高等数学 含参变量的积分
高等数学 重积分的换元法及含参变量的积分

( x ) f ( x , y ) d ( x) ( x ) ( x ) f ( x , y )dy ( x ) dy dx x f [ x , ( x )] ( x ) f [ x , ( x )] ( x ). (7)
v
柱面坐标 4. 三重积分换元法 球面坐标
(1) 柱面坐标的体积元素
dxdydz rdrd dz
x r cos , y r sin , z z.
x r sin cos , (2) 球面坐标的体积元素 2 dxdydz r sindrdd y r sin sin , z r cos . (3) 广义球面坐标的体积元素 x ar sin cos , 2 dxdydz abcr sindrdd y br sin sin , z cr cos .
当 x 0 时,上式右端最后一个积分的积分限不变,
根据证明定理1时同样的理由,这个积分趋于 零. ( x ) 又 ( x x ) f ( x x , y )dy M ( x x ) ( x ) ,
( x)
( x x )
f ( x x , y )dy M ( x x ) ( x ) .
f ( x , y )dxdy f [ x(u, v ), y(u, v )] J ( u, v ) dudv.
D D
注意:
同时也兼顾被积函数 f ( x , y ) 的形式.
基本要求:变换后定限简便,求积容易.
1.作什么变换主要取决 于积分区域 D 的形状,
参变量积分

由复合函数的连续性
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))
在[0,1][c,d]上连续,由定理1,
F ( y)
在[c,d]上连续.
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
定理4设f(x,y), fy(x,y)在矩形[a,b,c,d]上连续, a(y), b (y) 存在,且当y[c,d]时,
0
sin t dt 收敛,故对任意>0,存在M>0,使对任意 t
数学分析选讲
A >M>0,有
多媒体教学课件
sin t | dt | . A t 因此当Aa>M时,对任意x[a,+),有
Ax aA M ,
从而
|
Ax sin xy sin t dt || dy | . A t y
b( y )
a( y )
f ( x, y)dx
数学分析选讲
多媒体教学课件
证明:作积分变换 x a( y ) t (b( y ) a( y )), 则
F ( y)
b( y )
a( y )
1
f ( x, y)dx
f (a( y ) t (b( y ) a( y )), y )(b( y ) a( y ))dt ,
多媒体教学课件
定理5设函数f(x,y)在矩形[a,b,c,d]上连续,,是
d
c
dy f ( x, y )dx dx f ( x, y )dy
b b d a a c
第十一讲 含参变量的无限积分

三、含参变量的无穷积分设二元函数(,)f x u 在区域(,)D a x u αβ≤<+∞≤≤有定义,[,]u αβ∀∈,无穷积分(,)af x u d x +∞⎰都收敛,即[,]u αβ∀∈都对应唯一一个无穷积分(值)(,)af x u dx +∞⎰,于是,(,)af x u dx +∞⎰是[,]αβ上的函数,表为()(,),[,]au f x u dx u ϕαβ+∞=∈⎰,称为含参变量的无穷积分,有时也简称为无穷积分,u 是参变量.已知无穷积分()af x dx +∞⎰与数值级数1n n u ∞=∑的敛散性概念、敛散性判别法及其性质基本上是平行的,不难想到含参变量的无穷积分(,)af x u dx +∞⎰与函数级数1()nn ux ∞=∑之间亦应如此.讨论函数级数的和函数的分析性质时,函数级数的一致收敛性起着重要作用;同样,讨论含参变量的无穷积分的函数分析性质时,一致收敛性同样也起着重要的作用.[,]u αβ∀∈,无穷积分(,)af x u dx +∞⎰都收敛,即[,]u αβ∀∈,有(,)lim(,)A aaA f x u dx f x u dx +∞→+∞=⎰⎰,即0,,u u A a A A ε∀>∃≥∀>,有(,)(,)(,)A aaAf x u d x f x u d x f x u d x ε+∞+∞-=<⎰⎰⎰. (4)一般来说,相等的ε之下,不同的,u u A 也不同。
