B .10-C .10D .12【答案】B【解析】设等差数列的公差为d ,根据题中的条件可得3243332224222d d d ⨯⨯⎛⎫⨯+⋅=⨯++⨯+⋅ ⎪⎝⎭, 整理解得3d =-,所以51421210a a d =+=-=-,故选B .【名师点睛】该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差d 的值,之后利用等差数列的通项公式得到5a 与1a d ,的关系,从而求得结果.5.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意;若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意;因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥6.【2017年高考全国I 卷理数】记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1 B .2 C .4D .8【答案】C【解析】设公差为d ,45111342724a a a d a d a d +=+++=+=,611656615482S a d a d ⨯=+=+=,联立112724,61548a d a d +=⎧⎨+=⎩解得4d =,故选C . 【秒杀解】因为166346()3()482a a S a a +==+=,即3416a a +=, 则4534()()24168a a a a +-+=-=,即5328a a d -==,解得4d =,故选C .【名师点睛】求解等差数列基本量问题时,要多多使用等差数列的性质,如{}n a 为等差数列,若m n p q +=+,则m n p q a a a a +=+.7.【2017年高考全国I 卷理数】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440 B .330C .220D .110【答案】A【解析】由题意得,数列如下:11,1,2,1,2,4,1,2,4,,2k -LL L则该数列的前(1)122k k k ++++=L 项和为 11(1)1(12)(122)222k k k k S k -++⎛⎫=+++++++=-- ⎪⎝⎭L L , 要使(1)1002k k +>,有14k ≥,此时122k k ++<,所以2k +是第1k +组等比数列1,2,,2k L 的部分和,设1212221t t k -+=+++=-L ,所以2314tk =-≥,则5t ≥,此时52329k =-=, 所以对应满足条件的最小整数293054402N ⨯=+=,故选A. 【名师点睛】本题非常巧妙地将实际问题和数列融合在一起,首先需要读懂题目所表达的具体含义,以及观察所给定数列的特征,进而判断出该数列的通项和求和.另外,本题的难点在于数列里面套数列,第一个数列的和又作为下一个数列的通项,而且最后几项并不能放在一个数列中,需要进行判断.8.【2017年高考全国II 卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A .1盏 B .3盏 C .5盏D .9盏【答案】B【解析】设塔的顶层共有灯x 盏,则各层的灯数构成一个首项为x ,公比为2的等比数列,结合等比数列的求和公式有7(12)38112x -=-,解得3x =,即塔的顶层共有灯3盏,故选B . 【名师点睛】用数列知识解相关的实际问题,关键是列出相关信息,合理建立数学模型——数列模型,判断是等差数列还是等比数列模型;求解时要明确目标,即搞清是求和、求通项、还是解递推关系问题,所求结论对应的是解方程问题、解不等式问题、还是最值问题,然后将经过数学推理与计算得出的结果放回到实际问题中,进行检验,最终得出结论.9.【2017年高考全国III 卷理数】等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .24-B .3-C .3D .8【答案】A【解析】设等差数列{}n a 的公差为d ,由a 2,a 3,a 6成等比数列可得2326a a a =,即()()()212115d d d +=++,整理可得220d d +=,又公差不为0,则2d =-,故{}n a 前6项的和为()()()6166166166122422S a d ⨯-⨯-=+=⨯+⨯-=-.故选A . 【名师点睛】(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(2)数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.10.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.11.【2019年高考全国I 卷理数】记S n 为等比数列{a n }的前n 项和.若214613a a a ==,,则S 5=___________.【答案】1213【解析】设等比数列的公比为q ,由已知21461,3a a a ==,所以32511(),33q q =又0q ≠, 所以3,q =所以55151(13)(1)12131133a q S q --===--. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.12.【2019年高考全国III 卷理数】记S n 为等差数列{a n }的前n 项和,12103a a a =≠,,则105S S =___________. 【答案】4【解析】设等差数列{a n }的公差为d ,因213a a =,所以113a d a +=,即12a d =,所以105S S =11111091010024542552a d a a a d⨯+==⨯+. 【名师点睛】本题主要考查等差数列的性质、基本量的计算.渗透了数学运算素养.使用转化思想得出答案. 13.【2019年高考北京卷理数】设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为___________. 【答案】 0,10-.【解析】等差数列{}n a 中,53510S a ==-,得32,a =-又23a =-,所以公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.【名师点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.14.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是___________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 15.【2018年高考全国I 卷理数】记n S 为数列{}n a 的前n 项和,若21n n S a =+,则6S =___________.【答案】63-【解析】根据21n n S a =+,可得1121n n S a ++=+,两式相减得1122n n n a a a ++=-,即12n n a a +=,当1n =时,11121S a a ==+,解得11a =-,所以数列{}n a 是以−1为首项,以2为公比的等比数列,所以()66126312S --==--,故答案是63-.【名师点睛】该题考查的是有关数列的求和问题,在求解的过程中,需要先利用题中的条件,类比着往后写一个式子,之后两式相减,得到相邻两项之间的关系,从而确定出该数列是等比数列,之后令1n =,求得数列的首项,最后应用等比数列的求和公式求解即可,只要明确对既有项又有和的式子的变形方向即可得结果. 16.【2018年高考北京卷理数】设{}n a 是等差数列,且a 1=3,a 2+a 5=36,则{}n a 的通项公式为___________.【答案】63n a n =-【解析】设等差数列的公差为d ,()133343663616 3.n a d d d a n n =∴+++=∴=∴=+-=-Q ,,, 【名师点睛】先根据条件列出关于公差的方程,求出公差后,代入等差数列通项公式即可.在解决等差、等比数列的运算问题时,有两个处理思路,一是利用基本量,将多元问题简化为首项与公差(公比)问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.17.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a ⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.18.【2017年高考全国II 卷理数】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11nk kS==∑___________.【答案】21n n + 【解析】设等差数列的首项为1a ,公差为d ,由题意有1123434102a d a d +=⎧⎪⎨⨯+=⎪⎩ ,解得111a d =⎧⎨=⎩ , 数列的前n 项和()()()111111222n n n n n n n S na d n --+=+=⨯+⨯=, 裂项可得12112()(1)1k S k k k k ==-++, 所以1111111122[(1)()()]2(1)223111nk kn S n n n n ==-+-++-=-=+++∑L . 【名师点睛】等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用得方法.使用裂项法求和时,要注意正、负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点.19.【2017年高考全国III 卷理数】设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 =___________.【答案】8-【解析】设等比数列{}n a 的公比为q ,很明显1q ≠-,结合等比数列的通项公式和题意可得方程组:1212131(1)1(1)3a a a q a a a q +=+=-⎧⎨-=-=-⎩①②,由②①可得:2q =-,代入①可得11a =,由等比数列的通项公式可得3418a a q ==-.【名师点睛】等比数列基本量的求解是等比数列中的一类基本问题,解决这类问题的关键在于熟练掌握等比数列的有关公式并能灵活运用,尤其需要注意的是,在使用等比数列的前n 项和公式时,应该要分类讨论,有时还应善于运用整体代换思想简化运算过程.20.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________.【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.21.【2017年高考北京卷理数】若等差数列{}n a 和等比数列{}n b 满足11–1a b ==,448a b ==,则22a b =___________. 【答案】1【解析】设等差数列的公差和等比数列的公比分别为d 和q ,则3138d q -+=-=,求得2,3q d =-=,那么221312a b -+==. 【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组)问题,因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.22.【2019年高考全国II 卷理数】已知数列{a n }和{b n }满足a 1=1,b 1=0,1434n n n a a b +-=+,1434n n n b b a +-=-. (1)证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2)求{a n }和{b n }的通项公式. 【答案】(1)见解析;(2)1122n n a n =+-,1122n nb n =-+. 【解析】(1)由题设得114()2()n n n n a b a b +++=+,即111()2n n n n a b a b +++=+. 又因为a 1+b 1=l ,所以{}n n a b +是首项为1,公比为12的等比数列. 由题设得114()4()8n n n n a b a b ++-=-+,即112n n n n a b a b ++-=-+. 又因为a 1–b 1=l ,所以{}n n a b -是首项为1,公差为2的等差数列. (2)由(1)知,112n n n a b -+=,21n n a b n -=-. 所以111[()()]222n n n n n n a a b a b n =++-=+-, 111[()()]222n n n n n n b a b a b n =+--=-+.【名师点睛】本题考查了数列的相关性质,主要考查了等差数列以及等比数列的相关证明,证明数列是等差数列或者等比数列一定要结合等差数列或者等比数列的定义,考查推理能力,考查化归与转化思想,是中档题. 23.【2019年高考北京卷理数】已知数列{a n },从中选取第i 1项、第i 2项、…、第i m 项(i 1<i 2<…<i m ),若12m i i i a a a <<⋅⋅⋅<,则称新数列12m i i i a a a ⋅⋅⋅,,,为{a n }的长度为m 的递增子列.规定:数列{a n }的任意一项都是{a n }的长度为1的递增子列.(1)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(2)已知数列{a n }的长度为p 的递增子列的末项的最小值为0m a ,长度为q 的递增子列的末项的最小值为0n a .若p <q ,求证:0m a <0n a ;(3)设无穷数列{a n }的各项均为正整数,且任意两项均不相等.若{a n }的长度为s 的递增子列末项的最小值为2s –1,且长度为s 末项为2s –1的递增子列恰有2s -1个(s =1,2,…),求数列{a n }的通项公式. 【答案】(1) 1,3,5,6(答案不唯一);(2)见解析;(3)见解析.【解析】(1)1,3,5,6.(答案不唯一)(2)设长度为q 末项为0n a 的一个递增子列为1210,,,,q r r r n a a a a -L .由p <q ,得10p q r r n a a a -≤<.因为{}n a 的长度为p 的递增子列末项的最小值为0m a , 又12,,,p r r r a a a L 是{}n a 的长度为p 的递增子列,所以0p m r a a ≤. 所以00m n a a <·(3)由题设知,所有正奇数都是{}n a 中的项.先证明:若2m 是{}n a 中的项,则2m 必排在2m −1之前(m 为正整数). 假设2m 排在2m −1之后.设121,,,,21m p p p a a a m --L 是数列{}n a 的长度为m 末项为2m −1的递增子列,则121,,,,21,2m p p p a a a m m --L 是数列{}n a 的长度为m +1末项为2m 的递增子列.与已知矛盾. 再证明:所有正偶数都是{}n a 中的项.假设存在正偶数不是{}n a 中的项,设不在{}n a 中的最小的正偶数为2m .因为2k 排在2k −1之前(k =1,2,…,m −1),所以2k 和21k -不可能在{}n a 的同一个递增子列中.又{}n a 中不超过2m +1的数为1,2,…,2m −2,2m −1,2m +1,所以{}n a 的长度为m +1且末项为2m +1的递增子列个数至多为1(1)22221122m m m --⨯⨯⨯⨯⨯⨯=<L 1442443个.与已知矛盾.最后证明:2m 排在2m −3之后(m ≥2为整数).假设存在2m (m ≥2),使得2m 排在2m −3之前,则{}n a 的长度为m +1且末项为2m +l 的递增子列的个数小于2m.与已知矛盾.综上,数列{}n a 只可能为2,1,4,3,…,2m −3,2m ,2m −1,…. 经验证,数列2,1,4,3,…,2m −3,2m ,2m −1,…符合条件. 所以1,1,n n n a n n +⎧=⎨-⎩为奇数,为偶数.【名师点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.24.【2019年高考天津卷理数】设{}n a 是等差数列,{}n b 是等比数列.已知1122334,622,24a b b a b a ===-=+,. (Ⅰ)求{}n a 和{}n b 的通项公式;(Ⅱ)设数列{}n c 满足111,22,2,1,,k k n kk c n c b n +=⎧<<=⎨=⎩其中*k ∈N . (i )求数列(){}221n n a c -的通项公式; (ii )求()2*1ni ii a c n =∈∑N .【答案】(1)31n a n =+;32nn b =⨯(2)(i )()221941n n n a c -=⨯-(ii )()()2*211*12725212nn n i i i a c n n n --=∈=⨯+⨯--∈∑N N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意得2662,6124,q d q d =+⎧⎨=+⎩解得3,2,d q =⎧⎨=⎩故14(1)331,6232n nn n a n n b -=+-⨯=+=⨯=⨯.所以,{}n a 的通项公式为{}31,n n a n b =+的通项公式为32n n b =⨯.(2)(i )()()()()22211321321941n n n n n n n a c a b -=-=⨯+⨯-=⨯-. 所以,数列(){}221n n a c -的通项公式为()221941n n n a c -=⨯-. (ii )()()22221111211n n niini iiiiii i i i a c a a c a a c====⎡⎤=+-=+⎣⎦-∑∑∑∑()()12212439412n nn ni i =⎛⎫- ⎪=⨯+⨯+⨯- ⎪⎝⎭∑()()2114143252914n n n n ---=⨯+⨯+⨯--()211*2725212n n n n --=⨯+⨯--∈N .【名师点睛】本小题主要考查等差数列、等比数列的通项公式及其前n 项和公式等基础知识.考查化归与转化思想和数列求和的基本方法以及运算求解能力.25.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】解:(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”. (2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:x (1,e)e (e ,+∞)()f 'x+0 –f (x )极大值因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取33q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k q k -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.26.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,,2nn na c nb *=∈N 证明:12+2,.n c c c n n *++<∈N L 【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N . (2)*221,22(1)(1)n n n a n n c n b n n n n --===∈++N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即122k c c c k +++<L 那么,当1n k =+时,121122(1)(2)1k k k c c c c k k k k k +++++<<+++L 222(1)211k k k k k k k<=+=+++.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式122n c c c n +++<L *n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.27.【2018年高考全国II 卷理数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9.(2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值. 28.【2018年高考全国III 卷理数】等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m-=-,此方程没有正整数解.若12n n a -=,则21nn S =-.由63m S =得264m =,解得6m =.综上,6m =.