1.1《分类加法计数原理与分步乘法计数原理》教学设计
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 培养学生运用计数原理解决实际问题的能力。
3. 引导学生通过合作交流,提高思维能力和创新能力。
二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。
(2)学会运用分类加法计数原理解决问题。
2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。
(2)学会运用分步乘法计数原理解决问题。
三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。
(2)分步乘法计数原理的应用。
2. 教学难点:(1)理解分类加法计数原理的含义。
(2)理解分步乘法计数原理的含义。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 运用实例分析,让学生直观理解计数原理。
3. 组织小组讨论,培养学生合作交流能力。
五、教学准备1. 课件、黑板、粉笔等教学工具。
2. 相关实例和练习题。
教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。
2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。
3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。
二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。
2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。
3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。
2. 讲解分类加法计数原理的概念和步骤。
3. 让学生举例说明并计算。
二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。
2. 讲解分步乘法计数原理的概念和步骤。
分类加法计数原理与分步乘法计数原理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.1分类加法计数原理与分步乘法计数原理(第一课时)内容分析:本节课要学的内容分类加法计数原理与分步乘法计数原理主要包括:分类加法计数原理的定义、分步乘法计数原理的定义以及两个原理的简单应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法.学生已经学过加法、乘法,本节课的内容要与之建立相关联系.由于它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法贯穿本章内容的始终,所以在本章有重要的地位,是本学科的重要内容.教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同.问题诊断分析:在本节课的教学中,学生可能遇到的问题是如何选择对应的原理解决具体问题,产生这一问题的原因是学生无法把具体的问题特征与两个计数的基本思想联系起来.要解决这一问题,在本节教学时先采取通过典型的、学生熟悉的实例,经过抽象概括而得出两个计数原理,然后按照从单一至综合的方式,安排比较典型的例题,引导学生逐步体会两个计数原理的基本思想及其应用方法.学情分析:本节课的授课对象是民族地区完全中学普通高中的学生.这些学生学习基础相对比较薄弱,思维不够灵活,分析问题的能力也不强。
为此在教学时需循序渐进,逐步培养学生对分类加法计数原理和分步乘法计数原理的辨析能力,规范学生对这种问题的分析过程和解答过程,引领学生学会解决此类问题的一般性方法,从而有效地促使学生强化对两个原理的理解深度.三维目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理,并掌握他们的区别与联系;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力;②通过对两个原理的应用,提高学生对数学知识的应用能力;情感态度与价值观:①了解学习本章的意义,激发学生的学习兴趣;②引导学生形成“自主学习”与“合作学习”等良好的学习方式.目标解析:①理解分类加法计数原理就是指将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;②理解分步乘法计数原理就是指将一个复杂问题分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程;③会应用两个计数原理解决简单的实际问题就是指根据具体问题的特征选择对应的计数原理。
1.1分类加法计数原理和分步乘法计数原理教案