是否存在一个通用的0A a ≥,0,[,]A A u αβ∀>∀∈,有(4)式成立呢?事实上,有些参变量的无穷积分在[,]αβ上存在0A ,于是,有下面的一致收敛概念:定义 若000,,,,A a A A u I ε∀>∃≥∀>∀∈有(,)(,)(,)A aaAf x u dx f x u dx f x u dx ε+∞+∞-=<⎰⎰⎰,则称无穷积分(,)af x u d x +∞⎰在区间I 一致收敛;若无穷积分(,)af x u dx +∞⎰在区间I不存在通用的0A a ≥,就称(,)af x u dx +∞⎰在区间I 非一致收敛.现将一致收敛与非一致收敛对比如下: 一致收敛: 000,,,,A a A A u I ε∀>∃≥∀>∀∈有(,)Af x u dx ε+∞<⎰;非一致收敛:0000,,,A a A A u I ε∃>∀≥∃>∃∈,有00(,)A f x u dx ε+∞≥⎰.例5 证明:积分0xu ue d x +∞-⎰在区间[,](0)a b a >一致收敛,在[0,)+∞上非一致收敛.证:设0A >,则1()xutt A uA aAA uA uued x xu tuedt e dt ee a u b u+∞+∞+∞-----===≤≤≤⎰⎰⎰.0ε∀>,要使不等式Aa e ε-<成立,只要11ln0A aε>≥。
第9章 含参变量积分

∫N
f (x, y)dy ≤ M ;
c
(2)对每个 x ∈[a, b] ,函数 g(x, y) 关于 y 是单调递减的且当 y → ∞ 时,对参量 x ,
+∞
∫ g(x, y) 一致收敛于 0,则含参量反常积分 f (x, y)g(x, y)dy 在[a,b] 一致收敛。 c
定理 5(阿贝尔判别法)设
敛。
判别法则
定 理 1 ( 柯西 准 则 )含参 量 无 穷积分 (1 ) 在 [a,b] 上 一 致收 敛的 充 要条 件是 :
∀ε > 0, ∃M > c,当A1, A2 > M时,∀x ∈[a,b] ,有
∫| A2 f (x, y)dy |< ε A1
定理 2(魏尔斯特拉斯 M-判别法)设有函数 g( y) ,使得
∫ I '(x) =
+∞
c fx (x, y)dy
+∞
∫ 定理 3(可积性)设 f (x, y) 在[a,b]×[c, +∞) 上连续,若 I (x) = f (x, y)dy 在[a,b] 上 c
一致收敛,则 I (x) 在[a, b] 上可积,且
b
+∞
+∞
b
∫a dx∫c
∫ f (x, y)dy = c
∫ y(x) = 1
x
n−1
(x − t) f (t)dt, x ∈[a,b]
(n −1)! a
是微分方程 y(n) (x) = f (x) 的解,并且满足条件 y(a) = y' (a) = = y(n−1) (a) = 0 。
证明:设 F (x, t) = (x − t)n−1 f (t) ,则 f (x, t), fx (x,t) 在[a, b]×[a, b] 上连续,因此有
含参变量积分.ppt

定理2 如果函数 f ( x, y) 在矩形
R(a x b, y )
上连续,则
b
b
a [ f ( x, y)dy]dx [a f ( x, y)dx]dy.
公式(2)也可写成
b
b
a dx f ( x, y)dy dya f ( x, y)dx.
(2)
(2)
要点是:积分号与积分号的互换.
( xx )
( x)
f ( x x, y)dy f ( x, y)dy.
xx ( xx )
(x)f ( x ຫໍສະໝຸດ x, y)dy( xx )
(x)
( x)
f ( x x, y)dy f ( x x, y)dy
( xx )
(x)
( xx )
f ( x x, y)dy,
R(a x b, b )
上连续,那么由积分
(
x)
f
(
x,
y)dy
(a
x b)
确定的函数 ( x)在 [a, b]上也连续.
同理
x
x
x
f
x,
ydy
3
也是参变量 x的函数.
要点是:积分号与极限号的互换.
高等数学(下)
例1 求
lim 1 e xydx.