【名师点睛】本题主要考查等比数列的通项公式和前n 项和公式,属于基础题.29.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力. (1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-L23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+L .设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥L ,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅L 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅L ,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解. 30.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,2]m a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1)75[,]32;(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分. (1)由条件知:112(,)n n n a n d b -=-=. 因为1||n n a b b -≤对n =1,2,3,4均成立, 即1 12|()1|n n d ---≤对n =1,2,3,4均成立, 即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得7532d ≤≤. 因此,d 的取值范围为75[,]32.(2)由条件知:111(1),n n n a b n d b b q -=+-=.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即1111|1|2,3,,(1())n b n d b q b n m -+--≤=+L , 即当2,3,,1n m =+L 时,d 满足1111211n n q q b d b n n ---≤≤--.因为2]m q ∈,则112n m q q -<≤≤,从而11201n q b n --≤-,1101n q b n ->-,对2,3,,1n m =+L 均成立.因此,取d =0时,1||n n a b b -≤对2,3,,1n m =+L 均成立.下面讨论数列12{}1n q n ---的最大值和数列1{}1n q n --的最小值(2,3,,1n m =+L ). ①当2n m ≤≤时,111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---, 当112mq <≤时,有2n m q q ≤≤,从而1() 20n n n n q q q ---+>.因此,当21n m ≤≤+时,数列12{}1n q n ---单调递增,故数列12{}1n q n ---的最大值为2m q m-. ②设()()21x f x x =-,当x >0时,ln 21(0(n )l 22)x f x x '=--<, 所以()f x 单调递减,从而()f x <f (0)=1.当2n m ≤≤时,111112111()()()nn n q q n n f q n n n n --=≤-=<-, 因此,当21n m ≤≤+时,数列1{}1n q n --单调递减,故数列1{}1n q n --的最小值为mqm. 因此,d 的取值范围为11(2)[,]m mb q b q m m-.31.【2018年高考天津卷理数】设{}n a 是等比数列,公比大于0,其前n 项和为()n S n *∈N ,{}n b 是等差数列. 已知11a =,322a a =+,435a b b =+,5462a b b =+. (1)求{}n a 和{}n b 的通项公式;(2)设数列{}n S 的前n 项和为()n T n *∈N , (i )求n T ;(ii )证明221()22()(1)(2)2n nk k k k T b b n k k n +*+=+=-∈+++∑N . 【答案】(1)12n n a -=,n b n =;(2)(i )122n n T n +=--;(ii )见解析.【解析】本小题主要考查等差数列的通项公式,等比数列的通项公式及其前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分.(1)设等比数列{}n a 的公比为q.由1321,2,a a a ==+可得220q q --=. 因为0q >,可得2q =,故12n n a -=.设等差数列{}n b 的公差为d ,由435a b b =+,可得13 4.b d +=由5462a b b =+, 可得131316,b d += 从而11,1,b d == 故.n b n =所以,数列{}n a 的通项公式为12n n a -=,数列{}n b 的通项公式为.n b n =(2)(i )由(1),有122112nn n S -==--,故 1112(12)(21)22212n nnkkn n k k T n n n +==⨯-=-=-=-=---∑∑.(ii )证明:因为11212()(222)222(1)(2)(1)(2)(1)(2)21k k k k k k+k T +b b k k k k k k k k k k k k ++++--++⋅===-++++++++,所以,324321221()2222222()()()2(1)(2)3243212n n n nk k k k T b b k k n n n ++++=+=-+-++-=-+++++∑L . 【名师点睛】本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.32.【2017年高考天津卷理数】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (1)求{}n a 和{}n b 的通项公式;(2)求数列221{}n n a b -的前n 项和()n *∈N .【答案】(1)32n a n =-,2nn b =;(2)1328433n n +-⨯+. 【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=. 又因为0q >,解得2q =.所以,2nn b =.由3412b a a =-,可得138d a -= ①. 由114=11S b ,可得1516a d += ②,联立①②,解得11a =,3d =,由此可得32n a n =-.所以,数列{}n a 的通项公式为32n a n =-,数列{}n b 的通项公式为2nn b =.(2)设数列221{}n n a b -的前n 项和为n T ,由262n a n =-,12124n n b --=⨯,有221(31)4nn n a b n -=-⨯, 故23245484(31)4nn T n =⨯+⨯+⨯++-⨯L ,23414245484(34)4(31)4n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23112(14)324343434(31)44(314n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----L 111)4(32)48n n n ++⨯=--⨯-,得1328433n n n T +-=⨯+. 所以,数列221{}n n a b -的前n 项和为1328433n n +-⨯+. 【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和.33.【2017年高考山东卷理数】已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n+1(x n+1, n +1)得到折线P 1 P 2…P n+1,求由该折线与直线y =0,11n x x x x +==,所围成的区域的面积n T.【答案】(1)12n n x -=;(2)(21)21.2n n n T -⨯+=【解析】(1)设数列{}n x 的公比为q ,由已知0q >.由题意得1121132x x q x q x q +=⎧⎨-=⎩,所以23520q q --=,因为0q >,所以12,1q x ==,因此数列{}n x 的通项公式为12.n n x -=(2)过123,,,P P P …,1n P +向x 轴作垂线,垂足分别为123,,,Q Q Q …,1n Q +,由(1)得111222.n n n n n x x --+-=-=记梯形11n n n n P P Q Q ++的面积为n b . 由题意12(1)2(21)22n n n n n b n --++=⨯=+⨯, 所以123n T b b b =+++…+n b=101325272-⨯+⨯+⨯+…+32(21)2(21)2n n n n ---⨯++⨯ ①,又0122325272n T =⨯+⨯+⨯+…+21(21)2(21)2n n n n ---⨯++⨯ ②,①-②得121132(222)(21)2n n n T n ----=⨯++++-+⨯L=1132(12)(21)2.212n n n ---+-+⨯-所以(21)21.2n n n T -⨯+=【名师点睛】本题主要考查等比数列的通项公式及求和公式、数列求和的错位相减法.此类题目是数列问题中的常见题型.本题覆盖面广,对考生的计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好地考查考生的数形结合思想、逻辑思维能力及基本计算能力等.34.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d ,则1(1)n a a n d =+-, 从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-,所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.35.【2017年高考北京卷理数】设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数.(1)若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n m ≥时,n cM n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.【答案】(1)详见解析;(2)详见解析. 【解析】(1)111110,c b a =-=-=21122max{2,2}max{121,322}1c b a b a =--=-⨯-⨯=-,3112233max{3,3,3}max{131,332,533}2c b a b a b a =---=-⨯-⨯-⨯=-.当3n ≥时,1111()()()()20k k k k k k k k b na b na b b n a a n ++++---=---=-<, 所以k k b na -关于*k ∈N 单调递减.所以112211max{,,,}1n n n c b a n b a n b a n b a n n =---=-=-L . 所以对任意1,1n n c n ≥=-,于是11n n c c +-=-, 所以{}n c 是等差数列.(2)设数列{}n a 和{}n b 的公差分别为12,d d ,则12111121(1)[(1)]()(1)k k b na b k d a k d n b a n d nd k -=+--+-=-+--.所以1121211121(1)(),,n b a n n d nd d nd c b a n d nd -+-->⎧=⎨-≤⎩当时,当时,①当10d >时,取正整数21d m d >,则当n m ≥时,12nd d >,因此11n c b a n =-. 此时,12,,,m m m c c c ++L 是等差数列. ②当10d =时,对任意1n ≥,1121121(1)max{,0}(1)(max{,0}).n c b a n n d b a n d a =-+-=-+--此时,123,,,,,n c c c c L L 是等差数列. ③当10d <时, 当21d n d >时,有12nd d <. 所以1121121112(1)()()n c b a n n d nd b d n d d a d n n n-+---==-+-++ 111212()||.n d d a d b d ≥-+-+--对任意正数M ,取正整数12112211||max{,}M b d a d d d m d d +-+-->-,故当n m ≥时,nc M n>. 【名师点睛】近几年北京卷理科压轴题一直为新信息题,本题考查学生对新定义的理解能力和使用能力,本题属于偏难问题,反映出学生对新的信息的理解和接受能力,本题考查数列的有关知识及归纳法证明,即考查了数列(分段形函数)求值,又考查了归纳法证明和对数据的分析研究,考查了学生的分析问题能力和逻辑推理能力,本题属于拔高难题,特别是第二问难度较大,适合选拔优秀学生.36.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >.。

(精品word)新课标全国卷五年高考数列汇编(附答案).doc

1.[2014 新·课标全国卷Ⅰ ]已知数列 { a, a = 1, a ≠ 0, a += λS- 1,其中 λ为常数.n } 的前 n 项和为 S n1 nn a n 1 n(1) 证明: a n + 2- a n = λ.(2) 是否存在 λ,使得 { a n } 为等差数列?并说明理由.2.[2014 新·课标全国卷 2]已知数列 a满足 a 1 =1, a n 13a n1.n(Ⅰ)证明a n 1 是等比数列,并求 a n 的通项公式;2(Ⅱ)证明: 1 11 3 aa⋯ + a2 .12n3.[2013 新·课标全国卷 1] 设等差数列 a n 的前 n 项和为 S n , S m 1 2, S m 0, S m 13 ,则 m ()A . 3B. 4C.5D.64.[2013 新·课标全国卷 1]设 A B Ca ,b , c,A B Cn 的 面 积 为S n , n1,2,3,, 若n nn 的 三 边 长 分 别 为nn nn nb 1c 1 ,b 1 c 1 2a 1 , a n 1 a n , b n 1c na n,c n 1 b na n,则 ()A. { S } 为递减数列22B. { S } 为递增数列nnC.{ S 2n - 1} 为递增数列, { S 2n } 为递减数列D.{ S 2n - 1} 为递减数列, { S 2n } 为递增数列 5.[2013 新·课标全国卷 1]若数列 { a } 的前 n 项和为 S n=2a 1 ,则数列 { a } 的通项公式是a =______.n 3 n 3 n n6.(2013 课标全国Ⅱ,理3)n.已知3=2+10 1,5=9,则1=().等比数列 { n}的前n 项和为 a aa S S a a1 1 1 1A.3B.3C. 9D.97.(2013 课标全国Ⅱ,理16)等差数列 { a n} 的前n项和为S n,已知S10= 0,S15 = 25,则nS n的最小值为 __________.8.[2012 新课标全国卷 ]已知 an为等比数列, a4 a7 2 , a5a6 8 ,则 a1 a10 ()(A) 7 (B) 5 (C) (D )9.[2012 新课标全国卷 ]数列 { a n} 满足 a n 1(1)n a n 2n 1,则 { a n} 的前60 项和为10.[2010 新课标全国卷]设数列a n满足a12, a n 1a n 3 22n 1 (1)求数列a n的通项公式;(2)令b n na n,求数列的前n 项和S n11、( 2015 全国 1 卷 17 题)S n为数列 { a n } 的前n项和 . 已知a n> 0,a n2a n= 4S n3. (Ⅰ)求 { a n } 的通项公式;(Ⅱ)设b n1, 求数列 { b n } 的前n项和 . anan 112、( 2015 全国 2 卷 4 题)已知等比数列a n 满足 a1=3,a1a3 a5 =21 ,则a3 a5 a7 ()A.21 B .42C .63 D . 84.13、( 2015 全国 2卷 16 题)设 S n是数列a n 的前 n 项和,且a1 1, a n 1 S n S n 1,则S n ________.14、( 2016 全国 1 卷 3 题)已知等差数列a n 前 9 项的和为 27, a10 8 ,则 a100 ()(A ) 100 (B)99 ( C)98 (D)9715、( 2016 全国 2 卷 15 题)设等比数列a n 满足 a1+a3 =10,a2+a4=5,则 a1a2 a n的最大值为.16、( 2016 全国 2 卷 17 题)S n为等差数列a n 的前 n 项和,且 a1 1 ,S7 28 .记b n lg a n,其中 x 表示不超过x的最大整数,如0.9 0 , lg99 1 .(Ⅰ)求 b1, b11, b101;(Ⅱ)求数列b n的前1000项和.17、( 2016 全国 3 卷 17 题) 已知数列{ a n }的前 n 项和S n1a n,其中 0 .(I )证明{ a n }是等比数列,并求其通项公式;31 (II )若S 532,求 .18、( 2017 年国 1 卷 4 题)记 S n 为等差数列 a n 的前 n 项和,若 a 4 a 524 ,S 6 48 ,则 a n的公差为() A . 1B .2C . 4D .8 19、( 2017 全国 2 卷 3 题)我国古代数学名著《算法统宗》中有如下问题: “远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯()A .1 盏B .3 盏C .5 盏D .9 盏20、( 2017 全国 2 卷 15 题) 等差数列a n 的前 n 项和为 S n , a 3 3, S 4 10,则n1.k 1S k21、( 2017全国 3卷 9题) 等差数列 a n 的首项为 1,公差不为 0.若 a 2 , a 3 , a 6 成等比数列,则 a n 前 6项的和为()A . 24B . 3C . 3D . 812、( 2017 全国 3卷 14题)设等比数列a n 满足 a 1 a 21 , a 1 a 33 ,则 a 4 ________..详细解析1.解: (1) 证明:由题设, += λS - 1,a ++=λS + 1 - 1,a n a n 1nn 1a n 2n两式相减得 a n1(a n2- a n )= λa n 1.+ + +因为 a n + 1≠0,所以 a n + 2- a n = λ.= 1, a = λS- 1,可得 a = λ- 1,(2) 由题设, a 1 1a 2 1 2由(1) 知, a 3= λ+ 1.若{ a n } 为等差数列,则 2a 2= a 1+ a 3,解得 λ=4,故 a n + 2- a n =4. 由此可得 { a 2n -1} 是首项为 1,公差为 4 的等差数列, a 2n -1= 4n - 3;{ a 2n } 是首项为 3,公差为 4 的等差数列, a 2n =4n - 1. 所以 a n = 2n -1, a n + 1- a n =2.因此存在 λ= 4,使得数列 { a n } 为等差数列.a 1 1, a n 1 3a n 1.n ∈ N * .2.解: ∴ a n 11 3a n 1 13(a n 1). 2 2 2 1 是首项为 a 1 1 3 ,公比为 3的等比数列。

2017-2019高考文数真题分类解析---数列