1.1分类加法计数原理和分步乘法计数原理教案《1.1分类加法计数原理和分步乘法计数原理教案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!作业内容课题:分类计数原理与分步计数原理教材:苏教版选修2-3第1章第1节第1课时授课教师:江苏省海门中学江美新1、教学目标:[知识与技能目标]掌握分类计数原理和分步计数原理,并能用它们分析和解决一些简单的应用问题;通过对分类计数原理与分步计数原理的理解和运用,提高分析问题和解决问题的能力,培养逻辑思维能力。
[过程与方法目标]经历概念的建构这一过程,让学生进一步体会从特殊到一般的思想,培养学生归纳、概括等合情推理能力。
通过比较分类计数原理与分步计数原理的异同,培养学生比较、类比、归纳等数学思想方法和灵活应用的能力。
[情感态度与价值观目标]通过创设情境激发学生学习数学的情感,培养其严谨治学的态度。
通过两个原理的学习,培养学生周密思考、细心分析的学习习惯。
在自主探究的过程中,培养学生勇于探索的精神和善于合作的意识,从而实现自我的价值。
2、教学重点、难点:教学重点:对两个原理的理解和应用教学难点:正确运用分类计数原理与分步计数原理教学关键:弄清分步、分类两个重要概念3、教学方法与手段:教学方法:开放式探究、启发式引导、互动式讨论、反馈式评价学习方法:自主探究、观察发现、合作交流、归纳总结。
教学手段:运用多媒体网络教学平台,构建学生自主探究的教学环境。
4、教学过程:教学的基本流程设计:数学教学是数学活动的教学。
因此,我将整个教学过程分为以下六个教学环节:1、创设情境,提出问题;2、分析问题,形成概念;3、反思过程,提炼方法;4、运用新知,解决问题;5、变式演练,深入探究;6、归纳总结,巩固提高。
整个教学过程是“以问题为载体,以学生活动为主线”进行的。
(一)创设情境,提出问题:在课堂教学的开始,我以问题形式配合课件的动态演示,指出人们在社会生活的各个方面常需要进行计数,远古人由“结而计之”发展到“数而计之”,而对于一些复杂的计数问题,怎么解决呢?我以景激情,以情激思,点燃学生的求知欲,引领学生进入学习情境。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。
2. 让学生学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:(1)概念介绍:同一类对象的数量相加得到总数。
(2)实例讲解:学校举办运动会,参加跑步的有20人,参加跳高的有15人,参加跳远的有10人,请问参加运动会的总人数是多少?a. 班级里有男生30人,女生20人,请问班级里总共有多少人?b. 图书馆里有小说50本,科普书籍30本,请问图书馆里总共有多少本书?2. 分步乘法计数原理:(1)概念介绍:完成一项任务需要多个步骤,每个步骤的数量相乘得到总数量。
(2)实例讲解:做一份报纸,需要先排版(10分钟),印刷(20分钟),装订(10分钟),请问完成这份报纸需要多长时间?a. 制作一个蛋糕,需要打发鸡蛋(10分钟),加入面粉和糖(5分钟),烘烤(20分钟),请问制作一个蛋糕需要多长时间?b. 工厂生产一批玩具,每台机器每小时可以生产10个玩具,共有3台机器工作,请问每小时可以生产多少个玩具?三、教学方法1. 采用讲授法,讲解分类加法计数原理和分步乘法计数原理的概念及应用。
2. 利用实例讲解,让学生更好地理解计数原理。
3. 设计练习题,让学生动手实践,巩固所学知识。
四、教学评价1. 课堂问答:检查学生对分类加法计数原理和分步乘法计数原理的理解。
2. 练习题解答:评价学生运用计数原理解决问题的能力。
3. 课后作业:布置相关题目,让学生进一步巩固所学知识。
五、教学资源1. PPT课件:展示分类加法计数原理和分步乘法计数原理的概念及实例。
2. 练习题:提供丰富的练习题,让学生动手实践。
3. 教学视频:可选用的相关教学视频,辅助学生理解计数原理。
4. 黑板、粉笔:用于板书关键词和讲解实例。
六、教学步骤1. 引入新课:通过一个简单的实例,让学生感受分类加法计数原理和分步乘法计数原理的应用。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 理解分类加法计数原理和分步乘法计数原理的概念。
2. 学会运用分类加法计数原理和分步乘法计法原理解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容1. 分类加法计数原理:定义:如果一个事件可以分成几个互斥的部分,这个事件发生的总次数就等于各部分事件发生次数的和。
公式:P(A) = P(A1) + P(A2) + + P(An)2. 分步乘法计数原理:定义:如果一个事件可以分成几个相互独立的步骤,这个事件发生的总次数等于各步骤事件发生次数的乘积。
公式:P(A) = P(A1) ×P(A2) ××P(An)三、教学重点与难点1. 教学重点:分类加法计数原理的概念和公式。
分步乘法计数原理的概念和公式。
2. 教学难点:如何运用分类加法计数原理和分步乘法计数原理解决实际问题。
四、教学方法1. 采用讲授法讲解分类加法计数原理和分步乘法计数原理的概念和公式。
2. 运用案例分析法引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
