聚合物的屈服与断裂ppt
合集下载
高分子物理——聚合物的屈服与断裂

一、玻璃态高聚物的拉伸
(1)屈服点
应力达到一个极大值,屈服应力 (2)断裂方式(材料破坏有二种方式)
脆性断裂:屈服点之前发生的断裂
断裂表面光滑
不出现屈服
韧性断裂:在材料屈服之后的断裂(明显屈
服点和颈缩现象)
北京理工大学
断裂表面粗糙
(3)应变软化和应变硬化
应变软化:在拉伸过程中,应力随应变的增 大而下降
PVC在室温、图中表明的应变速率下测得的应力-应变曲线
随着拉伸速度提高,聚合物的模量增加,屈 服应力、断裂强度增加,断裂伸长率减少
• 柔性很大的链在冷却成玻璃态时,分子 之间堆砌得很紧密,在玻璃态时链段运 动很困难,要使链段运动需要很大的外 力,甚至超过材料的强度,刚性大,冷 却时堆砌松散,分子间相互作用力小, 链段活动余地较大,这种高聚物在玻璃 态时具有强迫高弹而不脆,脆点低, Tb,Tg间隔大,另外如果刚性太大,链段 不能运动,也不出现高弹形变。
0 exp(
RT )
对于某一种高聚物存在一个特征温度(Tb),只 要温度低于Tb,玻璃态高聚物就不能发展强迫高 弹形变。玻璃态高聚物只有处在Tb到Tg的温度范 围内,才能在外力作用下实现强迫高弹形变。
北京理工大学
外力 E a 拉伸速率 0 exp( ) 结构 RT 柔性高分子链:在玻璃态时呈现脆性。Tb≈Tg 刚性高分子链:较刚性:易出现受(强)迫 高弹性,脆点较低,Tb与Tg间隔较大。 高刚性:链段运动更加困难,Tb与Tg也很接 近。 分子量 分子量较小时,在玻璃态堆砌较紧密,呈现 脆性,Tb~Tg较接近。 当分子量增加到一定程度以后,Tb与Tg差距拉 大,直到达到临界值 北京理工大学
(B)受(强)迫高弹形变:材料在屈服后出现了
高分子物理 高分子物理 聚合物的屈服和断裂

(脆化温度)到 Tg之间 。
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
? 拉伸速度,链柔性,分子量也是影响因素。
7.1.3结晶高聚物的拉伸
? 拉伸曲线可以分为三阶段: ? 第一阶段应力随应变线性
地增加,至屈服点
? 第二阶段的应力 —应变曲
线表现为应力几乎不变, 而应变不断增加
? 第三阶段应力又随应变的
增加而增大直到断裂点
? 结晶聚合物的大形变,就本质上说也是高
d? ' ? ? ' d? ?
(2 ) d? ' d?
有一个值
(3) d? ' 有二个值 d?
(2 )
(3 )
7 .3 聚合物的断裂理论和理论强度
? 韧性材料在受到较大应力,或经受变形时,
可以发生屈服,吸收大量的能量,它使聚 合物材料在实际应用中可以发生较大的变 形或承受较大的冲击而不破坏。
? 外力超过一定限度,聚合物材料会发生韧
7.1.2玻璃态聚合物的强迫高弹形变
? 强迫高弹形变:为了区别于普通的高弹形变,玻
璃态高聚物屈服点以后材料的大形变的称为强迫 高弹形变。
? 实验证明,松弛时间与应力之间有如下关系
?
?
?
0
exp
?? ?
?
E ? a?
RT
?? ?
? 增加应力、提高温度都将使链段运动的松
弛时间缩短。
? 高弹形变条件:断裂应力大于屈服,即 T在Tb
7.2.2 真应力—应变曲线及其屈服判据
? 假定试样变形时体积
不变,则拉伸时实际 受力的截面积为
A ? A0l0 l
?
真应力:
? '?
F
? (1 ? ?)?
A
? 屈服点:
第六章 聚合物的屈服与断裂