2017-2019高考文数真题分类解析----数列1.【2019年高考全国III 卷文数】已知各项均为正数的等比数列{}n a 的前4项和为15,且53134a a a =+,则3a = A .16 B .8C .4D .2【答案】C【解析】设正数的等比数列{a n }的公比为q ,则231111421111534a a q a q a q a q a q a ⎧+++=⎨=+⎩, 解得11,2a q =⎧⎨=⎩,2314a a q ∴==,故选C .【名师点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键. 2.【2019年高考浙江卷】设a ,b ∈R ,数列{a n }满足a 1=a ,a n +1=a n 2+b ,n *∈N ,则 A . 当101,102b a => B . 当101,104b a => C . 当102,10b a =-> D . 当104,10b a =->【答案】A【解析】①当b =0时,取a =0,则0,n a n *=∈N .②当<0b 时,令2x x b =+,即20x x b -+=.则该方程140b ∆=->,即必存在0x ,使得2000x x b -+=, 则一定存在10 ==a a x ,使得21n n n a a b a +=+=对任意n *∈N 成立,解方程20a a b -+=,得a =,10≤时,即90b -…时,总存在a =,使得121010a a a ==⋯=≤, 故C 、D 两项均不正确.③当0b >时,221a a b b =+≥,则2232a a b b b =+≥+,()22243a a b b b b =+++….(ⅰ)当12b =时,22451111711,1222162a a ⎡⎤⎛⎫++=>>+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦≥,则26111112224a ⎛⎫>++=> ⎪⎝⎭,2719222a >+=, 28918310224a ⎛⎫>+=> ⎪⎝⎭ ,则2981102a a =+>, 21091102a a =+> , 故A 项正确.(ⅱ)当14b =时,令1==0a a ,则2231111,4442a a ⎛⎫==+< ⎪⎝⎭,所以224311114242a a ⎛⎫=+<+= ⎪⎝⎭,以此类推,所以2210911114242a a ⎛⎫=+<+= ⎪⎝⎭,故B 项不正确. 故本题正确答案为A.【名师点睛】遇到此类问题,不少考生会一筹莫展.利用函数方程思想,通过研究函数的不动点,进一步讨论a 的可能取值,利用“排除法”求解.3.【2018年高考浙江卷】已知1234,,,a a a a 成等比数列,且1234123ln()a a a a a a a +++=++.若11a >,则 A .1324,a a a a << B .1324,a a a a >< C .1324,a a a a <>D .1324,a a a a >>【答案】B【解析】令()ln 1,f x x x =--则()11f x x'=-,令()0,f x '=得1x =,所以当1x >时,()0f x '>,当01x <<时,()0f x '<,因此()()10,ln 1f x f x x ≥=∴≥+.若公比0q >,则()1234123123ln a a a a a a a a a a +++>++>++,不合题意; 若公比1q ≤-,则()()212341110,a a a a a q q +++=++≤但()()212311ln ln 1ln 0a a a a q q a ⎡⎤++=++>>⎣⎦,即()12341230ln a a a a a a a +++≤<++,不合题意; 因此()210,0,1q q -<<∈,22113224,0a a q a a a q a ∴>=<=<,故选B.【名师点睛】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如()2ln 1,e 1,e 10.x x x x x x x ≥+≥+≥+≥4.【2018年高考北京卷文数】设a,b,c,d 是非零实数,则“ad=bc ”是“a,b,c,d 成等比数列”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当14,1,1,4a b c d ====时,,,,a b c d 不成等比数列,所以不是充分条件;当,,,a b c d 成等比数列时,则ad bc =,所以是必要条件.综上所述,“ad bc =”是“,,,a b c d 成等比数列”的必要不充分条件,故选B.【名师点睛】证明“ad bc =”⇒“,,,a b c d 成等比数列”只需举出反例即可,论证“,,,a b c d 成等比数列”⇒“ad bc =”可利用等比数列的性质.5.【2018年高考北京卷文数】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于若第一个单音的频率为f ,则第八个单音的频率为A BC .D .【答案】D【解析】因为每一个单音的频率与前一个单音的频率的比都为,所以()*12,n n a n n -=≥∈N,又1a f =,则7781a a q f ===,故选D.【名师点睛】此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若1n n a q a +=(*0,q n ≠∈N )或1nn a q a -=(*0,2,q n n ≠≥∈N ),数列{}n a 是等比数列;(2)等比中项公式法,若数列{}n a 中,0n a ≠且212n n n a a a --=⋅(*3,n n ≥∈N ),则数列{}n a 是等比数列.6.【2017年高考浙江卷】已知等差数列{a n }的公差为d ,前n 项和为S n ,则“d >0”是“S 4 + S 6>2S 5”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】C【解析】由46511210212(510)S S S a d a d d +-=+-+=,可知当0d >时,有46520S S S +->,即4652S S S +>,反之,若4652S S S +>,则0d >,所以“d >0”是“S 4 + S 6>2S 5”的充要条件,选C .【名师点睛】本题考查等差数列的前n 项和公式,通过套入公式与简单运算,可知4652S S S d +-=, 结合充分必要性的判断,若p q ⇒,则p 是q 的充分条件,若p q ⇐,则p 是q 的必要条件,该题“0d >”⇔“46520S S S +->”,故互为充要条件.7.【2019年高考全国I 卷文数】记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 【答案】58【解析】设等比数列的公比为q ,由已知223111314S a a q a q q q =++=++=,即2104q q ++=. 解得12q =-,所以441411()(1)521181()2a q S q ---===---. 【名师点睛】准确计算,是解答此类问题的基本要求.本题由于涉及幂的乘方运算、繁分式的计算,部分考生易出现运算错误.一题多解:本题在求得数列的公比后,可利用已知计算3343431315()428S S a S a q =+=+=+-=,避免繁分式计算.8.【2019年高考全国III 卷文数】记n S 为等差数列{}n a 的前n 项和,若375,13a a ==,则10S =___________.【答案】100【解析】设等差数列{}n a 的公差为d ,根据题意可得317125,613a a d a a d =+=⎧⎨=+=⎩得11,2a d =⎧⎨=⎩ 101109109101012100.22S a d ⨯⨯∴=+=⨯+⨯= 【名师点睛】本题考点为等差数列的求和,为基础题目,利用基本量思想解题即可,充分记牢等差数列的求和公式是解题的关键.9.【2019年高考江苏卷】已知数列*{}()n a n ∈N 是等差数列,n S 是其前n 项和.若25890,27a a a S +==,则8S 的值是__________. 【答案】16【解析】由题意可得:()()()25811191470989272a a a a d a d a d S a d ⎧+=++++=⎪⎨⨯=+=⎪⎩, 解得:152a d =-⎧⎨=⎩,则8187840282162S a d ⨯=+=-+⨯=. 【名师点睛】等差数列、等比数列的基本计算问题,是高考必考内容,解题过程中要注意应用函数方程思想,灵活应用通项公式、求和公式等,构建方程(组),如本题,从已知出发,构建1a d ,的方程组. 10.【2018年高考江苏卷】已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为___________. 【答案】27【解析】所有的正奇数和()2n n *∈N 按照从小到大的顺序排列构成{}n a ,在数列|{}n a 中,25前面有16个正奇数,即5621382,2a a ==.当n =1时,1211224S a =<=,不符合题意;当n =2时,2331236S a =<=,不符合题意;当n =3时,3461248S a =<=,不符合题意;当n =4时,4510<12=60S a =,不符合题意;……;当n =26时,()2752621221(141)441625032121=2516S a ⨯-⨯+=+=+=<-,不符合题意;当n =27时,()8527221222(143)21484+62=546>12=5420S a⨯-⨯+=+=-,符合题意.故使得+1>12n n S a 成立的n 的最小值为27.【名师点睛】本题主要考查等差数列、等比数列的前n 项和,考查考生的运算求解能力,考查的核心素养是数学运算.11.【2017年高考江苏卷】等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =___________. 【答案】32【解析】当1q =时,显然不符合题意;当1q ≠时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,则7812324a =⨯=. 【名师点睛】在解决等差、等比数列的运算问题时,有两个处理思路:①利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;②利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质成立的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.12.【2019年高考全国I 卷文数】记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【答案】(1)210n a n =-+;(2)110()n n *≤≤∈N .【解析】(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a ≥等价于211100n n -+…,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n *≤≤∈N .【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有等差数列的通项公式,等差数列的求和公式,在解题的过程中,需要认真分析题意,熟练掌握基础知识是正确解题的关键.13.【2019年高考全国II 卷文数】已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【答案】(1)212n n a -=;(2)2n S n =.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或q =4.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-, 因此数列{}n b 的前n 项和为21321n n +++-=L .【名师点睛】本题考查数列的相关性质,主要考查等差数列以及等比数列的通项公式的求法,考查等差数列求和公式的使用,考查化归与转化思想,考查计算能力,是简单题.14.【2019年高考北京卷文数】设{a n }是等差数列,a 1=–10,且a 2+10,a 3+8,a 4+6成等比数列.(1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,求S n 的最小值.【答案】(1)212n a n =-;(2)当5n =或者6n =时,n S 取到最小值30-.【解析】(1)设{}n a 的公差为d . 因为110a =-,所以23410,102,103a d a d a d =-+=-+=-+. 因为23410,8,6a a a +++成等比数列, 所以()()()23248106a a a +=++. 所以2(22)(43)d d d -+=-+. 解得2d =.所以1(1) 212n a a n d n =+-=-. (2)由(1)知,212n a n =-.所以,当7n ≥时,0n a >;当6n ≤时,0n a ≤. 所以,n S 的最小值为630S =-.【名师点睛】等差数列基本量的求解是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.15.【2019年高考天津卷文数】设{}n a 是等差数列,{}n b 是等比数列,公比大于0,已知1123323,,43a b b a b a ====+.(1)求{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足21n n n c b n ⎧⎪=⎨⎪⎩,为奇数,,为偶数.求*112222()n n a c a c a c n +++∈N L .【答案】(1)3n a n =,3nn b =;(2)22(21)369()2n n n n +*-++∈N【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .依题意,得2332,3154,q d q d =+⎧⎨=+⎩解得3,3,d q =⎧⎨=⎩故133(1)3,333n n n n a n n b -=+-==⨯=.所以,{}n a 的通项公式为3n a n =,{}n b 的通项公式为3nn b =.(2)112222n n a c a c a c +++L()()135212142632n n n a a a a a b a b a b a b -=+++++++++L L123(1)36(6312318363)2n n n n n -⎡⎤=⨯+⨯+⨯+⨯+⨯++⨯⎢⎥⎣⎦L()2123613233n n n =+⨯+⨯++⨯L .记1213233nn T n =⨯+⨯++⨯L ,① 则231313233n n T n +=⨯+⨯++⨯L ,②②−①得,()12311313(21)332333331332n n n n n n n T n n +++--+=---⨯=-+⨯=--+-L . 所以,122112222(21)3336332n n n n n a c a c a c n T n +-++++=+=+⨯L()22(21)3692n n n n +*-++=∈N . 【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识,考查数列求和的基本方法和运算求解能力,属于中档题目.16.【2019年高考江苏卷】定义首项为1且公比为正数的等比数列为“M -数列”.(1)已知等比数列{a n }()n *∈N 满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M -数列”;(2)已知数列{b n }()n *∈N 满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M -数列”{c n }()n *∈N ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M—数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==,得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-, 当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n ∈N .②由①知,b k =k ,*k ∈N .因为数列{c n }为“M–数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1; 当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x-=. 令()0f 'x =,得x =e.列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==. 取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤,经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5.【名师点睛】本题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.17.【2019年高考浙江卷】设等差数列{}n a 的前n 项和为n S ,34a =,43a S =,数列{}n b 满足:对每个12,,,n n n n n n n S b S b S b *++∈+++N 成等比数列.(1)求数列{},{}n n a b 的通项公式; (2)记,n c n *=∈N证明:12+.n c c c n *++<∈N L 【答案】(1)()21n a n =-,()1n b n n =+;(2)证明见解析. 【解析】(1)设数列{}n a 的公差为d ,由题意得11124,333a d a d a d +=+=+,解得10,2a d ==.从而*22,n a n n =-∈N . 所以2*n S n n n =-∈N ,,由12,,n n n n n n S b S b S b +++++成等比数列得()()()212n n n n n n S b S b S b +++=++.解得()2121n n n n b S S S d++=-. 所以2*,n b n n n =+∈N .(2)*n c n ===∈N . 我们用数学归纳法证明.(i )当n =1时,c 1=0<2,不等式成立;(ii )假设()*n k k =∈N 时不等式成立,即12k c c c +++<L . 那么,当1n k =+时,121k k c c c c +++++<<L<==.即当1n k =+时不等式也成立.根据(i )和(ii ),不等式12n c c c +++<L 对任意*n ∈N 成立.【名师点睛】本题主要考查等差数列、等比数列、数列求和、数学归纳法等基础知识,同时考查运算求解能力和综合应用能力.18.【2018年高考全国I 卷文数】已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)见解析;(3)a n =n ·2n -1. 【解析】(1)由条件可得a n +1=2(1)n n a n+. 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列. 由条件可得121n na a n n+=+,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=, 所以a n =n ·2n -1. 【名师点睛】该题考查的是有关数列的问题,涉及到的知识点有根据数列的递推公式确定数列的项,根据不同数列的项之间的关系,确定新数列的项,利用递推关系整理得到相邻两项之间的关系确定数列是等比数列,根据等比数列通项公式求得数列{b n }的通项公式,借助于{b n }的通项公式求得数列{a n }的通项公式,从而求得最后的结果.19.【2018年高考全国III 卷文数】等比数列{}n a 中,15314a a a ==,. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m . 【答案】(1)1(2)n n a -=-或12n n a -=;(2)6m =. 【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=. 由已知得424q q =,解得0q =(舍去),2q =-或2q =. 故1(2)n n a -=-或12n n a -=. (2)若1(2)n n a -=-,则1(2)3nn S --=.由63m S =得(2)188m -=-,此方程没有正整数解. 若12n n a -=,则21n n S =-. 由63m S =得264m =,解得6m =. 综上,6m =.【名师点睛】等差、等比数列中的基本量的求解,可利用通项公式及前n 项和公式建立1, a d (或q ),, ,n n n a S 五个基本量间的关系式,即“知三求二”.非等差、等比数列的求和常用三种方法:一是分组求和法,特征是原数列可以拆成几个等差或等比数列的和;二是裂项相消求和法,特征是通项是分式形式,如等差数列{}n a 的的公差是d ,则111111n n n n n b a a d a a ++⎛⎫==- ⎪⎝⎭;三是错位(项)相减求和法,特征是通项可以看成一个等差数列与一个等比数列对应项的积(或商).20.【2018年高考全国II 卷文数】记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值.【答案】(1)a n =2n –9;(2)S n =n 2–8n ,最小值为–16. 【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =–15. 由a 1=–7得d =2.所以{a n }的通项公式为a n =2n –9. (2)由(1)得S n =n 2–8n =(n –4)2–16. 