3. 开展小组讨论法,让学生分组讨论和解决问题,培养学生的团队协作能力。
五、教学步骤1. 导入新课,介绍分类加法计数原理和分步乘法计数原理的概念。
2. 讲解分类加法计数原理的公式和应用示例。
3. 讲解分步乘法计数原理的公式和应用示例。
4. 开展案例分析,让学生运用分类加法计数原理和分步乘法计数原理解决实际问题。
5. 进行小组讨论,让学生分组讨论和解决问题,分享解题心得。
六、教学评估1. 课堂问答:通过提问学生,了解学生对分类加法计数原理和分步乘法计数原理的理解程度。
2. 案例分析报告:评估学生在案例分析中的表现,包括问题解决能力和逻辑思维能力。
3. 小组讨论评价:评价学生在小组讨论中的参与程度、团队合作能力和问题解决能力。
七、教学反思1. 反思教学内容:检查教学内容是否全面、清晰,是否需要调整或补充。
1.1分类加法计数原理与分步乘法计数原理(3)(教学设计)

1.1分类加法计数原理与分步乘法计数原理(3)(教学设计)教学目标知识与技能分类加法计数原理和分步乘法计数原理的应用过程与方程:通过对简单实例的分析概括,总结分类加法计数原理和分步乘法计数原理的应用的方法。
情感、态度与价值观引导学生形成“自主学习”与“合作学习”等良好的学习方式,培养学生的抽象概括能力和分类讨论能力。
教学重点:分类加法计数原理和分步乘法计数原理的应用。
教学难点:分类加法计数原理和分步乘法计数原理的应用。
一、复习回顾:1.复习回顾⑴分类加法计数原理:完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2中不同的方法,…,在第n类方式中有m n中不同的方法,那么完成这件事共有N = m1 + m2 +…+ m n种不同的方法.要点分析:(1)分类;(2)相互独立;(3)N = m1 + m2 +…+ m n(各类方法之和).⑵分步乘法计数原理:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有N = m1 ×m2 ×…×m n种不同的方法.要点分析:(1)分步;(2)每步缺一不可,依次完成;(3)N = m1 ×m2 ×…×m n(各步方法之积).⑶两种基本计数原理的区别与联系:(见下表)二、师生互动,新课讲解:例1:三个比赛项目,六人报名参加。
1)每人参加一项有多少种不同的方法?2)每项1人,且每人至多参加一项,有多少种不同的方法?3)每项1人,每人参加的项数不限,有多少种不同的方法?解:1)36=729;2)6*5*4=1203)63=216例2高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)50+60+55=165(种),即所求选法为165种.(2)30+30+20=80(种),即所求选法有80种.例3 用0,1,2,3,4这五个数字可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位数?(3)四位奇数?解:(1)完成“组成无重复数字的四位密码”这件事,可以分四个步骤:第一步选取左边第一个位置上的数字,有5种选取方法;第二步选取左边第二个位置上的数字,有4种选取方法;第三步选取左边第三个位置上的数字,有3种选取方法;第四步选取左边第四个位置上的数字,有2种选取方法;由分步乘法计数原理,可组成不同的四位密码共有N=5×4×3×2=120(个)(2)完成“组成无重复数字的四位数”这件事,可以分四个步骤:第一步从1,2,3,4中选取一个数字做千位数字,有4 种不同的选取方法;第二步从1,2,3,4中剩余的三个数字和0共四个数字中选取一个数字做百位数字,有4种不同的选取方法;第三步从剩余的三个数字中选取一个数字做十位数字,有3种不同的选取方法;第四步从剩余的两个数字中选取一个数字做个位数字,有2种不同的选取方法;由分步乘法计数原理,可组成不同的四位数共有N=4×4×3×2=96(个)(3)解:完成“组成无重复数字的四位奇数”这件事,可以分四个步骤:第一步确定个位数字:从1,3中选取一个数字做个位数字, 有2种不同的选取方法;第二步确定千位数字:从1,2,3,4剩余的三个数字中选取一个数字做千位数字,有3种不同的选取方法;第三步确定百位数字:从1,2,3,4剩余的两个数字和0共三个数字中,选取一个数字做百位数字,有3种不同的选取方法;第四步确定十位数字:从剩余的两个数字中,选取一个数字做十位数字,有2种不同的选取方法;由分步乘法计数原理,符合条件的四位奇数共有N=2×3×3 ×2 =36(个).例4:已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1) P可表示平面上多少个不同的点?(2) P可表示平面上多少个第二象限的点?(3) P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步计数原理,得到平面上的点数是6×6=36.(2) 确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步计数原理,得到第二象限的点的个数是3×2=6.(3) 点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.例5:集合A={a,b,c,d,e},它的子集个数为,真子集个数为,非空子集个数为,非空真子集个数为。