y0 0
高等数学(下)
定理1证 设 x 和 x x 是[a,b]上的两点,则 ( x x) ( x)
x 0
高等数学(下)
证 因为 ( x) lim ( x x) ( x) ,
x0
x
为了求 ( x),先利用公式(1)作出增量之比
( x x) ( x)
x
f ( x x, y) x
含参变量的积分

ξ12.3 含参变量的积分一、含参变量的有限积分设二元函数f (x,u)在矩形域R (βα≤≤≤≤u b x a ,)有定义,],,[βα∈∀u 一元函数f(x,u)在[a,b]可积,即积分dxu x f a b),(⎰存在 ],[βα∈∀u 都对应唯一一个确定的积分(值)),(u x f a b⎰dx .于是,积分dx u x f a b),(⎰是定义在区间],[βα的函数,记为],[,),()(βαϕ∈=⎰u dx u x f ab u ,称为含参变量的有限积分,u 称为参变量。
下面讨论函数)(u ϕ在区间 ],[βα的分析性质,即连续性、可微性与可积性定理 1 若函数),(u x f 在矩形域R ),(βα≤≤≤≤u b x a 连续,则函数dx u x f abu ),()(⎰=ϕ在区间也连续。
证明有,使取],,[u ],,[βαβα∈∆+∆∈∀u u u.),(),()()(.)],(),([)()dx u x f u u x f abu u u dx u x f u u x f abu u u -∆+≤-∆+-∆+=-∆+⎰⎰ϕϕϕϕ(根据ξ10.2定理8,函数),(u x f 在闭矩形域R 一致连续,即,,:),(),(,0,02121221,1δδδε<-<-∈∀>∃>∀y y x x R y x y x 有ε<-),(),(2211y x f y x f .特别地,.:),(),,(δ<∆∈∆+∀u R u u x u x 有 .),(),(ε<-∆+u x f u u x f 于是,,δ<∆u 有)(),(),()()(a b dx u x f u u x f ab u u u -<-∆+≤-∆+⎰εϕϕ 即函数在区间连续.设[]βα,0∈u ,由连续定义,有)()(lim ),(limu u dx u x f a bu u u u ϕϕ==→→⎰=dx u x f a b dx u x f a b u u ),(lim ),(00→⎰⎰=. 由此可见,当函数),(u x f 满足定理1的条件时,积分与极限可以交换次序. 定理2 若函数),(u x f 与uf∂∂在矩形域R(βα≤≤≤≤u b x a ,)连续,则函数在区间[βα,]可导,且[]βα,∈∀u ,有dxu u x f a b u du d∂∂=⎰),()(ϕ 或dx u u x f a b dx u x f abdu d ∂∂=⎰⎰),(),(. 简称积分号下可微分.证明 [][],,u,,,βαβα∈∆+∆∈∀u u u 使取有[].),(),()()(dx u x f u u x f abu u u -∆+=-∆+⎰ϕϕ (1) 已知uf∂∂在R 存在,根据微分中值定理,有 .10,),(),(),('<<∆∆+=-∆+θθu u u x f u x f u u x f u 将它代入(1)式,等号两端除以u ∆,有.10,),()()('<<∆+=∆-∆+⎰θθϕϕdx u u x f ab u u u u u 在上面等式等号两端减去dx u x f abu ),('⎰,有d x u x f abu u u u u ),()()('⎰-∆-∆+ϕϕ dx u x f u u x f ab u u ),(),(''-∆+≤⎰θ. 根据 ξ10.2定理8,函数),('u x f u 在闭矩形域R 一致连续,即,0,0>∃>∀δε,:),(),,(δ<∆∈∆+∀u R u u x u x 有.),(),(''εθ<-∆+u x f u u x f u u 从而,有),(),()()('a b dx u x f abu u u u u -≤-∆-∆+⎰εϕϕ即 dx u x f abuu u u u u ),()()(lim '0⎰=∆-∆+→∆ϕϕ 或.),()(dx u u x f a b u dud∂∂=⎰ϕ 定理2指出,当函数),(u x f 满足定理2的条件时,导数与积分可以交换次序. 定理 3 若函数),(u x f 在矩形域R (βα≤≤≤≤u b x a ,)连续,则函数dx u x f abu ),()(⎰=ϕ在区间[]βα,可积,且.).(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ (2) 简称积分号下可积分.证明 根据定理1,函数)(u ϕ在[]βα,连续,则函数)(u ϕ在区间[]βα,可积.下面证明等式(2)成立.[]βα,∈∀t ,设.),()(,),()(21dx du u x f t a b t L du dx u x f a b t t L ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎰⎰⎰⎰αα根据4.8ξ定理1,有.),()('1dx t x f abt L ⎰=已知du u x f t ),(⎰α与du u x f tt ),(⎰∂∂α都在R 连续,根据定理2,有dx du u x f ta b dt d t L ⎥⎦⎤⎢⎣⎡=⎰⎰),()('2α =dx du u x f t t a b ⎥⎦⎤⎢⎣⎡∂∂⎰⎰),(α =dx t x f ab),(⎰.于是,[]βα,∈∀t ,有()().'2'1t L t L =.由1.6ξ例1,()(),21C t L t L =-其中C 是常数.特别地,当α=t 时,()(),021==ααL L 则C=0,即()()β==t t L t L 当.21时,有()(),21ββL L =即.),(),(dx du u x f a b du dx u x f a b ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎰⎰⎰⎰αβαβ定理3指出,当函数),(u x f 满足定理3的条件时,关于不同变量的积分可以交换次序。