所以当n =4时,S n 取得最小值,最小值为–16.【名师点睛】数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.(1)根据等差数列前n 项和公式,求出公差,再代入等差数列通项公式得结果;(2)根据等差数列前n 项和公式得n S 关于n 的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.21.【2018年高考北京卷文数】设{}n a 是等差数列,且123ln2,5ln2a a a =+=. (1)求{}n a 的通项公式; (2)求12e e e n aa a +++L .【答案】(1)ln 2n a n =;(2)122n +-. 【解析】(1)设等差数列{}n a 的公差为d , ∵235ln2a a +=, ∴1235ln2a d +=, 又1ln2a =, ∴ln2d =.∴()11ln 2n a a n d n =+-=. (2)由(1)知ln2n a n =, ∵ln 2ln2e e e =2nn a n n ==, ∴{}ena 是以2为首项,2为公比的等比数列.∴212ln2ln2ln221e e e e e e =222=22nn a a a n n ++++=++++++-L L L . ∴12e e e n a a a +++L 1=22n +-.【名师点睛】等差数列的通项公式及前n 项和共涉及五个基本量1,,,,n n a a d n S ,知道其中三个可求另外两个,体现了用方程组解决问题的思想.(1)设公差为d ,根据题意可列关于1,a d 的方程组,求解1,a d ,代入通项公式可得;(2)由(1)可得e 2n a n =,进而可利用等比数列求和公式进行求解.22.【2018年高考天津卷文数】设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (1)求S n 和T n ;(2)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. 【答案】(1)(1)2n n n S +=,21nn T =-;(2)4. 【解析】(1)设等比数列{}n b 的公比为q ,由b 1=1,b 3=b 2+2,可得220q q --=.因为0q >,可得2q =,故12n n b -=.所以,122112nn n T -==--. 设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d +=从而11,1a d ==,故n a n =, 所以,(1)2n n n S +=. (2)由(1),有131122(12)(222)=2 2.12n nn n T T T n n n +⨯-+++=+++--=---L L 由12()4n n n n S T T T a b ++++=+L 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --=解得1n =-(舍),或4n =. 所以n 的值为4.【名师点睛】本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.23.【2018年高考浙江卷】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项.数列{b n }满足b 1=1,数列{(b n +1−b n )a n }的前n 项和为2n 2+n . (1)求q 的值;(2)求数列{b n }的通项公式.【答案】(1)2q =;(2)2115(43)()2n n b n -=-+⋅.【解析】本题主要考查等差数列、等比数列、数列求和等基础知识,同时考查运算求解能力和综合应用能力.(1)由42a +是35,a a 的等差中项得35424a a a +=+, 所以34543428a a a a ++=+=, 解得48a =.由3520a a +=得18()20q q+=, 因为1q >,所以2q =.(2)设1()n n n n c b b a +=-,数列{}n c 前n 项和为n S .由11,1,, 2.n n n S n c S S n -=⎧=⎨-≥⎩解得41n c n =-.由(1)可知12n n a -=,所以111(41)()2n n n b b n -+-=-⋅,故211(45)(),22n n n b b n n ---=-⋅≥,11123221()()()()n n n n n b b b b b b b b b b ----=-+-++-+-L23111(45)()(49)()73222n n n n --=-⋅+-⋅++⋅+L .设221113711()(45)(),2222n n T n n -=+⋅+⋅++-⋅≥L ,2211111137()(49)()(45)()22222n n n T n n --=⋅+⋅++-⋅+-⋅L 所以22111111344()4()(45)()22222n n n T n --=+⋅+⋅++⋅--⋅L ,因此2114(43)(),22n n T n n -=-+⋅≥,又11b =,所以2115(43)()2n n b n -=-+⋅.【名师点睛】用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n −qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.24.【2018年高考江苏卷】设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示). 【答案】(1);(2)见解析.【解析】本小题主要考查等差和等比数列的定义、通项公式、性质等基础知识,考查代数推理、转化与化归及综合运用数学知识探究与解决问题的能力.满分16分.(1)由条件知:.因为1||n n a b b -≤对n =1,2,3,4均成立, 即对n =1,2,3,4均成立,即11,1d 3,32d 5,73d 9,得. 因此,d 的取值范围为.(2)由条件知:.若存在d ,使得1||n n a b b -≤(n =2,3,···,m +1)成立,即,即当时,d 满足. 因为,则,从而,,对均成立. 因此,取d =0时,1||n n a b b -≤对均成立.下面讨论数列的最大值和数列的最小值(). 75[,]32112(,)n n n a n d b -=-=112|()1|n n d ---≤≤≤≤≤≤≤≤7532d ≤≤75[,]32111(1),n n n a b n d b b q -=+-=1111|1|2,3,,(1())n b n d b q b n m -+--≤=+L 2,3,,1n m =+L 1111211n n q q b d b n n ---≤≤--q ∈112n m qq -<≤≤11201n q b n --≤-1101n q b n ->-2,3,,1n m =+L 2,3,,1n m =+L 12{}1n q n ---1{}1n q n --2,3,,1n m =+L①当时,, 当时,有,从而.因此,当时,数列单调递增, 故数列的最大值为. ②设,当x >0时,,所以单调递减,从而<f (0)=1.当时,, 因此,当时,数列单调递减, 故数列的最小值为. 因此,d 的取值范围为.25.【2017年高考全国I 卷文数】记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=−6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【答案】(1)(2)nn a =-;(2)122(1)33n n n S +=-+-⋅,证明见解析. 【解析】(1)设{}n a 的公比为q .由题设可得121(1)2,(1) 6.a q a q q +=⎧⎨++=-⎩解得2q =-,12a =-. 故{}n a 的通项公式为(2)nn a =-.(2)由(1)可得11(1)22()1331n n n n a q S q +-==--+-. 2n m ≤≤111 2222111()()()n n n n n n n n q q nq q nq n q q q n n n n n n -------+--+-==---112mq <≤2n m q q ≤≤1() 20n n nn q q q ---+>21n m ≤≤+12{}1n q n ---12{}1n q n ---2m q m-()()21xf x x =-ln 21(0(n )l 22)xf x x '=--<()f x ()f x 2n m ≤≤111112111()()()nn n q q n n f q n n n n --=≤-=<-21n m ≤≤+1{}1n q n --1{}1n q n --mq m11(2)[,]m mb q b q m m-由于3212142222()2[()]2313313n n n n n n n n S S S +++++-+=--++=-=-, 故1n S +,n S ,2n S +成等差数列.【名师点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法. (1)由等比数列通项公式解得2q =-,12a =-即可求解; (2)利用等差中项证明S n +1,S n ,S n +2成等差数列.26.【2017年高考全国II 卷文数】已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11221,1,2a b a b =-=+=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S .【答案】(1)b n =2n−1;(2)当q =−5时, S 3=21.当q =4时, S 3=−6. 【解析】设{a n }的公差为d ,{b n }的公比为q ,则a n =−1+(n −1)d , b n =q n−1. 由a 2+b 2=2得d +q =3.①(1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得{d =3,q =0(舍去),{d =1,q =2.因此{b n }的通项公式为b n =2n−1.(2)由b 1=1,T 3=21得q 2+q −20=0. 解得q =−5,q =4.当q =−5时,由①得d =8,则S 3=21. 当q =4时,由①得d =−1,则S 3=−6.【名师点睛】在解决等差、等比数列的运算问题时,有两种处理思路:一是利用基本量,将多元问题简化为一元问题,虽有一定量的运算,但思路简洁,目标明确;二是利用等差、等比数列的性质,性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.(1)根据等差数列及等比数列通项公式表示条件,得关于公差与公比的方程组,解方程组得公比,代入等比数列通项公式即可;(2)由等比数列前三项的和求公比,分类讨论,求公差,再根据等差数列前三项求和. 27.【2017年高考全国III 卷文数】设数列{}n a 满足123(21)2n a a n a n +++-=L .(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 【答案】(1)122-=n a n ;(2)122+n n.【解析】(1)因为a 1+3a 2+…+(2n −1)a n =2n , 故当n ≥2时,a 1+3a 2+…+(2n −3)a n−1 =2(n −1). 两式相减得(2n −1)a n =2, 所以a n =22n−1 (n ≥2). 又由题设可得a 1=2, 从而{a n }的通项公式为a n =22n−1.(2)记{an2n+1}的前n 项和为S n ,由(1)知a n2n+1 =2(2n+1)(2n−1) =12n−1−12n+1.则 S n = 11 − 13 + 13 − 15 +…+ 12n−1 − 12n+1 = 2n2n+1 .【思路点拨】(1)先由题意得2≥n 时,)1(2)32(3121-=-+++-n a n a a n Λ,再作差得122-=n a n ,验证1=n 时也满足; (2)由于121121)12)(12(212+--=+-=+n n n n n a n ,所以利用裂项相消法求和. 【名师点睛】裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类是隔一项的裂项求和,如1(1)(3)n a n n =++或1(2)n a n n =+.28.【2017年高考北京卷文数】已知等差数列{}n a 和等比数列{}n b 满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{}n a 的通项公式;(2)求和:13521n b b b b -++++L .【答案】(1)a n =2n −1;(2)312n -. 【解析】(1)设等差数列{a n }的公差为d .因为a 2+a 4=10,所以2a 1+4d =10,解得d =2,所以a n =2n −1. (2)设等比数列{b n }的公比为q .因为b 2b 4=a 5,所以b 1qb 1q 3=9,解得q 2=3,所以2212113n n n b b q---==. 从而21135213113332n n n b b b b ---++++=++++=L L .【名师点睛】本题考查了数列求和,一般数列求和的方法:①分组转化法,一般适用于等差数列+等比数列的形式;②裂项相消法求和,一般适用于,等的形式;③错位相减法求和,一般适用于等差数列⨯等比数列的形式;④倒序相加法求和,一般适用于首末两项的和是一个常数,这样可以正着写和与倒着写和,两式相加除以2即可得到数列求和.29.【2017年高考山东卷文数】已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==. (1)求数列{}n a 的通项公式;(2){}n b 为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列{}nnb a 的前n 项和n T . 【答案】(1)2nn a =;(2)2552n nn T +=-【解析】(1)设{}n a 的公比为q ,由题意知22111(1)6,a q a q a q +==.又0n a >,解得12,2a q ==,所以2nn a =.(2)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,1+=n n n a a cc nn c c n ++=1令n n n b c a =,则212n nn c +=, 因此122313572121,22222n n n nn n T c c c --+=+++=+++++L L又234113572121222222n n n n n T +-+=+++++L , 两式相减得2111311121()222222n n n n T -++=++++-L , 所以2552n nn T +=-. 【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.30.【2017年高考天津卷文数】已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和*()n ∈N .【答案】(1)32n a n =-,2n n b =;(2)2(34)216n n +-+.【解析】(1)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q .由已知2312b b +=,得21()12b q q +=,而12b =,所以260q q +-=.又因为0q >,解得2q =,所以2nn b =.由3412b a a =-,可得138d a -=①; 由11411S b =,可得1516a d +=②,联立①②,解得11,3a d ==,由此可得32n a n =-.所以,{}n a 的通项公式为32n a n =-,{}n b 的通项公式为2nn b =.(2)设数列2{}n n a b 的前n 项和为n T ,由262n a n =-,有2342102162(62)2n n T n =⨯+⨯+⨯++-⨯L ,2341242102162(68)2(62)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯L ,上述两式相减,得23112(12)42626262(62)24(612n nn n T n n +⨯--=⨯+⨯+⨯++⨯--⨯=----L122)2(34)216n n n ++⨯=---,得2(34)216n n T n +=-+.所以,数列2{}n n a b 的前n 项和为2(34)216n n +-+.【名师点睛】利用等差数列和等比数列通项公式及前n 项和公式列方程组求数列的首项和公差或公比,进而写出通项公式及前n 项和公式,这是等差数列、等比数列的基本要求,数列求和的方法有倒序相加法、错位相减法、裂项相消法和分组求和法等,本题考查的是错位相减法求和. 31.【2017年高考江苏卷】对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++L L 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.(1)证明:等差数列{}n a 是“(3)P 数列”;(2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列.【答案】(1)见解析;(2)见解析.【解析】(1)因为{}n a 是等差数列,设其公差为d , 则1(1)n a a n d =+-,从而,当4n ≥时,n k n k a a a -++=+11(1)(1)n k d a n k d --+++-122(1)2n a n d a =+-=,1,2,3,k =所以6n n n n n n n a a a a a a a ---+++++=321123+++, 因此等差数列{}n a 是“(3)P 数列”.(2)数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”, 因此,当3n ≥时,n n n n n a a a a a --+++++=21124,① 当4n ≥时,n n n n n n n a a a a a a a ---++++++++=3211236.② 由①知,n n n a a a ---+=-32141()n n a a ++,③n n n a a a ++++=-23141()n n a a -+,④将③④代入②,得n n n a a a -++=112,其中4n ≥, 所以345,,,a a a L 是等差数列,设其公差为d'.在①中,取4n =,则235644a a a a a +++=,所以23a a d'=-, 在①中,取3n =,则124534a a a a a +++=,所以132a a d'=-, 所以数列{}n a 是等差数列.【名师点睛】(1)利用等差数列性质得n k n k n a a a -++=2,即得n n n n n a a a a a ---+++++32112++n n a a +=36,再根据定义即可判断;(2)先根据定义得21n n n n n a a a a a --+++++=124,n n n n n a a a a a ---++++++32112n n a a ++=36,再将条件集中消元:n n n a a a ---+=-32141()n n a a ++,n n n a a a ++++=-23141()n n a a -+,即得n n n a a a -++=112,最后验证起始项也满足即可.32.【2017年高考浙江卷】已知数列{x n }满足:x 1=1,x n =x n +1+ln(1+x n +1)(n *∈N ).证明:当n *∈N 时, (1)0<x n +1<x n ;(2)2x n +1− x n ≤12n n x x +; (3)112n -≤x n ≤212n -.【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】(1)用数学归纳法证明:0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则110ln(1)0k k k x x x ++<=++≤,矛盾,故10k x +>.因此0()n x n *>∈N .所以111ln(1)n n n n x x x x +++=++>,因此10()n n x x n *+<<∈N .(2)由11ln(1)n n n x x x ++=++得,2111111422(2)ln(1)n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数2()2(2)ln(1)(0)f x x x x x x =-+++≥,22()ln(1)0(0)1x xf'x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()(0)f x f ≥=0,因此2111112(2)ln(1)()0n n n n n x x x x f x +++++-+++=≥,故112()2n n n n x x x x n *++-≤∈N . (3)因为11111ln(1)2n n n n n n x x x x x x +++++=++≤+=,所以112n n x -≥,由1122n n n n x x x x ++≥-,得 111112()022n n x x +-≥->, 所以12111111112()2()2222n n n n x x x ----≥-≥⋅⋅⋅≥-=, 故212n n x -≤.综上,1211()22n n n x n *--≤≤∈N . 【名师点睛】本题主要应用:(1)数学归纳法证明不等式;(2)构造函数,利用函数的单调性证明不等式;(3)利用递推关系证明.。