分类加法计数原理与分步乘法计数原理教学设计

分类加法计数原理与分步乘法计数原理教学设计教学设计:分类加法计数原理与分步乘法计数原理一、教学目标:1.了解分类加法计数原理和分步乘法计数原理的概念和应用。
2.掌握分类加法计数原理和分步乘法计数原理的解题方法。
3.培养学生的分类、归纳和逻辑思维能力。
二、教学准备:1.教学用具:黑板、粉笔、教学课件、教学实例。
2.学生学具:纸笔。
三、教学过程:步骤一:导入新知识1.教师简要介绍分类加法计数原理和分步乘法计数原理的内容和应用。
2.引导学生思考:在日常生活中,是否经常遇到需要进行分类和计数的问题?举例说明。
步骤二:分类加法计数原理1.定义:将问题分解成若干个相互独立的部分,计算每个部分的数量然后求和。
2.通过教学实例,讲解分类加法计数原理的解题方法。
(1)例1:班有3个男生和4个女生,问这个班一共有几个人?(2)例2:有红、黄、绿三种颜色的苹果,已知红色有5个,黄色有3个,绿色有2个,问一共有几个苹果?(3)例3:一件衣服原价100元,店铺打8折,现在卖多少钱?3.设计学生练习题,引导学生自主解答。
步骤三:分步乘法计数原理1.定义:将问题分解成若干个相互独立的步骤,计算每个步骤的数量然后相乘。
2.通过教学实例,讲解分步乘法计数原理的解题方法。
(1)例1:从1到4,选出一个数字作为个位数,选出一个数字作为十位数,选出一个数字作为百位数,一共有多少种不同的三位数?(2)例2:现有4个不同的数字,从中选取2个数字,可以组成多少个不同的两位数?3.设计学生练习题,引导学生自主解答。
步骤四:小结与巩固1.简要总结分类加法计数原理和分步乘法计数原理的应用和解题方法。
2.设计综合练习题,要求学生灵活运用分类加法计数原理和分步乘法计数原理解答问题。
步骤五:拓展应用1.鼓励学生运用分类加法计数原理和分步乘法计数原理解决实际生活中的问题。
(1)例1:在次抽奖活动中,每个人有5张彩票,每张彩票都有4个数字,已知每个数字的范围是1到10,那么这次抽奖一共有多少个可能的中奖号码?(2)例2:一个班级有4个男生和3个女生,学校要选出一个代表队,其中队长必须是男生,队员可以是男生或女生,那么一共有多少种可能的代表队组合?2.扩大学生的思维视野,培养他们的综合运用能力。
分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、分类加法计数原理教案主旨: 学习分类加法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明有3个红色球和4个蓝色球,他想穿一双颜色相同的球,有多少种可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分类加法计数原理的概念: 分类加法计数原理是指在一个问题中,通过将问题进行分类,然后对每个分类进行计数,最后将各个分类的计数结果相加,得到最终的解决方案。
2. 给出示例问题: 一个篮球队有5个队员,一个足球队有6个队员,现在要选出两个队员进行混合比赛,有多少种可能性?三、讲解 (15分钟)1. 分类: 将问题分为篮球队员和足球队员两类。
2. 计数: 分别计算篮球队员和足球队员的可能性,篮球队员有C(5,2)种组合方式,足球队员有C(6,2)种组合方式。
3. 合并: 将篮球队员和足球队员的组合数相加得到最终的解。
四、练习 (15分钟)1. 分发练习册,让学生完成相关练习。
2. 教师巡视督促学生的练习过程,提供必要的帮助和指导。
五、总结 (5分钟)1. 总结分类加法计数原理的步骤:分类、计数、合并。
2. 强调分类加法计数原理在解决实际问题中的应用。
3. 回顾学生在课堂练习中的解题思路和结果。
二、分步乘法计数原理教案主旨: 学习分步乘法计数原理,能够运用该原理解决实际问题。
一、导入 (5分钟)1. 引入问题:小明喜欢穿不同颜色的T恤和裤子,他有3种不同颜色的T恤和4种不同颜色的裤子,他有多少种穿搭可能性?2. 学生回答问题并讨论解决方法。
二、呈现 (10分钟)1. 介绍分步乘法计数原理的概念: 分步乘法计数原理是指在一个问题中,将问题分为多个独立的步骤,然后计算每个步骤的可能性,并将各个步骤的可能性相乘,得到最终的解决方案。
2. 给出示例问题: 一个密码锁有3个拨轮,每个拨轮上分别有0-9的数字,求密码锁的可能组合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 分类加法计数原理和分布乘法计数原理(1)
教学设计
教材分析
“分类加法计数原理和分步乘法计数原理”是人教A版高中数学课标教材选修2-3“第一章计数原理”第1.1节的内容,教学需要安排2个课时,本节课为第1课时.两个计数原理在本章中起到承前启后的作用,它不仅是解决计数问题的最基本、最重要的方法,更是后续学习排列、组合和二项式定理的理论依据.