高等数学含参变量的正常积分

设 f ( x, y) 是定义在矩形域 R(a x b, c y d ) 上的二元 函数, 当
x 取 [a, b] 上某定值时,函数
f ( x, y) 则是定义在 [c, d ]
上以 y为自变量的一元函数.若此时 f ( x, y)在 [c, d ]上可积,
则其积分值是 x 在 [a, b]上取值的函数,表为
I(x) f ( x, y)dy 在 [a, b] 上可微, 且 c d d d f ( x, y )dy f ( x, y )dy c x dx c
运算与积分运算可交换顺序。
同理:对于 J(y) f ( x, y )dx,在[c, d ]上可微,且
b d b f ( x , y )dx f ( x , y )dx a y dy a
0
cos x 1 1 dx 1 dx 0 1 cos x 1 cos x
1 1 dx 0 1 cos x
1 2 1 2 2 1 2 1
1
x I ( y ) dx 0 (1 x 2 )( 1 xy)
1
x y y 0 1 x 2 1 x 2 1 xy dx 1 ln 2 y ln (1 y ) 2 1 y [a, b]
c
d
称为含参量 x 的正常积分,或简称含参量积分.
类似地称
J ( y) f ( x, y) dx
a
b
为含参变量
y 的积分。
I ( y ) 是一个由含参变量的积分所确定的函数,
2. 性质 (i)、 连续性 :
含参变量的积分

f ( x, u)dx, u [ , ],
称为含参变量的无穷积分, u 是参变量.
2.一致收敛的定义
设 u I (区间) ,无穷积分 f ( x, u)dx 收 敛. 0, A 0, A A , u I , 有 若
0 0
a
a
f ( x , u)dx f ( x , u)dx
A a
A
f ( x , u)dx ,
则称无穷积分
a
f ( x, u)dx ,在区间 I 一致
收敛. 非一致收敛的定义 若 0 0, A 0, A0 A, u0 I , 有
A0
f ( x , u) 0 .
一 函数 (u)的分析性质 ( u) f ( x , u)dx
b a
定理1
若函数 f ( x, u) 在矩形域
R (a x b, u ) 连续,则函数 (u)
在区间 [ , ] 也连续.
lim f ( x , u)dx lim ( u) ( u0 ) u u u u
1 0
计算积分 I
arctan x
2
练: 1.设 (1)F ( ) 0
x 1 x ln(1 x )
dx .
dx;
x (2)F ( ) 0 f ( x , x )dx;
求 F '( ).
1 xb xa 2计算定积分 1cos(ln ) dx ,0 a b. 0 x ln x
0
b a
0
b lim a u u
f ( x , u)dx.
0
f 定理2 若函数 f ( x, u)与 u 在矩形域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
因此得
I ln 2
8
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
二、积分限含参变量的积分
在实际问题中, 常遇到积分限含参变量的情形, 例如,
设 f (x, y) 为定义在区域
(x) y (x)
D: axb
上的连续函数, 则
(x)
(x) f (x, y) d y ( x)
y y (x)
D
y (x)
oa
bx
也是参变量 x 的函数 , 其定义域为 [ a , b ] .
利用前面的定理可推出这种含参积分的性质.
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
定理4.(连续性) 若 f (x, y) 在区域
D :{(x, y) (x) y (x), a x b}
时, 求导与求积运算是可以交换顺序的 .
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
例1. 求 I 1 xb xa d x (0 a b). 0 ln x
解: 由被积函数的特点想到积分:
b a
xy d
y
xy ln x
b a
xb xa ln x
I
1
dx
b xy d y
a
D f (x, y) d x d y
推论: 在定理2 的条件下, 累次积分可交换求积顺序,
即
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
定理3. (可微性) 若 f (x, y) 及其偏导数 fx (x, y) 都在
矩形域
R
[a,b][, ]上连续, 则(x)
f
(x, y) d yLeabharlann (x x) (x) [
f
(
x
x,
y)
f (x, y)]d y
f (x x, y) f (x, y) d y
这说明(x) 在[a,b]上连续.