2023年高考数学试题分类解析【第七章 数列】附答案解析

2023年高考数学试题分类解析【第七章数列】第一节数列的通项公式与性质1.(2023新高考II 卷18)已知{}n a 为等差数列,6,2,n n na nb a n -⎧⎪=⎨⎪⎩为奇数为偶数.记n S ,n T 分别为{}n a ,{}n b 的前n 项和.若432S =,316T =.(1)求{}n a 的通项公式;(2)求证:当5n >时,n n T S >.【解析】(1){}n a 为等差数列,设公差为d .312312362616T b b b a a a =++=-++-=,所以17a d +=①,又432S =,所以可得12316a d +=②,联立①②解得15,2a d ==,所以()1123n a a n d n =+-=+,*n ∈N .(2)由(1)得()21142n n n S a n d n n -=+=+.当n 为偶数时,()()13124......n n n T b b b b b b -=+++++++()()1312466...622...2n n a a a a a a -=-+-++-++++()()59...2132711...23n n n =++++-+++++()()521723223222n nn n n ++++=-+⨯23722n n =+.当5n >时,()()2223741022222n n n n n n n T S n n n -=+-+=-=->,即n n T S >.当n 为奇数时,1n -为偶数,()()21371123622n n n T T b n n n -=+=-+-++-235522n n =+-.当5n >时,()()()222353154525022222n n n n T S n n n n n n -=+--+=-=+->,即n n T S >.综上所述,当5n >时,n n T S >.第二节等差数列与等比数列1.(2023全国甲卷理科5)已知正项等比数列{}n a 中,11a =,n S 为{}n a 前n 项和,5354S S =-,则4S =()A.7B.9C.15D.30【解析】由题知()23421514q q q q q q ++++=++-,即34244q q q q +=+,即32440q q q +--=,()()()2120q q q -++=.{}n a 为正项等比数列,0q >,所以解得2q =,故4124815S =+++=.故选C.2.(2023全国甲卷文科5)记n S 为等差数列{}n a 的前n 项和.若2610a a +=,4845a a =,则5S =()A.25B.22C.20D.15【分析】解法一:根据题意直接求出等差数列{}n a 的公差和首项,再根据前n 项和公式即可解出;解法二:根据等差数列的性质求出等差数列{}n a 的公差,再根据前n 项和公式的性质即可解出.【解析】解法一:设等差数列{}n a 的公差为d ,首项为1a ,依题意可得,2611510a a a d a d +=+++=,即135a d +=,又()()48113745a a a d a d =++=,解得:11,2d a ==,所以515455210202S a d ⨯=+⨯=⨯+=.故选C.解法二:264210a a a +==,4845a a =,所以45a =,89a =,从而84184a a d -==-,于是34514a a d =-=-=,所以53520S a ==.故选C.3.(2023全国甲卷文科13)记n S 为等比数列{}n a 的前n 项和.若6387S S =,则{}n a 的公比为.4.(2023全国乙卷理科15)已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =.6.(2023新高考I 卷7)记n S 为数列{}n a 的前n 项和,设甲:{}n a 为等差数列;乙:n S n ⎧⎫⎨⎬⎩⎭为等差数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【解析】{}n a 为等差数列,设首项为1a 公差为d ,则()112n n n S na d -=+,111222n S n d d a d n a n -=+=+-,所以n S n ⎧⎫⎨⎬⎩⎭为等差数列,所以甲是乙的充分条件.n S n ⎧⎫⎨⎬⎩⎭为等差数列,即()()()1111111n n n n n n nS n S S S na S n n n n n n +++-+--==+++为常数,设为t ,即()11n nna S t n n +-=+,故()11n n S na tn n +=-+,()()()1112n n S n a t n n n -=---≥,两式相减得()1112n n n n n a S S na n a tn -+=-=---,12n n a a t +-=为常数,对1n =也成立,所以{}n a 为等差数列,所以甲是乙的必要条件.所以,甲是乙的充要条件,故选C.7.(2023新高考I 卷20)设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记n S ,n T 分别为数列{}n a ,{}n b 的前n 项和.(1)若21333a a a =+,3321S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .【解析】(1)()21311332(1)n a a a d a d a d a nd d -===+⇒=⇒=>,则3123312349,6,n n b S a a a d T d d d +++==++===,则296212730(21)(3)0d d d d d d+=⇒-+=⇒--=,故*3,3,n d a n n ==∈N .(2)若{}n b 为等差数列,设公差为r ,则()()()2200000000(1)n n b nr n n a nd b nr drn db ra n a b a nd+=+⇒+=++=++++故0000110dr db ra a b =⎧⎪+=⎨⎪=⎩,(101d r >⇒<<)()()999999000019910099()992n S T a nd b nr a b d r =⨯-=+--=-+-=∑,0050()1a b d r -+-=.①00a =时,00111,1,50()1501db dr d r b d d d⎛⎫==-=+⇒-=+ ⎪⎝⎭25150510(5051)(1)0. 50d d d d d ⇒--=⇒-+=⇒=②00b =时,00111,1,50()1501ra dr a d r r r r ⎛⎫==+-=⇒+-= ⎪⎝⎭250510(5051)(1)01r r r r r d ⇒+-=⇒+-=⇒==.矛盾.综上,5150d =.8.(2023新高考II 卷8)记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =()A.120B.85C.85- D.120-【解析】由6221S S =,得()2422121q q S S ++=,即42200q q +-=,解得24q =或25q =-(舍),则416q =.因为4844S S q S -=,所以()()484117585S q S =+=⨯-=-.故选C.9.(2023天津卷6)已知{}n a 为等比数列,n S 为数列{}n a 的前n 项和,122n n a S +=+,则4a 的值为()A.3B.18C.54D.152【分析】由1n n n a S S -=-得出公比的值,再由题意对所给的递推关系式进行赋值,得到关于首项、公比的方程,求解方程组确定首项的值,然后结合等比数列通项公式即可求得4a 的值.【解析】因为122n n a S +=+,所以有122n n a S -=+,两式相减得()1122n n n n n a a S S a +--==-,即13n n a a +=,所以3q =.又由题意可得:当1n =时,2122a a =+,即1122a q a =+,解得可得12a =,则34154a a q ==.故选C.10.(2023北京卷14)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:株)从小到大构成项数为9的数列{}n a ,该数列的前3项成等差数列,后7项成等比数列,11a =,512a =,9192a =.则7a =;数列{}n a 所有项的和为.【分析】方法一:根据题意结合等差、等比数列的通项公式列式求解,d q ,进而可求得结果;方法二:根据等比中项求73,a a ,再结合等差、等比数列的求和公式运算求解.【解析】解法一:设前3项的公差为d ,后7项公比为0q >,则4951921612a q a ===,且0q >,可得2q =,则53212a a d q =+=,即123d +=,可得1d =,空1:可得43733,48a a a q ===,空2:()716293121233232338412a a a -=+++⨯+⋅⋅⋅+⨯=+-+=++ .解法二:空1:因为{},37n a n ≤≤为等比数列,则227591219248a a a ==⨯=,且0n a >,所以748a =;又因为2537a a a =,则25373a a a ==;空2:设后7项公比为0q >,则2534a q a ==,解得2q =,可得()1339334567189236,21a qa a a a a q a a a a a a a a +-==++++++++=-3192238112-⨯==-,所以93126381384a a a a =+-+=++ .故答案为:48;384.第三节数列求和2.(2023全国甲卷理科17)已知数列{}n a 中,21a =,设n S 为{}n a 前n 项和,2n n S na =.(1)求{}n a 的通项公式.(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【解析】(1)因为2n n S na =.当1n =时,112a a =,即10a =.当3n =时,()33213a a +=,即32a =.当2n ≥时,()1121n n S n a --=-,所以()()11212n n n n n S S na n a a ---=--=,化简得()()121n n n a n a --=-.当3n ≥时,13 (1122)n n a a an n -====--,即1n a n =-.当1,2n =时都满足上式,所以1n a n =-,n ∈*N .(2)因为122n n n a n +=,所以231111123...2222nn T n ⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()2311111112...122222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯++-⨯+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.两式相减得,2311111221111111 (1)222222212nn n n n T n n ++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎣⎦=++++-⨯=-⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-11122nn ⎛⎫⎛⎫=-+ ⎪⎪⎝⎭⎝⎭,即()1222nn T n ⎛⎫=-+ ⎪⎝⎭,n ∈*N .第四节数列的综合与应用2.(2023北京卷10)数列{}n a 满足()()31661,2,3,4n n a a n +=-+= ,则()A.若13a =,则{}n a 是递减数列,且存在常数0M ,使得n a M >恒成立B.若15a =,则{}n a 是递增数列,且存在常数6M ,使得n a M <恒成立C.若17a =,则{}n a 是递减数列,且存在常数6M >,使得n a M >恒成立D.若19a =,则{}n a 是递增数列,且存在常数0M >,使得n a M <恒成立【分析】思路1:利用数学归纳法可判断ACD 正误,利用递推公式可判断数列性质,从而判断B 的正误;思路2:构造()()31664x f x x =-+-,利用导数求得()f x 的正负情况,再利用数学归纳法判断得各选项n a 所在区间,从而判断{}n a 的单调性.思路3:利用数形结合,画图分析各选项合理性.【解析】解法一:因为()311664n n a a +=-+,故()311646n n a a +=--,对于A ,若13a =,可用数学归纳法证明:63n a -≤-即3n a ≤,证明:当1n =时,1363a -=≤--,此时不等关系3n a ≤成立;设当n k =时,63k a -≤-成立,则()31276,4164k k a a +⎛⎫-∈-∞- ⎪⎝=⎭-,故136k a +≤--成立,由数学归纳法可得3n a ≤成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()20144651149n a --=-≥>,60n a -<,故10n n a a +-<,故1n n a a +<,故{}n a 为减数列,注意1063k a +-≤-<故()()()()23111666649644n n n n n a a a a a +-=≤-,结合160n a +-<,所以()16694n n a a +--≥,故119634n n a +-⎛⎫-≥ ⎪⎝⎭,故119634n n a +-⎛⎫≤- ⎪⎝⎭,若存在常数0M ≤,使得n a M >恒成立,则19634n M -⎛⎫-> ⎪⎝⎭,故16934n M --⎛⎫> ⎪⎝⎭,故9461log 3Mn -<+,故n a M >恒成立仅对部分n 成立,故A 不成立.对于B,若15,a =可用数学归纳法证明:106n a --≤<即56n a ≤<,证明:当1n =时,10611a ---≤≤=,此时不等关系56n a ≤<成立;设当n k =时,56k a ≤<成立,则()31164416,0k k a a +⎛⎫-∈-⎪⎝=⎭-,故1106k a +--≤<成立即由数学归纳法可得156k a +≤<成立.而()()()()231116666441n n n n n n a a a a a a +⎡⎤=---=---⎢⎣-⎥⎦,()201416n a --<,60n a -<,故10n n a a +>-,故1n n a a +>,故{}n a 为递增数列,若6M =,则6n a <恒成立,故B 正确.对于C,当17a =时,可用数学归纳法证明:061n a <-≤即67n a <≤,证明:当1n =时,1061a <-≤,此时不等关系成立;设当n k =时,67k a <≤成立,则()31160,4164k k a a +⎛⎤-∈ ⎥⎝=⎦-,故1061k a +<-≤成立即167k a +<≤,由数学归纳法可得67n a <≤成立.而()()21166014n n n n a a a a +⎡⎤=--<⎢⎥⎣⎦--,故1n n a a +<,故{}n a 为递减数列,又()()()2111666644n n n n a a a a +-=-⨯-≤-,结合160n a +->可得:()111664nn a a +⎛⎫-≤- ⎪⎝⎭,所以1164nn a +⎛⎫≤+ ⎪⎝⎭,若1164n n a +⎛⎫≤+ ⎪⎝⎭,若存在常数6M >,使得n a M >恒成立,则164n M ⎛⎫-≤ ⎪⎝⎭恒成立,故()14log 6n M ≤-,n 的个数有限,矛盾,故C 错误.对于D,当19a =时,可用数学归纳法证明:63n a -≥即9n a ≥,证明:当1n =时,1633a -=≥,此时不等关系成立;设当n k =时,9k a ≥成立,则()3162764143k k a a +-≥=>-,故19k a +≥成立.由数学归纳法可得9n a ≥成立.而()()21166014n n n n a a a a +⎡⎤=-->⎢⎥⎣⎦--,故1n n a a +>,故{}n a 为递增数列,又()()()2119666446n n n n a a a a +->=-⨯--,结合60n a ->可得:()116349946nnn a a +⎛⎫⎛⎫-= ⎪ ⎝⎭⎝>⎪⎭-,所以19463nn a +⎛+⎫⎪⎝⎭≥,若存在常数0M >,使得n a M <恒成立,则19643n M -⎛⎫⎪⎝>+⎭,故19643n M -⎛⎫⎪⎝>+⎭,故946log 13M n -⎛⎫<+ ⎪⎝⎭,n 的个数有限,与D 选项矛盾,故D 错误.故选B.解法二:因为()3321119662648442n n n n n n n a a a a a a a +-=-+-=-+-,令()3219264842f x x x x =-+-,则()239264f x x x =-+',令()0f x '>,得06x <<-或6x >令()0f x '<,得6633x -<<+;所以()f x在,63⎛-∞- ⎝⎭和63⎛⎫++∞ ⎪ ⎪⎝⎭上单调递增,在633⎛-+ ⎝⎭上单调递减,令()0f x =,则32192648042x x x -+-=,即()()()146804x x x ---=,解得4x =或6x =或8x =,注意到465<-,768<+,所以结合()f x 的单调性可知在(),4-∞和()6,8上()0f x <,在()4,6和()8,+∞上()0f x >,对于A,因为()311664n n a a +=-+,则()311646n n a a +=--,当1n =时,13a =,()32116643a a =--<-,则23a <,假设当n k =时,3k a <,当1n k =+时,()()331311646364k k a a +<---<-=,则13k a +<,综上:3n a ≤,即(),4n a ∈-∞,因为在(),4-∞上()0f x <,所以1n n a a +<,则{}n a 为递减数列,因为()332111916612647442n n n n n n n a a a a a a a +-+=-+-+=-+-,令()()32192647342h x x x x x =-+-≤,则()239264h x x x '=-+,因为()h x '开口向上,对称轴为96324x -=-=⨯,所以()h x '在(],3-∞上单调递减,故()()2333932604h x h ''≥=⨯-⨯+>,所以()h x 在(],3-∞上单调递增,故()()321933326347042h x h ≤=⨯-⨯+⨯-<,故110n n a a +-+<,即11n n a a +<-,假设存在常数0M ≤,使得n a M >恒成立,取[]4m M =-+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +<-,所以[][]2132431,1,,1M M a a a a a a -+-+<-<-<- ,上式相加得,[][]()14333M a a M M M -+<--+≤+-=,则[]4m M a a M -+=<,与n a M >恒成立矛盾,故A 错误;对于B,因为15a =,当1n =时,156a =<,()()33211166566644a a =-+=⨯-+<,假设当n k =时,6k a <,当1n k =+时,因为6k a <,所以60k a -<,则()360k a -<,所以()3116664k k a a +=-+<,又当1n =时,()()332111615610445a a =-+=⨯+-->,即25a >,假设当n k =时,5k a ≥,当1n k =+时,因为5k a ≥,所以61k a -≥-,则()361k a -≥-,所以()3116654k k a a +=-+≥,综上:56n a ≤<,因为在()4,6上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,此时,取6M =,满足题意,故B 正确;对于C,因为()311664n n a a +=-+,则()311646n n a a +=--,注意到当17a =时,()3216617644a =-+=+,3341166441664a ⎪⎛⎫⎫+=+ ⎪⎝+-⎭⎭⎛= ⎝,143346166144416a ⎢⎛⎫+=⎡⎤⎛⎫=+-⎢⎥ ⎪⎝+ ⎪⎭⎭⎥⎦⎝⎣猜想当2n ≥时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当2n =与3n =时,2164a =+与43164a ⎛⎫=+ ⎪⎝⎭满足()11312164n n a --⎛⎫+ ⎪⎝⎭=,假设当n k =时,()11312164k k a --⎛⎫+ ⎪⎝⎭=,当1n k =+时,所以()()()13113131223111666441166644k k k k a a --+-⎡⎤⎛⎫⎛⎫⎢⎥=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦-+=+=,综上,()()113121624n n n a --⎛⎫+⎪=≥ ⎝⎭.