学情分析
在幼儿园和小学阶段,我们可以通过一个一个地数数的方法,数出相应的数;在初中学习“随机事件的概率”和高中学习“古典概型”时,学生已学会了用列举法和树状图法解决最简单的计数问题,这是学生学习两个计数原理的认知基础.在本节课中,如何让学生借助已有的数学活动经验引导学生归纳概括出两个计数原理,并体会抽象思维、由特殊到一般的数学思想、类比思想在计数原理学习中的重要作用,是本课的难点.区分清楚“分步”与“分类”问题,是选择两个计数原理解决计数问题的关键.
教学目标
知识与技能理解分类加法计数原理与分步乘法计数原理;会利用两个原理分析和解决一些简单的实际问题.
过程与方法通过引导,探究得出结论,培养学生的理解能力和抽象概括能力;通过知识应用培养学生的分析和解决问题的能力.
情感、态度与价值观通过实例引入体会抽象思维、由特殊到一般的
数学思想、类比思想在计数原理学习中的重要作用.
教学重点归纳出两个计数原理,并能初步用其解决一些简单的实际问题.
教学难点借助学生已有的认知基础和经验,通过实例抽象概括出两个计数原理,并体会抽象思维、由特殊到一般的数学思想、类比思想在计数原理学习中的重要作用.
教学方法
本节课是概念原理课的教学典范.采用探究式教学为主,辅以启发式、讨论式的教学方式.
教学用具粉笔、课本、导学案、多媒体.
教学过程
一、情境引入
日常生产、生活中计数问题大量存在.例如:手机可以设置6位开机密码,一共可以设置多少个密码?QQ号码已经从最初的5位数上升了到现在的11位数,增加了多少用户呢?学校要举行篮球比赛,在确定赛制后,体育组老师要算一算共要举行多少场比赛……,这些问题的解决有赖于我们本节课将要学习的“计数原理”.
二、合作探究
[探究1]有一个女孩小丽准备去逛街,当她决定自己要穿什么衣服时,发现衣柜中有连衣裙红、黄各一件,休闲装红、绿、蓝各一套,那么她共有多少种选择?
【设置意图】探究1以一个有趣的实际问题引出计数问题,激发学生的求知欲,让学生认识到学习计数原理的重要性,提高学生主动参与学习的积极性.
[探究2]小华因身形瘦弱准备增肥,他为自己制定了2个方案:一是只吃水果,有苹果、葡萄、榴莲、龙眼4种选择;二只是吃肉,
有鸡肉、牛肉、羊肉3种选择。
那么他共有多少种选择?
【设置意图】探究2通过同类举例,对“数学化”后的问题“去
情景化”,形成共性认识—归纳1.
归纳1 如果完成一件事情有2类不同的方案,在第1类方案中有m
1种不同的方法,在第2类方案中有m2种不同的方法,那么完成这件事情的方法总数为m1+m2.
[探究3] 小明准备从喀什去乌鲁木齐探亲,可以坐飞机,可以
坐火车,也可以乘客车。
一天中,飞机有2班,火车有3班,客车有4
班。
那么,一天中小明从喀什去乌鲁木齐共有多少种不同的走法?
【设置意图】探究3中方案总数为3,通过归纳把2类方案的分类加法计数原理推广到n类的情况,加法原理的一般性结论至此达成.同时,体现出抽象思维、由特殊到一般的数学思想在计数原理学习中的重要作用.
1.分类加法计数原理:
如果完成一件事情有n类不同的方案,在第1类方案中,有m1种不
同的方法;在第2类方案中,有m2种不同的方法;在第3类方案中,有
m3种不同的方法;…;在第n类方案中有m n种不同的方法,那么完成
这件事情的方法总数为m1+m2+m3+…+m n.