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
定理1 表明, 定义在闭矩形域上的连续函数, 其极限运
算与积分运算的顺序是可交换的.即对任意 x0 [a,b],
上连续, 其中(x), (x) 为[a,b]上的连续函数, 则函数
(x)
(x) f (x, y) d y ( x)
在 [a,b]上连续.
证: 令 y (x) t[ (x) (x)], t [0, 1], 则
1
(x) 0 f (x,
)
由于被积函数在矩形域[a,b][0, 1]上连续, 由定理1知,
(t)
1 0
ln(1 t x) 1 x2
d
x.
显然,
ln(1 t x) 1 x2
在[0,1]
[0,1]上连续,
(0)
0,
(1)
I
,
由于
(t)
1 0
(1
x
2
x )(1
t
x)
d
x
1 1 t2
1
0
x 1 x2
1
t
x
2
t 1 t x
d
x
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
1 1 t
证: 由于 f (x, y) 在闭区域R上连续, 所以一致连续, 即
任给 0,存在 0, 对R内任意两点 (x1, y1), (x2, y2 ),
只要
x1 x2 , y1 y2
就有
f (x1, y1) f (x2 , y2 )
因此, 任给 0, 存在 0, 当x 时, 就有
lim f (x, y) d y lim f (x, y) d y
xx0
xx0
同理可证, 若 f (x, y) 在矩形域 R [a,b][, ]上连
续, 则含参变量的积分
b
( y) a f (x, y) d x
也在[, ]上连续.
由连续性定理易得下述可积性定理:
2020/8/2
重积分
x a x
f
(x,
y) d
x
d
y
重积分
机动 目录 上页 下页 返回 结束
x
a g(x) d x
f
(x,
y)
f
(a,
y) d
y
(x) (a)
因上式左边的变上限积分可导, 因此右边 ( x) 可微,且有
(x) g(x) fx (x, y) d y
此定理说明, 被积函数及其偏导数在闭矩形域上连续
机动 目录 上页 下页 返回 结束
定理2. (可积性) 若 f (x, y) 在矩形域 R [a,b][, ]
上连续, 则(x) f (x, y) d y 在[a,b]上可积,且
D f (x, y) d x d y 同样, ( y) b f (x, y) d x 在[, ]上可积,且
在[a,b]上可微 ,且
(x) d dx
f (x, y) d y
fx (x, y) d y
证: 令 g(x) fx (x, y) d y, 则g(x) 是[a,b]上的连续
函数, 故当x [a,b] 时,
x g(x)d x
a
x
a
fx (x, y) d
y
d x
2020/8/2
*第五节
第九章
含参变量的积分
一、被积函数含参变量的积分 二、积分限含参变量的积分
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
一、被积函数含参变量的积分
设 f (x, y) 是矩形域 R [a,b][, ]上的连续函数,
则积分
f (x, y) d y 确定了一个定义在[a, b]上的函数,
上述积分确定的函数(x) 在 [a,b]上连续.
2020/8/2
记作
(x)
f (x, y) d y
①
x 称为参变量, 上式称为含参变量的积分.
含参积分的性质 — 连续性, 可积性, 可微性 :
定理1.(连续性) 若 f (x, y) 在矩形域 R [a,b][, ]
上连续, 则由 ① 确定的含参积分在[a, b]上连续.
2020/8/2
重积分
机动 目录 上页 下页 返回 结束
(x y在[0,1][a,b]上连续)
0a
b
dy
1 xy dx
a0
b a
x y
y 1
1
1 0
d
y
2020/8/2
b 1 d y ln b 1
a y 1
a 1
重积分
机动 目录 上页 下页 返回 结束
例2. 求 I
1 0
ln(1 1
x
x)
2
d
x.
解: 考虑含参变量 t 的积分所确定的函数
2
1 2
ln(1
x2
)
t
arctan
x
ln(1
t
x)
1
0
1 1 t
2
1 2
ln
2
4
t
ln(1
t)
故
I (1) (0)
1 0
1 1 t
2
1 ln 2
2
4
t
ln(1
t)
d t
1 ln 2arctan t 1 ln(1 t 2 ) 1
2
08
0
1 0
ln(1 1
t) t2
d
t
ln 2 I