易知1310n -->,则)113121014n --⎛⎫<< ⎪⎝⎭,故()()()11312166,724n n n a --⎛⎫+∈≥ =⎪⎝⎭,所以(],67n a ∈,因为在()6,8上()0f x <,所以1n n a a +<,则{}n a 为递减数列,假设存在常数6M >,使得n a M >恒成立,记()0143log 2log 61m M ⎡⎤⎢⎥⎣=+⎦-,取[]01m m =+,其中[]*0001,m m m m -<≤∈N ,则()0142log 6133m mM ->=+,故()()14log 61312m M ->-,所以)1312614m M -⎛⎫ ⎪<⎝-⎭,即)1312164mM -⎛⎫+ ⎪⎭<⎝,所以1m a M +<,故n a M >不恒成立,故C 错误;对于D,因为19a =,当1n =时,()32116427634a a ==->-,则29a >,假设当n k =时,3k a ≥,当1n k =+时,()()331116936644k k a a +≥=-->-,则19k a +>,综上,9n a ≥,因为在()8,+∞上()0f x >,所以1n n a a +>,所以{}n a 为递增数列,因为()332111916612649442n n n n n n n a a a a a a a +--=-+--=-+-,令()()32192649942g x x x x x =-+-≥,则()239264g x x x =-+',因为()g x '开口向上,对称轴为96324x -=-=⨯,所以()g x '在[)9,+∞上单调递增,故()()2399992604g x g ''≥=⨯-⨯+>,所以()()321999926949042g x g ≥=⨯-⨯+⨯->,故110n n a a +-->,即11n n a a +>+,假设存在常数0M >,使得n a M <恒成立,取[]1m M =+,其中[]1M M M -<≤,且[]M ∈Z ,因为11n n a a +>+,所以[][]213211,1,,1M M a a a a a a +>+>+>+ ,上式相加得,[][]1191M a a M M M +>+>+->,则[]1m M a a M +=>,与n a M <恒成立矛盾,故D 错误.故选B.解法三(蛛网图):令()()31664f x x =-+,则()1n n a f a +=.故可利用数形结合判断{}n a 的单调性.首选()()31664f x x =-+关于()6,6中心对称,又由()()23604f x x '=- 可知()f x 在R 上单调递增.再令()31664x x =-+,即()()36460x x ---=,得()()()6480x x x ---=,解得14x =,26x =,38x =.在同一坐标系下画出y x =和()y f x =的图像如下图所示.对于选项A,当13a =时,如图(a)所示,{}n a 是单调递减数列,且130a =>.当2n 时,0n a <,当n →+∞时,n a →-∞.故不存在0M ,使n a M >恒成立.故A 错误.对于选项B,当15a =时,如图(b)所示,{}n a 是单调递增数列,且当n →+∞时,6n a →.故取6M =,可使得n a M 恒成立.B 正确.图(a)图(b)对于选项C,当17a =时,如图(c)所示,图(c){}n a 是单调递减数列.当n →+∞时,6n a →.故不存在6M >使得n a M >恒成立,C 错误.对于选项D,当19a =时,如图(d)所示.图(d){}n a 是单调递增数列,且当n →+∞时,n a →+∞.故不存在6M >,使n a M <恒成立.D 错误.故选B.【评注】本题解决的关键是根据首项给出与通项性质相关的相应的命题,再根据所得命题结合放缩法得到通项所满足的不等式关系,从而可判断数列的上界或下界是否成立.3.(2023北京卷21)已知数列{}{},n n a b 的项数均为()2m m >,且{},1,2,,i i a b m ∈ ,{}{},n n a b 的前n 项和分别为,n n A B ,并规定000A B ==.对于{}1,2,,k m ∈ ,定义{}{}max ,0,1,,k i k r i B A k m =∈ ,其中,max M 表示数集M 中最大的数.(1)若12a =,21a =,33a =;11b =,23b =,33b =,求0123,,,r r r r 的值;(2)若11a b ,且112,1,2,,1i i i r r r i m +-+=- ,求n r ;(3)证明:存在{},,,0,1,2,,p q r s m ∈ ,满足0,0p q m r s m ≤<≤≤<≤,使得p s q r A B A B +=+.【分析】(1)先求01230123,,,,,,,A A A A B B B B ,根据题意分析求解;(2)根据题意分析可得11i i r r +-≥,利用反证可得11i i r r +-=,再结合等差数列运算求解;(3)讨论,m m A B 的大小,根据题意结合反证法分析证明.【解析】(1)由题意可知:012301230,2,3,6,0,1,4,7A A A A B B B B ========,当0k =时,则0000,,1,2,3i B A B A i ==>=,故00r =;当1k =时,则01111,,,2,3i B A B A B A i <≤>=,故11r =;当2k =时,则222,0,1,,i B A i B A ≤=>故21r =;当3k =时,则3,0,1,2,i B A i ≤=,33,B A >故32r =;综上所述:00r =,11r =,21r =,32r =.(2)由题意可知:n r m ≤,且n r ∈N ,因为1,1n n a b ≥≥,则111,1n n A a B b ≥=≥=,当且仅当1n =时,等号成立,所以010,1r r ==,又因为112i i i r r r -+≤+,则11i i i i r r r r +--≥-,即112101m m m m r r r r r r ----≥-≥⋅⋅⋅≥-=,可得11i i r r +-≥,反证:假设满足11i i r r +->的最小正整数为j ,11j m ≤≤-,当i j ≥时,则12i i r r +-≥;当1i j ≤-时,则11i i r r +-=,则()()()112100m m m m m r r r r r r r r ---=-+-+⋅⋅⋅+-+()22m j j m j ≥-+=-,又因为11j m ≤≤-,则()2211m r m j m m m m ≥-≥--=+>,假设不成立,故11n n r r +-=,即数列{}n r 是以1为公差的等差数列,所以01,n r n n n =+⨯=∈N .(3)(i)若m m A B =,则取0,p r q s m ====即可.(ii)若m m A B ≥,构建,1n n n r S A B n m =-≤≤,由题意可得:0n S ≥,且n S 为整数,反证,假设存在正整数K ,使得K S m ≥,则1,0K K K r K r A B m A B +-≥-<,可得()()111K K K K K r r r K r K r b B B A B A B m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≤-.①若存在正整数N ,使得0N N N r S A B =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y X r Y r A B A B -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;(iii)若m m A B <,构建,1n n r n S B A n m =-≤≤,由题意可得:0n S ≤,且n S 为整数,反证,假设存在正整数K ,使得K S m ≤-,则1,0K K r K r K B A m B A +-≤-->,可得()()111K K K K K r r r r K r K b B B B A B A m +++=-=--->,这与{}11,2,,K r b m +∈⋅⋅⋅相矛盾,故对任意1,n m n ≤≤∈N ,均有1n S m ≥-.①若存在正整数N ,使得0N N r N S B A =-=,即N N r A B =,可取0,,N r p q N s r ====,使得p s q r A B A B +=+;②若不存在正整数N ,使得0N S =,因为{}1,2,,1n S m ∈--⋅⋅⋅-,且1n m ≤≤,由抽屉原理,必存在1X Y m ≤<≤,使得X Y S S =,即X Y r X r Y B A B A -=-,可得Y X X r Y r A B A B +=+,可取,,,Y X p X s r q Y r r ====,使得p s q r A B A B +=+;综上所述,存在0,0p q m r s m ≤<≤≤<≤使得p s q r A B A B +=+.【评注】方法点睛:对于一些直接说明比较困难的问题,可以尝试利用反证法分析证明.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 + a n, 4 2 84 2 8 近五年(2017-2021)高考数学真题分类汇编七、数列一、单选题(2021·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 S 2 = 4 ,S 4 = 6 ,则 S 6 =()A .7B .8C .9D .102.(2021·浙江)已知a , b ∈ R, a b > 0 ,函数 f ( x ) = ax 2+ b (x ∈ R) .若 f (s - t ), f (s ), f (s + t ) 成等比数列,则平面上点(s ,t ) 的轨迹是()A .直线和圆B .直线和椭圆C .直线和双曲线D .直线和抛物线3.(2021·全国(理))等比数列{a n }的公比为 q ,前 n 项和为S n ,设甲: q > 0 ,乙: {S n } 是递增数列,则()A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件4.(2021·浙江)已知数列{a } 满足a = 1, a = a n (n ∈ N *).记数列{a }的前 nn1n +1n项和为S n ,则( )A . 3< S< 3B .3 < S < 4C . 4 < S< 9D . 9< S < 52100100100221005.(2020·北京)在等差数列{a n }中,a 1 = -9 ,a 5 = -1 .记T n = a 1a 2…a n (n = 1, 2,…) ,则数列{T n }().A .有最大项,有最小项B .有最大项,无最小项C .无最大项,有最小项D .无最大项,无最小项(2020·浙江)已知等差数列{a n }的前n 项和S n ,公差d ≠0n ∈ N * ,下列等式不.可.能.成立的是( )a 1≤ 1 .记b 1=S 2,b n+1=S 2n+2–S 2n , dA .2a 4=a 2+a 6B .2b 4=b 2+b 6C . a 2= a a D . b 2= b b7.(2020·全国(文))设{a n } 是等比数列,且a 1 + a 2 + a 3 = 1 , a 2 + a 3 +a 4 = 2 ,则a 6 + a 7 + a 8 = ()a k +1 k +2 k +10A .12B .24C .30D .32S n 8.(2020·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a 5–a 3=12,a 6–a 4=24,则=n( )A .2n –1B .2–21–nC .2–2n –1D .21–n –19.(2020·全国(理))数列{a n } 中,a 1 = 2 , a m +n = a m a n ,若a + a ++ a = 215 - 25 , 则 k = ( )A .2B .3C .4D .510.(2020·全国(理))北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌 9 块扇面形石板构成第一环,向外 每环依次增加 9 块,下一层的第一环比上一层的最后一环多 9 块,向外每环依次也增加9 块,已知每层环数相同,且下层比中层多 729 块,则三层共有扇面形石板(不含天心石) ( )A .3699 块B .3474 块C .3402 块D .3339 块11.(2020·全国(理))0-1 周期序列在通信技术中有着重要应用.若序列 a 1a 2 a n 满足a i ∈{0,1}(i = 1, 2,) ,且存在正整数 m ,使得 a i + m = a i (i = 1, 2,) 成立,则称其为 0-1 周期序列,并称满足 a i + m = a i (i = 1, 2,) 的最小正整数 m 为这个序列的周期.对于周期为 m C (k ) = 1 ma a(k = 1, 2,, m - 1)的 0-1 序列 a 1a 2 a n , ∑ i =1i i + k 是描述其性质的重要指标, 下列周期为 5 的 0-1 序列中,满足C (k ) ≤ 1(k = 1, 2, 3, 4) 的序列是( )5A .11010B .11011C .10001D .1100112.(2019·全国(理))已知各项均为正数的等比数列{a n } 的前 4 项和为 15,且a 5 = 3a 3 + 4a 1 ,则 a 3 =A .16B .8C .4D .2m32 n 13.(2019·全国(理))记S n 为等差数列{a n } 的前 n 项和.已知 S 4 = 0,a 5 = 5 ,则A. a n = 2n - 5B. a n = 3n -10C. S n = 2n 2- 8nD. S n= 1 n 2- 2n214.(2018·浙江)已知 a 1 , a 2 , a 3 , a 4 成等比数列,且 a 1 + a 2 + a 3 + a 4 = ln(a 1 + a 2 + a 3 ) .若a 1 > 1 ,则A . a 1 < a 3 , a 2 < a 4C .a 1 < a 3 ,a 2 > a 4 B . a 1 > a 3 ,a 2 <a 4D .a 1 > a 3 ,a 2 > a 415.(2018·北京(理))“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个 单音的频率的比都等于12 2 .若第一个单音的频率为 f ,则第八个单音的频率为A.fC . 12 25 fD . 12 27 f16.(2017·全国(理))等差数列{a n } 的首项为1,公差不为0 .若a 2 、a 3 、a 6 成等比数列,则{a n }的前6 项的和为( )A . -24B. -3C. 3D . 817.(2017·上海)已知 a 、b 、c 为实常数,数列{x n }的通项 x = an 2+ bn + c ,n∈ N * ,则“存在 k ∈ N * ,使得x 100+k 、 x 200+k 、 x 300+k 成等差数列”的一个必要条件是( )A. a ≥ 0B. b ≤ 0C. c = 0 D . a - 2b + c = 018.(2017·全国(理))(2017 新课标全国 I 理科)记S n 为等差数列{a n } 的前 n 项和.若a 4 + a 5 = 24 , S 6 = 48 ,则{a n } 的公差为A .1B .2C .4D .819.(2017·浙江)已知等差数列{a n }的公差为 d,前 n 项和为 S n ,则“d>0”是 " S 4 +S 6 > 2S 5 "的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件B . 3 22 fn 20.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏21.(2017·全国(理))我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂 了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯A .1 盏B .3 盏C .5 盏D .9 盏二、填空题22.(2020·海南)将数列{2n –1}与{3n –2}的公共项从小到大排列得到数列{a n },则{a n }的前 n 项和为.23.(2020·浙江)我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如⎧ n (n +1) ⎫ ⎧ n (n +1) ⎫ *数列⎨ 2 ⎬ 就是二阶等差数列,数列 ⎨ 2 ⎬ (n ∈ N ) 的前3 项和是.⎩ ⎭ ⎩ ⎭24.(2020·江苏)设{a n }是公差为 d 的等差数列,{b n }是公比为 q 的等比数列.已知数列{a n +b n }的前 n 项和 S = n 2 - n + 2n-1(n∈ N + ) ,则 d +q 的值是 .25.(2020·全国(文))数列{a n } 满足 an +2 + (-1)na = 3n -1,前 16 项和为 540,则 a 1 =.26.(2020·全国(文))记 S n 为等差数列{a n }的前 n 项和.若 a 1 = -2, 则S 10 = .a 2 + a 6 = 2 ,27.(2019·江苏)已知数列{a n }(n ∈ N *) 是等差数列, S n 是其前 n 项和.若a 2a 5 + a 8 = 0, S 9 = 27 ,则 S 8 的值是 . 28.(2019·全国(文))记S n 为等差数列{a n }的前n 项和,若 a 3 = 5, a 7 = 13 ,则 S 10 = . 29.(2019·全国(理))记 S n 为等差数列{a n }的前 n 项和,a 1≠0,a 2 = 3a 1 ,则 n1 S 10S 5= .30.(2019·全国(文))记 S n 为等比数列{a n }的前 n 项和.若 a= 1,S = 3,则S 4=.13431.(2019·全国(理))记 S n 为等比数列{a n }的前 n 项和.若 a = 1,a 2= a ,则S 5=.134 6(2018·上海)记等差数列{a n }的前 n 项和为 S n ,若 a 3 = 0 ,a 6 + a 7 = 14 ,则 S 7 = .33.(2018·全国(理))记 S n 为数列{a n }的前 n 项和,若 S n = 2a n +1,则 S 6 = .34.(2017·上海)已知数列{a } 和{b },其中 a = n 2, n ∈ N * ,{b } 的项是互不相等nnnn的正整数,若对于任意 n ∈ N * ,{b n } 的第 a n 项等于{a n } 的第b n 项,则lg(b 1b 4b 9b 16 ) =lg(b 1b 2b 3b 4 ).2017·全国()2017 新课标全国 II 理科)等差数列{a n } 的前n 项和为 S n ,a 3 = 3 ,S = 10 ,则∑1 = .4 k =1 S36.(2017·北京(理))若等差数列{a n }和等比数列{b n }满足 a 1 = b 1 = -1,a 4 = b 4 = 8 , 则 a 2 = . b 237.(2017·江苏)等比数列{ a }的各项均为实数,其前n 项为 S ,已知 S = 7,S = 63,n则a 8 = .n 346438.(2021·全国)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为 20dm ⨯12dm 的长方形纸,对折 1 次共可以得到10dm ⨯12dm ,20dm ⨯ 6dm 两种规格的图形,它们的面积之和 S = 240dm 2 ,对折 2 次共可以得到5dm ⨯12dm ,10dm ⨯ 6dm , 20dm ⨯ 3dm 三种规格的图形,它们的面积之和 S 2 = 180dm 2 ,以此类推,则对折 4 次共可以得到不同规格图形的种数为;如果nkS对折n 次,那么∑ Sk= dm 2 .k =139.