例1 在填写高考志愿表时,一名高中毕业生了解到,A,B两所大
学各有一些自己感兴趣的强项专业,具体情况如下:
【设置意图】巩固概念,学会运用原理解决简单的问题.本例是对通过探究1、2、3得出的加法原理的再深化.通过本例,学生对加法原理的理解和掌握达到一个新的高度.
[探究4]假定从提孜那甫乡去彩云人家的道路有2条,从彩云人家去金草滩的道路有3条,那么从提孜那甫乡经过彩云人家去金草滩,总共有多少条不同的路线?
【设置意图】探究4从一个贴近实际的有趣问题出发,经过学生的合作探究顺利达成归纳2.从加法原理过渡到乘法原理,让学生检验分步相乘的合理性与简洁性,让学生从感性体验上升到理性认识.
[探究5]假定孙悟空偷吃人参果可以分成两步去完成:第一步,偷摘人参果有4种不同的方法;第二步,吃人参果有2种不同的方法,那么孙悟空偷吃人参果共有多少种不同的方法?
【设置意图】类比分类加法计数原理,感受定义的合理性与简洁性,让学生在问题的解决中,经理数学原理形成的一般研究过程,让学生从感性体验上升到理性认识.
归纳2 如果完成一件事情需要2个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,那么完成这件事情的方法总数为m1m2.
[探究6]把大象装入冰箱有多少种方法?
第1步:把冰箱门打开.
可以用手打开;可以用脚踹开.
第2步:把大象塞进去.
可以用手推进去;可以让大象自己走进去.
第3步:把冰箱门关上.
可以用手关上;可以让大象自己关上.
【设置意图】探究6的问题设置摘自小品,这可以极大地激发学生的学习热情.此外,探究6是对探究4、5的一个深化,类比加法原理的归结过程,可以把2类方案的分布乘法计数原理推广到n类的情况,乘法原理的一般性结论至此达成,体现出抽象思维、由特殊到一般的数学思想、类比思想在计数原理学习中的重要作用.
2.分布乘法计数原理:
如果完成一件事情需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第3步有m3种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事情的总方法数为m1m2m3…m n.
例2 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左右两边墙上的指定位置,共有多少种不同的挂法?
【设置意图】例2是对乘法原理的再深化和加强.本例的解法体现出分类加法计数原理和分布乘法计数原理之间的联系,有助于拓宽学生思维.
三、巩固提升
1.现有高一年级学生3名,高二年级学生5名,高三年级学生4名,从中任选1人参加接待外宾活动,有多少种不同的选法?
2.从5名同学中选出正、副组长各1名,共有多少种不同的选法?
【设计意图】运用乘法原理解决生活中的实际问题,.
四、拓展延伸
书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.问:
(1)从书架中任取1本书,有多少种不同的取法?
(2)从书架的第1,2,3层各取1本书,有多少种不同的取法?
【设计意图】设问循序渐进,突出强调解题时,弄清完成一件
事的要求至关重要,只有这样才能正确区分“分类”和“分步”(区分的关键是对“完成一件事”的理解).
五、课堂小结
1.分类加法计数原理中各类方案相互独立,各类方案中的各种方法也相互独立,用任何一类方案中的任何一种方法都可以单独完成这件事.应用分类加法计数原理解决计数问题时,要做到“不重不漏”,分类后再分别对每一类进行计数,最后把每一类的方法数相加,得到方法总数.
2.分布乘法计数原理中每个步骤都是相互依存的,离开其中的任何一步都不能单独完成这件事,只有当各个步骤都完成,才算完成这件事.应用分布乘法计数原理解决计数问题时,要做到“步骤完整”,分布后再计算每一步的方法数,最后把每一步的方法数相乘,得到方法总数.
【设计意图】学生在谈收获的同时,就是学生主动建构知识的过程,加深对本节知识的理解和思想方法的掌握.
六、作业布置
1.从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经过B村去C村,共有多少条不同的路线?
2.从4名同学中选出正、副班长各1名,有多少种不同的选法?
3.三个班分别从5个风景点中选择一处游览,不同的选法种数是多少?
4.手机可以设置6位开机密码,一共可以设置多少个密码?
5.QQ号码已经从最初的5位数上升了到现在的11位数,增加了多少用户呢?
【设计意图】课后作业与实际问题联系紧密,从而激发学生的探究精神,使学生体验到成功的喜悦.
板书设计。