(2019·北京(理))设等差数列{a n }的前 n 项和为 S n ,若 a 2=−3,S 5=−10,则 a 5=,S n 的最小值为 .三、解答题40.(2021·全国(文))设{a }是首项为 1 的等比数列,数列{b } 满足b =na n.已知 na 1 , 3a 2 , 9a 3 成等差数列.(1) 求{a n } 和{b n }的通项公式;n n3(2) 记 S 和T 分别为{a }和{b }的前 n 项和.证明: T <S n. nnnnn241.(2021·浙江)已知数列{a }的前 n 项和为S , a = - 9,且4S = 3S - 9 .n(1) 求数列{a n } 的通项;n14n +1n(2) 设数列{b n }满足3b n + (n - 4)a n = 0 ,记{b n }的前 n 项和为Tn,若T n ≤ λb n 对任意 n ∈ N * 恒成立,求λ的范围.42.(2021·全国(理))已知数列{a n }的各项均为正数,记S n 为{a n }的前 n 项和,从 下面①②③中选取两个作为条件,证明另外一个成立. ①数列{a n }是等差数列:②数列{ S n}是等差数列;③ a2= 3a 1 .注:若选择不同的组合分别解答,则按第一个解答计分.43.(2021·全国(理))记 S n 为数列{a n }的前 n 项和, b n 为数列{S n } 的前 n 项积,已知2 + 1nb n = 2 .(1) 证明:数列{b n }是等差数列;(2) 求{a n } 的通项公式.44.(2020·海南)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 求 a a - a a+⋯+ (-1)n -1 a a .1 22 3n n +145.(2020·天津)已知{a n }为等差数列, {b n }为等比数列,na ann a a 1 = b 1 = 1, a 5 = 5(a 4 - a 3 ), b 5 = 4(b 4 - b 3 ) . (Ⅰ)求{a n } 和{b n }的通项公式; (Ⅱ)记{a }的前 n 项和为 S ,求证: S S< S 2(n ∈ N *) ;nnn n +2⎧(3a n - 2)b n n +1(Ⅲ)对任意的正整数n ,设c n⎪⎪a n a n +2 ⎨ a, n 为奇数, 求数列{c n } 的前 2n 项和. ⎪ n -1 , ⎩ b n +1n 为偶数. 46.(2020·北京)已知{a n }是无穷数列.给出两个性质:①对于{a }中任意两项 a i , a j (i > 2j) ,在{a }中都存在一项a ,使 i= a ;n n mm j2②对于{a n }中任意项a n (n 3) ,在{a n }中都存在两项a k , a l (k > l ) .使得 a n = k.a l(Ⅰ)若 a n = n (n = 1, 2,) ,判断数列{a n } 是否满足性质①,说明理由;(Ⅱ)若 a = 2n -1(n = 1, 2,) ,判断数列{a }是否同时满足性质①和性质②,说明理由;(Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明: {a n }为等比数列. 47.(2020·浙江)已知数列{a n },{b n },{c n }中,a =b =c = 1, c = a - a , c= b n ⋅ c (n ∈ N * ) .111nn +1n n +1b n +2(Ⅰ)若数列{b n }为等比数列,且公比 q > 0 ,且b 1 + b 2 = 6b 3 ,求 q 与{a n }的通项公式;(Ⅱ)若数列{b n }为等差数列,且公差 d > 0 ,证明: c + c++ c < 1 + 1.(n ∈ N * ) 12nd48.(2020·山东)已知公比大于1的等比数列{a n } 满足a 2 + a 4 = 20, a 3 = 8 .(1) 求{a n } 的通项公式;(2) 记b m 为{a n } 在区间(0, m ](m ∈ N * ) 中的项的个数,求数列{b m } 的前100 项和 S 100 .49.(2020·全国(理))设数列{a n }满足 a 1=3,a n +1 = 3a n - 4n . (1) 计算 a 2,a 3,猜想{a n }的通项公式并加以证明; (2) 求数列{2n a n }的前 n 项和 S n .50.(2020·全国(理))设{a n } 是公比不为 1 的等比数列, a 1 为 a 2 , a 3 的等差中项.(1)求{a n } 的公比;n = ⎪(2)若 a 1 = 1 ,求数列{na n }的前 n 项和.a n 2b nn1n51.(2020·全国(文))设等比数列{a n }满足a 1 + a 2 = 4 , a 3 - a 1 = 8 . (1) 求{a n }的通项公式;(2) 记 S n 为数列{log 3a n }的前 n 项和.若 S m + S m +1 = S m +3 ,求 m .52.(2019·江苏)定义首项为 1 且公比为正数的等比数列为“M -数列”.(1) 已知等比数列{a n }满足: a 2 a 4 = a 5 , a 3 - 4a 2 + 4a 1 = 0 ,求证:数列{a n }为“M -数列”;(2) 已知数列{b }满足: b= 1, 1= 2 - 2 ,其中 S为数列{b }的前 n 项和.S n b n b n +1①求数列{b n }的通项公式;②设 m 为正整数,若存在“M -数列”{c n },对任意正整数 k ,当 k ≤m 时,都有c k b k c k +1成立,求 m 的最大值.53.(2019·北京(文))设{a n }是等差数列,a 1=–10,且 a 2+10,a 3+8,a 4+6 成等比数列. (Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前 n 项和为 S n ,求 S n 的最小值.54.(2019·浙江)设等差数列{a n } 的前n 项和为 S n ,a 3 = 4 ,a 4 = S 3 ,数列{b n }满足:对每 n ∈ N *, S n + b n , S n +1 + b n , S n +2 + b n 成等比数列.(1) 求数列{a n },{b n } 的通项公式;(2) 记C =, n ∈ N *, 证明: C + C ++ C < 2 n , n ∈ N *.n1 2n55.(2019·天津(文)) 设{a n }是等差数列, {b n }是等比数列,公比大于0 ,已知a 1 =b 1 = 3 , b 2 = a 3 , b 3 = 4a 2 + 3 .(Ⅰ)求{a n }和{b n } 的通项公式;⎧⎪1,n 为奇数,(Ⅱ)设数列{c } 满足c= ⎨b n 为偶数, 求a c + a c ++ a c(n ∈ N *).nnn⎩21 12 22n 2n56.(2019·全国(文))已知{a n } 是各项均为正数的等比数列,a 1 = 2, a 3 = 2a 2 +16 . n(1)求{a n } 的通项公式;n →∞{ }(2) 设b n = log 2 a n ,求数列{b n } 的前 n 项和.57.(2019·全国(文))记 S n 为等差数列{a n }的前 n 项和,已知 S 9=-a 5.(1) 若 a 3=4,求{a n }的通项公式;(2) 若 a 1>0,求使得 S n ≥a n 的 n 的取值范围.58.(2019·全国(理))已知数列{a n }和{b n }满足 a 1=1,b 1=0,4a n +1 = 3a n - b n + 4 (1) 证明:{a n +b n }是等比数列,{a n –b n }是等差数列; (2) 求{a n }和{b n }的通项公式.59.(2019·上海)已知数列{a n },a 1 = 3 ,前 n 项和为 S n . (1) 若{a n } 为等差数列,且a 4 = 15 ,求 S n ; (2) 若{a n } 为等比数列,且 lim S n < 12 ,求公比q 的取值范围.,4b n +1 = 3b n - a n - 4 .60.(2019·上海)已知等差数列{a n }的公差d ∈(0,π] ,数列{b n }满足b n = sin (a n ) ,集合 S = {x | x = b n , n ∈ N *}.(1) 若 a 1(2) 若 a = 0, d =2π,求集合 S ; 3= π,求 d 使得集合 S 恰好有两个元素;12(3) 若集合 S 恰好有三个元素: b n +T = b n , T 是不超过 7 的正整数,求T 的所有可能的值.61.(2019·天津(理))设{a n } 是等差数列, {b n }是等比数列.已知a 1 = 4,b 1 = 6 ,b 2 = 2a 2 - 2,b 3 = 2a 3 + 4 .(Ⅰ)求{a n } 和{b n }的通项公式;⎧1, 2k < n < 2k +1, (Ⅱ)设数列 c n 满足c 1 = 1, c n = ⎨ b , n = 2k ,其中 k ∈ N * . ⎩ k(i ) 求数列{a 2n(c2n-1)}的通项公式;2n(ii ) 求∑ a i ci(n ∈ N *).i =162.(2018·江苏)设{a n } 是首项为 a 1 ,公差为 d 的等差数列,{b n } 是首项为b 1 ,公比为 q 的等比数列.(1)设 a 1 = 0,b 1 = 1, q = 2 ,若| a n - b n |≤b 1 对 n = 1, 2,3, 4 均成立,求 d 的取值范围;(2)若 a = b > 0, m ∈ N *, q ∈ (1, m 2] ,证明:存在 d ∈ R ,使得| a n - b n |≤ b 1 对11n = 2, 3,, m +1 均成立,并求 d 的取值范围(用b 1, m , q 表示).63.(2018·江苏)设 n ∈ N * ,对 1,2,···,n 的一个排列i 1i 2 i n ,如果当 s <t 时,有i s > i t ,则称(i s , i t ) 是排列i 1i 2i n 的一个逆序,排列i 1i 2 i n 的所有逆序的总个数称为其逆序数.例如:对 1,2,3 的一个排列 231,只有两个逆序(2,1),(3,1),则排列 231 的逆序数为 2.记 f n (k ) 为 1,2,···,n 的所有排列中逆序数为 k 的全部排列的个数. (1)求 f 3 (2), f 4 (2) 的值;(2) 求 f n (2)(n ≥ 5) 的表达式(用 n 表示).64.(2018·全国(文))记 S n 为等差数列{a n } 的前 n 项和,已知 a 1 = -7 , S 3 = -15 .(1) 求{a n } 的通项公式;(2) 求 S n ,并求 S n 的最小值.65.(2018·北京(文))设{a n } 是等差数列,且a 1 = ln 2, a 2 + a 3 = 5 l n 2 .(Ⅰ)求{a n } 的通项公式;(Ⅱ)求e a 1 + e a 2 ++ e a n .66.(2018·全国(理))等比数列{a n }中,a 1 = 1,a 5 = 4a 3 . (1) 求{a n }的通项公式;(2) 记S n 为{a n }的前n 项和.若 S m = 63 ,求 m . 67.(2018·浙江)已知等比数列{a n }的公比 q >1,且a 3+a 4+a 5=28,a 4+2 是 a 3,a 5 的等差中项.数列{b n }满足 b 1=1,数列{(b n +1−b n )a n }的前 n 项和为 2n 2+n . (Ⅰ)求 q 的值;(Ⅱ)求数列{b n }的通项公式.68.(2018·全国(文))已知数列{a }满足a = 1 , na= 2(n +1) a,设b = an.(1)求b 1 ,b 2 ,b 3 ;n 1 n +1n nn(2) 判断数列{b n } 是否为等比数列,并说明理由;n n k =1⎩⎭⎩ n n n (3) 求{a n } 的通项公式.69.(2018·天津(理))设{a }是等比数列,公比大于 0,其前 n 项和为 S (n ∈ N *),{b n }是等差数列.已知a 1 = 1 , a 3 = a 2 + 2 , a 4 =b 3 + b 5 , a 5 = b 4 + 2b 6 . (I ) 求{a n }和{b n }的通项公式;(II ) 设数列{S }的前 n 项和为T (n ∈ N *) ,(i ) 求T n ;n(T k+ bk +2)b k=2n +2 - ∈ *(ii )证明∑ (k +1)(k + 2)n + 22 (nN ) .70.(2018·天津(文))设{a n }是等差数列,其前 n 项和为 S n (n ∈N *);{b n }是等比数列,公比大于 0,其前 n 项和为 T n (n ∈N *).已知 b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6. (Ⅰ)求 S n 和 T n ;(Ⅱ)若 S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数 n 的值.71.(2017·全国(文))设数列{a n } 满足a 1 + 3a 2 +⋯+ (2n -1)a n = 2n . (1) 求{a n } 的通项公式;⎧ a n ⎫ (2) 求数列的前 n 项和. ⎨ 2n +1⎬72.(2017·上海)根据预测,某地第n (n ∈ N * ) 个月共享单车的投放量和损失量分别为a n 和b n (单位:辆),⎧5n 4 +15, 1 ≤ n ≤ 3其中 a n = ⎨-10n + 470, ,b n = n + 5 ,第n 个月底的共享单车的保有量是前 n 个n ≥ 4月的累计投放量与累计损失量的差.(1) 求该地区第 4 个月底的共享单车的保有量;(2) 已知该地共享单车停放点第 n 个月底的单车容纳量 S = -4(n - 46)2+ 8800 (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点 的单车容纳量?73.(2017·天津(文))已知{a n } 为等差数列,前 n 项和为 S n(n ∈ N * ) ,{b } 是首项为2 的等比数列,且公比大于 0,n2n n n 1 n n +1 b 2 + b 3 = 12,b 3 = a 4 - 2a 1 , S 11 = 11b 4 .(Ⅰ)求{a n } 和{b n } 的通项公式;(Ⅱ)求数列{a b } 的前 n 项和(n ∈ N *) .74.(2017·山东(理))已知{x n } 是各项均为正数的等比数列,且x 1 + x 2 = 3,x 3 - x 2 = 2 (Ⅰ)求数列{x n } 的通项公式;(Ⅱ)如图,在平面直角坐标系 xOy 中,依次连接点P 1 ( x 1 ,1),P 2 ( x 2 , 2)⋯ P n +1 ( x n +1 , n +1) 得到折线 P 1P 2 ⋯P n +1 ,求由该折线与直线y = 0 , x = x 1,x = x n +1 所围成的区域的面积T n ..75.(2017·浙江)已知数列{x } 满足: x =1 , x = x + ln (1+ x ) (n ∈ N *)证明:当 n ∈ N * 时,(I )0 < x n +1 < x n ;(II )2x- x ≤ x n x n +1 ;(III ) n +112n -1 n≤x n ≤ 21 2n -2 . 76.(2017·全国(文))记 S n 为等比数列{a n }的前 n 项和,已知 S 2=2,S 3=-6.(1) 求{a n } 的通项公式;(2) 求 S n ,并判断 S n +1,S n ,S n +2 是否成等差数列.77.(2017·山东(文))已知{a n }是各项均为正数的等比数列,且a 1 + a 2 = 6, a 1a 2 = a 3 . (I) 求数列{a n }通项公式;n +1(II){b }为各项非零的等差数列,其前n 项和S ,已知S=b b ⎧b n ⎫,求数列的前n 项n n 2n+1n n+1⎨a ⎬⎩n ⎭和Tn.78.(2017·北京(理))设{a n}和{b n}是两个等差数列,记c n = max{b1-a1n,b2-a2n,⋅⋅⋅,bn-ann} (n = 1, 2, 3,⋅⋅⋅) ,其中max{x1, x2 , ⋅⋅⋅, x s} 表示x1 , x2 ,⋅⋅⋅, x s 这s 个数中最大的数.(Ⅰ)若a n =n ,b n = 2n -1,求c1 , c2 , c3 的值,并证明{c n }是等差数列;(Ⅱ)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,cn >M ;或者存在正n整数m ,使得c m , c m+1, c m+2 , ⋅⋅⋅是等差数列.(2017·北京(文))已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1 +b3 +b5 +…+b2 n-1 .80.(2017·全国(文))已知等差数列{a n }的前n 项和为S n,等比数列{b n }的前n 项和为T n ,且 a1 = 1 ,b1 =1,a2 +b2 = 4 .(1)若a3+b3=7,求{b n }的通项公式;(2)若T3 = 13 ,求S5 .81.(2017·江苏)对于给定的正整数k,若数列{a n}满足a +a +...a +a +...a +a = 2k an-k n-k+1 n-1 n+1 n+k-1 n+k n对任意正整数n(n> k) 总成立,则称数列{a n} 是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.近五年(2017-2021)高考数学真题分类汇编七、数列(答案解析)1.A【解析】∵S n 为等比数列{a n}的前n项和,∴S2 ,S4 -S2 ,S6 -S4 成等比数列∴S2 = 4 ,S4 -S2 = 6 - 4 = 2 ,∴S6 -S4 = 1,∴S6 = 1+S4 = 1+ 6 = 7 .故选:A.2.C【解析】由题意得f (s -t) f (s +t) = [ f (s)]2 ,即⎡⎣a(s-t)2+b⎤⎦⎡⎣a(s+t)2+b⎤⎦=(as2+b)2,对其进行整理变形:(as2+at2-2ast+b)(as2+at2+2ast+b)=(as2+b)2,(as2+at2+b)2-(2ast)2-(as2+b)2=0,(2as2+at2+2b)at2-4a2s2t2=0,-2a2s2t2+a2t4+2abt2=0,s 2-t 2所以-2as2 +at 2 + 2b = 0 或t = 0 ,其中b 2b = 1为双曲线,t = 0 为直线.a a故选:C.3.B【解析】由题,当数列为-2, -4, -8,时,满足q > 0 ,但是{S n }不是递增数列,所以甲不是乙的充分条件.若{S n }是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q > 0 成立,所以甲是乙的必要条件.故选:B.4.A【解析】因为a= 1, a=an (n ∈ N*),所以a > 0 ,S >1 .1 n+1n 100 21 +ana n a n a n +1 a na n + 1a n2 2 ⎝⎭ ⎝ ⎭ < 1 2 a 1 1 1⎛ 1 1 ⎫ 1 由a n +1 = n ⇒ = + = + ⎪ -1+∴ 1 ⎛ 1a+ 1 ⎫ 2 ⎪ a n +1 2⇒a n ⎝ 1 < 1 + 1 2 2 ⎭ 4,即-1 < 12n +1 ⎝ ⎭1 根据累加法可得,≤ 1+n -1 = n +1,当且仅当 n = 1 时取等号,∴a ≥ 4 ∴a = a n ≤ a n= n +1 a n (n +1)2 n +1 1+ 2 n +1n + 3 n ∴a n +1 ≤ n +1 ,a n n + 3由累乘法可得 a n ≤ 6(n +1)(n + 2),当且仅当 n = 1 时取等号,由裂项求和法得:所以 S ≤ 6⎛ 1 - 1 + 1 - 1 + 1 - 1 ++ 1-1 ⎫ = 6 ⎛ 1 -1 ⎫ < 3 , 即 1< S< 3 .1002 3 3 4 4 5 101 102 ⎪ 2 102 ⎪2 100故选:A .【小结】本题解题关键是通过倒数法先找到a n ,的不等关系,再由累加法可求得a ≥4,由题目条件可知要证 S 小于某数,从而通过局部放缩得到a , a 的不等 n(n +1)2100 n n +1关系,改变不等式的方向得到 a n ≤6(n +1)(n + 2),最后由裂项相消法求得 S 100 < 3 .5.B 【分析】首先求得数列的通项公式,然后结合数列中各个项数的符号和大小即可确定数列中是否存在 最大项和最小项. 【解析】由题意可知,等差数列的公差d =a 5 - a 1 = -1+ 9= 2 , 5 -1 5 -1则其通项公式为: a n = a 1 + (n -1)d = -9 + (n -1)⨯ 2 = 2n -11 ,a n a n a n1+ a n a n +1注意到a1 <a2 <a3 <a4 <a5 < 0 <a6 = 1<a7 <,且由T5 < 0 可知T i < 0 (i ≥ 6,i ∈N ),Ti 由Ti-1 =ai>1(i≥7,i∈N)可知数列{T n }不存在最小项,由于a1 =-9, a2 =-7, a3 =-5, a4 =-3, a5 =-1, a6 = 1,故数列{T n }中的正项只有有限项:T2= 63 ,T4= 63⨯15 = 945 .故数列{T n }中存在最大项,且最大项为T4.故选:B.【小结】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,属于中等题.6.D【分析】根据题意可得,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,而b1 =S2 =a1 +a2 ,即可表示出题中b 2 , b4, b6, b8,再结合等差数列的性质即可判断各等式是否成立.【解析】对于A,因为数列{a n}为等差数列,所以根据等差数列的下标和性质,由4 + 4 = 2 + 6 可得,2a4 =a2+a6,A 正确;对于B,由题意可知,b n+1 =S2n+ 2 -S2n =a2n+1 +a2n +2 ,b1 =S2 =a1 +a2 ,∴b2 =a3 +a4 ,b4 =a7 +a8 ,b6 =a11 +a12 ,b8 =a15 +a16 .∴2b4=2(a7+a8),b2+b6=a3+a4+a11+a12.根据等差数列的下标和性质,由3 +11 = 7 + 7, 4 +12 = 8 + 8 可得b 2+b6=a3+a4+a11+a12=2(a7+a8)=2b4,B正确;对于C,a2-a a=(a+3d)2-(a+d)(a+7d)=2d2-2a d=2d(d-a),4 2 8 1 1 1 1 14 2 8 1 1 n 1 2 3 1 2 3 4 1 1 1 1 6 7 8 1 1 1 1⎪a q a q 12 ⎨ 当a 1 = d 时, a 2= a a ,C 正确;对于 D , b 2 = (a + a )2 = (2a + 13d )2= 4a 2 + 52a d + 169d 2 ,478111b b = (a + a )(a + a ) = (2a + 5d )(2a + 29d )= 4a 2 + 68a d + 145d 2 ,2 83415161111b 2 - b b = 24d 2 - 16a d = 8d (3d - 2a ) .42 811当 d > 0 时, a ≤ d ,∴ 3d - 2a = d + 2 (d - a ) > 0 即b 2 - b b > 0 ;11142 8当 d < 0 时,a ≥ d ,∴ 3d - 2a = d + 2 (d - a ) < 0 即b 2 - b b > 0 ,所以b 2 - b b > 0 ,11142 842 8D 不正确. 故选:D.7.D【解析】设等比数列{a } 的公比为q ,则 a + a + a= a (1+ q + q2) = 1 ,a + a + a = a q + a q 2 + a q 3 = a q (1+ q + q 2 ) = q = 2 ,因此, a + a + a = a q 5+ a q 6+ a q 7= a q 5(1+ q + q 2) = q 5= 32 .故选:D.8.B【解析】设等比数列的公比为q ,⎧ 4 - 2= 由a -a =12,a -a =24可得: ⎨1 1⇒⎧q = 2 ,5364⎪⎩a q5 - a q 3= 24 a (1- q n ) 1- 2n ⎩a 1 =1 S 2n-11-n 所以 a = a q n -1 = 2n -1, S =1 = = 2n -1,因此 n = =2 - 2 . n 1 n1- q 1- 2 a 2n -1故选:B.9.C【解析】在等式 a= a a中,令 m = 1,可得 a= a a = 2a ,∴a n +1= 2 ,m +nm nn +1n 1nn所以,数列{a n } 是以 2 为首项,以 2 为公比的等比数列,则a n = 2 ⨯ 2n -1= 2n ,na2 ⋅(1- 2 ) 5 i =1 5 5∴a + a++ a=a k +1 ⋅(1- 210 ) k +110= = 2k +1 (210 -1) = 25 (210 -1),k +1k +2k +101- 2 1- 2∴ 2k +1 = 25 ,则 k +1 = 5 ,解得 k = 4 .故选:C.10.C【解析】设第 n 环天石心块数为 a n ,第一层共有 n 环,则{a n } 是以 9 为首项,9 为公差的等差数列, a n = 9 + (n - 1) ⨯ 9 = 9n , 设 S n 为{a n } 的前 n 项和,则第一层、第二层、第三层的块数分 别为 S n , S 2n - S n , S 3n - S 2n ,因为下层比中层多 729 块, 所以 S 3n - S 2n = S 2n - S n + 729 , 即3n (9 + 27n ) - 2n (9 + 18n ) = 2n (9 + 18n ) - n (9 + 9n ) + 729 2 2 2 2即9n 2 = 729 ,解得n = 9 ,所以 S 3n = S 27= 27(9 + 9 ⨯ 27)= 3402 .故选:C 211.C1 5【解析】由a i +m = a i 知,序列 a i 的周期为 m ,由已知,m = 5 ,C (k ) = ∑a i ai +k, k = 1, 2,3, 4i =1对于选项 A ,1 51 1 1 1C (1) = 5 ∑a i a i +1 = 5 (a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = 5 (1 + 0 + 0 + 0 + 0) = ≤i =1 5 5 1 51 1 2C (2) = 5 ∑a i a i +2 = 5 (a 1a 3 + a 2a 4 + a 3a 5 + a 4a 6 + a 5a 7 ) = 5 (0 +1 + 0 +1 + 0) = 5,不满足;对于选项 B ,1 5 C (1) = ∑a i a i +1 = i =1对于选项 D ,(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6 ) = ,不满足;1 5C (1) = ∑a i a i +1 = i =1(a 1a 2 + a 2a 3 + a 3a 4 + a 4a 5 + a 5a 6) = ,不满足; 1 1 35 5 (1 + 0 + 0 +1 +1) = 511(1 + 0 + 0 + 0 +1) =25 5 51 1 1 ⎩故选:C12.C⎧a + a q + a q 2 + a q 3 = 15,【解析】设正数的等比数列{a n }的公比为q ,则⎨ ⎩1 1 1 1 , a q 4 = 3a q 2+ 4a解得⎧a 1 = 1, ,∴ a = a q 2= 4 ,故选 C .⎨q = 2 3 1 13.A 【解析】⎧S = 4a + d ⨯ 4 ⨯ 3 = 0⎧a = -3 ⎪ 4 1 由题知, 2,解得⎨ 1,∴ a = 2n - 5 ,故选 A . ⎨ ⎪⎩a 5 = a 1+ 4d = 5 ⎩d = 2 n14.B 【解析】令 f (x ) = x - ln x -1, 则 f ' (x ) = 1- 1,令 f '(x ) = 0, 得 x = 1 ,所以当 x > 1 时, f '(x ) > 0 ,x当0 < x < 1 时, f '(x ) < 0 ,因此 f (x ) ≥ f (1) = 0,∴ x ≥ ln x +1 ,若公比 q > 0 ,则 a 1 + a 2 + a 3 + a 4 > a 1 + a 2 + a 3 > ln(a 1 + a 2 + a 3 ) ,不合题意;若公比q ≤ -1 ,则 a + a + a + a = a (1+ q )(1+ q 2) ≤ 0,12341但ln(a + a + a ) = ln[a (1+ q + q 2)] > ln a > 0 ,12311即a 1 + a 2 + a 3 + a 4 ≤ 0 < ln(a 1 + a 2 + a 3 ) ,不合题意;因此-1 < q < 0, q 2 ∈(0,1) ,∴ a > a q 2 = a , a < a q 2= a< 0 ,选 B.113224【小结】构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 x ≥ ln x +1,e x ≥ x +1, e x ≥ x 2 +1(x ≥ 0).15.Dn n -1 +【解析】因为每一个单音与前一个单音频率比为12 2 ,所以 a = 122a (n ≥ 2, n ∈ N ) ,又a 1 = f ,则 a = a q 7 = f (12 2)7 = 12 27 f故选 D.8116.A 【分析】根据等比中项的性质列方程,解方程求得公差 d ,由此求得{a n }的前6 项的和.【解析】设等差数列{a } 的公差为 d ,由 a 、 a 、 a 成等比数列可得 a 2= a a ,n 2 3 6 3 2 6即(1+ 2d )2 = (1+ d )(1+ 5d ) ,整理可得 d 2 + 2d = 0 ,又公差不为 0,则d = -2 ,故{a n } 前6 项的和为 S 6 = 6a 1 +6⨯(6 -1)d = 6⨯1+6⨯(6 -1)⨯(-2) = -24 .22故选:A 17.A 【解析】存在 k ∈ N + ,使得 x 100+k , x 200+k , x 300+k 成等差数列,可得2[a (200 + k )2 + b (200 + k ) + c ] = a (100 + k )2 + b (100 + k ) + c + a (300 + k )2 + b (300 + k ) + c,化简可得 a = 0 ,所以使得 x 100+k , x 200+k , x 300+k 成等差数列的必要条件是 a ≥ 0 . 18.C 【解析】设公差为d , a 4 + a 5 = a 1 + 3d + a 1 + 4d = 2a 1 + 7d = 24 ,S = 6a + 6 ⨯ 5 d = 6a+15d = 48 ,联立⎧ 2a 1 + 7d = 24 , 解得d = 4 ,故选 C. 6 1 21⎨6a +15d = 48 ⎩ 119.C 【解析】由 S 4 + S 6 - 2S 5 = 10a 1 + 21d - 2(5a 1 + 10d ) = d ,可知当 d > 0 时,有 S 4 + S 6 - 2S 5 > 0 ,即 S 4 + S 6 > 2S 5 ,反之,若 S 4 + S 6 > 2S 5 ,则 d > 0 ,所以“d >0”是“S 4 + S 6>2S 5”的充要条件, 选 C .20.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .21.B【解析】设塔顶的 a 1 盏灯,由题意{a n }是公比为 2 的等比数列,a (1- 27 ) ∴S 7=11- 2=381,解得 a 1=3.故选 B .22. 3n 2 - 2n【解析】因为数列{2n -1} 是以 1 为首项,以 2 为公差的等差数列, 数列{3n - 2}是以 1 首项,以 3 为公差的等差数列,所以这两个数列的公共项所构成的新数列{a n }是以 1 为首项,以 6 为公差的等差数列, 所以{a }的前 n 项和为 n ⋅1+n (n -1)⋅ 6 = 3n 2 - 2n ,故答案为: 3n 2 - 2n .n223.10【解析】因为 a= n (n +1) a = 1, a= 3, a= 6 . n21 2 3即 S 3 = a 1 + a 2 + a 3 = 1+ 3+ 6 = 10 .故答案为:10 .24. 4【解析】设等差数列{a n } 的公差为 d ,等比数列{b n }的公比为q ,根据题意 q ≠ 1.1 ⎪ n +2 n =等差数列{a }的前 n 项和公式为 P = na +n (n -1) d = d n 2 + ⎛a - d ⎫n , nn12 2 12 ⎪等比数列{b }的前 n 项和公式为Qb (1-q n) ⎝ ⎭= - b 1q n+ b 1,nn 1- q 1- q 1- q依题意 S = P + Q ,即 n 2 - n + 2n -1 = d n 2 + ⎛a - d ⎫n -b 1 q n + b ,n n n 21 2 ⎪ 1 - q 1 - q⎧ d= 12 ⎝ ⎭⎧d = 2 ⎪ d ⎪ ⎪a 1 - = -1 ⎪a 1 = 0通过对比系数可知⎨ 2 ⇒ ⎨q = 2 ,故 d + q = 4 .故答案为: 4⎪q = 2 ⎪⎪ b ⎩⎪b 1 = 1 ⎪ 1 = -1 ⎩1- q25.7【解析】 a + (-1)na = 3n -1,当n 为奇数时, a n +2 = a n + 3n - 1 ;当 n 为偶数时, a n +2 + a n = 3n - 1 .设数列{a n } 的前 n 项和为 S n , S 16 = a 1 + a 2 + a 3 + a 4 + + a 16= a 1 + a 3 + a 5+ a 15 + (a 2 + a 4 ) +(a 14 + a 16 )= a 1 + (a 1 + 2) + (a 1 + 10) + (a 1 + 24) + (a 1 + 44) + (a 1 + 70)+(a 1 + 102) + (a 1 + 140) + (5 + 17 + 29 + 41)= 8a 1 + 392 + 92 = 8a 1 + 484 = 540 ,∴a 1 = 7 .故答案为: 7 .26. 25 【解析】{a n }是等差数列,且 a 1 = -2 , a 2 + a 6 = 2设{a n } 等差数列的公差 d ,根据等差数列通项公式:a n = a 1 + (n -1) d 可得 a 1 + d + a 1 + 5d = 2 ,即: -2 + d + (-2) + 5d = 2 ,整理可得: 6d = 6 解得: d = 1⎪ 1⎪ ⎨ d = 2根据等差数列前 n 项和公式: S n= na 1 + n (n - 1) d , n ∈ N *2可得: S = 10 ( -2 ) + 10 ⨯ (10 - 1) = -20 + 45 = 25 ,∴ S = 25 . 10 21027.16.⎧a 2 a 5 + a 8 = (a 1 + d )(a 1 + 4d ) + (a 1 + 7d ) = 0 【解析】由题意可得: ⎨⎪⎩ S 9 = 9a 1 + 9 ⨯ 8 d = 27 , 2解得: ⎧a 1 = -5 ,则 S ⎩ 8 = 8a 1+ 8⨯ 7d = -40 + 28⨯ 2 = 16 . 228.100【解析】 ⎧a 3 = a 1 + 2d = 5 , 得⎧a 1 = 1, ∴S= 10a+ 10⨯ 9 d = 10⨯1+ 10⨯ 9⨯ 2 = 100. ⎨a = a + 6d = 13 ⎨d = 2 10 1 2 2⎩ 7 1⎩29.4.【解析】因 a 2 = 3a 1 ,所以 a 1 + d = 3a 1 ,即 2a 1 = d ,S 1010a 1 = + 10 ⨯ 9 d2= 100a 1 = 4所以 S 5⨯ 4 25a .5 5a 1 + d1 2530. .8【解析】设等比数列的公比为q ,由已知S = a + a q + a q 2 = 1+ q + q 2 = 3 ,即 q 2 + q + 1 = 0 解得 q = - 1, 3 1 1 144 4 2 1- (- 1 )4所以 S = a 1 (1- q ) =2 = 5. 4 1- q 1- (- 1) 8231.121 .3【解析】设等比数列的公比为q ,由已知 a = 1, a 2= a 1 3 2 1 5 ,所以 = q , 又q ≠ 0 , 134 651(1- 35 ) ( q )33所以 q = 3, 所以 S =a 1 (1- q ) = 3 = 121 . 5 1- q 1- 3 332.14【解析】∵等差数列{a n }的前 n 项和为 S n ,a 3=0,a 6+a 7=14,⎧ a 1 + 2d = 0 ∴ ,解得 a =﹣4,d=2,∴S =7a + 7 ⨯ 6d =﹣28+42=14. ⎨a + 5d + a + 6d = 14 1 7 1⎩ 1 1故答案为 14.33. -63【解析】根据 S n = 2a n +1,可得 S n +1 = 2a n +1 +1 , 两式相减得a n +1 = 2a n +1 - 2a n ,即 a n +1 = 2a n , 当 n = 1 时, S 1 = a 1 = 2a 1 +1,解得 a 1 = -1, 所以数列{a n }是以-1 为首项,以 2 为公比的等比数列,所以 S 6 = -(1- 26 )1- 2= -63 ,故答案是-63 .34.2【解析】由 a = n 2 ,若对于任意 n ∈ N +,{b } 的第 a 项等于{a }的第b 项,n则b = a = (b )2 ,则b= 1 = (b )2 , b n= (b )2, b n= (b )2 , b n n= (b )2a nb nn114293164lg(b b b b ) lg(b b b b ) 2 2 lg(b b b b )所以b b b b = (b b b b )2 ,所以 1 4 9 16 = 1 2 3 4= 1 2 3 4 = 2 . 1 4 9 16 1 2 3 4 lg(b b b b ) lg(b b b b ) lg(b b b b )1 2 3 41 2 3 41 2 3 435.2nn +1【解析】2S1S ⎧a1 + 2d = 3⎧a = 1设等差数列的首项为a ,公差为d ,由题意有⎪4 ⨯3,解得⎨ 1 ,1 ⎨4a + d = 10 ⎩d = 1⎩⎪12数列的前 n 项和Sn =na1+n (n -1)2d =n ⨯1+n (n -1)2⨯1 =n (n +1)2裂项可得=2= 2(1-1) ,S k k (k +1)k k +1n 1= 2[(1-1) + (1-1) ++ (1-1)] = 2(1-1) =2n所以∑k =1 k2 2 3n n +1n +1n +1.36.1【解析】设等差数列的公差和等比数列的公比分别为d 和q,则-1+ 3d =-q3 = 8 ,求得q =-2 ,d = 3,那么a2b2=-1+ 3= 1 ,故答案为1.237.32【解析】⎧=a1⎪ 3 1-q(1-q3 ) =741-q6由题意可得 q ≠ 1,所以⎨⎪S⎩=a11-q(1-q 6 ) =634两式相除得1-q3= 9, q3 = 8, q = 2, 代入得a =1, a =1⨯ 27 = 25 = 32 ,填32.1 4 8(4)38.5 72015 (3 +n)2n-4【解析】(1)由对折2 次共可以得到5dm⨯12dm,10dm⨯6dm ,20dm⨯3dm三种规格的图形,所以对着三次的结果有:5⨯12,5⨯6,10⨯3;20⨯3,共4种不同规格(单位dm2);2 2,62 ( )故对折 4 次可得到如下规格: 5⨯12 , 5 ⨯ 6 , 5⨯ 3 ,10 ⨯ 3 , 20 ⨯ 3 ,共 5 种不同规格; 4 2 2 4(2) 由于每次对着后的图形的面积都减小为原来的一半,故各次对着后的图形,不论规格1 如何,其面积成公比为 2的等比数列,首项为 120 (dm 2),第 n 次对折后的图形面积为⎛ 1 ⎫n -1120 ⨯ ⎪ ⎝ ⎭,对于第 n 此对折后的图形的规格形状种数,根据(1)的过程和结论,猜想为n +1种(证明从略),故得猜想 S n = 120(n +1) ,2n -1设 S =∑ S = 120⨯ 2 + 120⨯ 3 + 120⨯ 4 +L + 120(n +1) ,k =12021 222n -1则 1S =120 ⨯ 2 + 120 ⨯ 3++ 120n + 120(n +1) ,2 2122两式作差得:2n -1 2n 1 S = 240 +120⎛ 1 + 1++ 1 ⎫ - 120(n +1) 2 2 222n -1 ⎪ 2n⎝ ⎭60 ⎛1 - 1 ⎫ 2n -1 ⎪ 120(n +1) 120 120(n +1) 120(n + 3) = 240 + ⎝ ⎭ -= 360 - - = 360 - , 1- 1 2n22n -1 2n 2n240(n + 3) 15(n + 3)因此, S = 720 - = 720 -. 2n15 n + 3 故答案为: 5 ; 720 -.2n -42n -439.0. -10.【解析】等差数列{a n }中, S 5 = 5a 3 = -10 ,得 a 3 = -2, a 2 = -3 ,公差 d = a 3 - a 2 = 1, a 5 = a 3 + 2d = 0 ,由等差数列{a n } 的性质得 n ≤ 5 时, a n ≤ 0 , n ≥ 6 时, a n 大于0,所以 S n 的最小值为 S 4 或 S 5 , 即为-10 .k n。

相关文档
最新文档