二、结晶态聚合物的应力-应变曲线 同样经历五个阶段, 不同点是第一个转 折点出现“细颈 化”,接着发生冷 拉,应力不变但应 变可达500%以上。 结晶态聚合物在拉 伸时还伴随着结晶 形态的变化。
整个曲线可分为三个阶段:
1、应力随应变线性地增加,试样被均匀拉长, 伸长率可达百分之几到十几,到y点后,试样 截面开始变得不均匀,出现一个或几个“细 颈”,即进入第二阶段。 2、细颈与非细颈部分的横截面积分别维持不 变,而细颈部不断扩展,非细颈部分逐渐缩短, 直到整个试样完全变细为止。在第二阶段的应 变过程中应力几乎不变,最后,进入第三阶段。 3、即成颈的试样又被均匀拉伸,此时应力又 随应变的增加而增大直到断裂为止。
2.屈服机理
(1)银纹屈服 银纹:很多高聚物,尤其是玻璃态透明高聚物(PS、 PMMA、PC)在储存过程及使用过程中,往往 会在表面出现像陶瓷的那样,肉眼可见的微细 的裂纹,这些裂纹,由于可以强烈地反射可见 光,看上去是闪亮的,所以又称为银纹crage。 在拉伸应力的作用下高聚物中某些薄弱部位, 由于应力集中而产生的空化条纹形变区。
强度:材料所能承受的应力(指材料承受外 力而不被破坏)(不可恢复的变形也属被破坏) 的能力 )。 韧性:材料断裂时所吸收的能量
受 力 方 式
简单拉伸
F
简单剪切
F θ
均匀压缩
l0
F
F
受 力 特 点 弹 性 模 量 柔 量
外力F是与截面垂 外力F是与界面平行,材料受到的是围压 直,大小相等,方 大小相等,方向相 力。 向相反,作用在同 反的两个力。 一直线上的两个力。 杨氏模量:
E
切变模量:
G=
体积模量:
B P PV 0 V
高分子材料(力学性能) ppt课件

三、粘弹性
§5.1 力学性能
三、粘弹性
§5.1 力学性能
2、动态粘弹性 (滞后)
• 滞后:一定温度下,受交变的应力,形变随时
间的变化跟不上力随时间的变化
应力周期性变化:σ=σ 0 Sin ω t 应变:ε =ε 0 Sin(ω t +δ )
落后一相位角
结果:产生滞后圈--能耗
(机械能(弹性能)--热能) ----力学损耗
如何§解5.决1 ?力学性能
1、特征
➢涂料涂装时流挂问题如何 解决?
1) 粘度大;分子量越大,粘度越大;分布越宽,粘度越大;
2) 流动机理:分子重心相对位移,是由链段的相继跃迁实 现的
3) 伴有高弹形变---具有粘弹性
现象:出口膨大、爬杆效应、融体破裂
一、高聚物的流动性 ???
§5.1 力学性能
4)是一假塑性流体:
运动单元高度取向(m 不为零)
1、拉伸过程 (非晶、结晶高聚物)
C 断裂:
脆性断裂:没有屈服,断裂面光滑;
§5.1 力学性能
四 屈服、强度与断裂
韧性断裂:出现屈服后的断裂,断裂面粗糙。
T < Tb 时: σB <σY ---脆性断裂
1、拉伸过程 (非晶、结晶高聚物)
2) 结晶高聚物的应力~应变曲线
1、拉伸过程 (非晶、结晶高聚物) §5.1 力学性能
四 屈服、强度与断裂
注意: • 使用时υ趋于很小---长期强度,其远远小于所测值 ,
例:PVC: σB(1000h)=1/2σB (测) • Tb、Tg测定时,是在一定时间尺度下,
( υ比较小,时间长) 实际受力时(特别是在冲击力时)往往υ很高, 例:PVC 的Tb= - 50度,T使> - 30 ~ -15度
聚合物的屈服断裂和强度部分解析ppt课件

产生惯性移动时,它的几何形状和尺寸将发生变化, 这种变化称为应变。 ❖ 应力:单位面积上的附加内力为应力。 ❖ 应力单位:N/m2,又称帕斯卡,Pa。
2
二 应变类型 三种基本的应变类型
简单拉伸 简单剪切 均匀压缩
3
❖ 1 拉伸应变
❖ 在简单拉伸的情况下,材料受到的外力F是垂直于截面积的 大小相等、方向相反并作用于同一直线上的两个力,如下图 所示,这时材料的形变称为拉伸应变。
❖
式中W—冲断试样所消耗的功(冲击功)
21
❖ 5 硬度
❖ 硬度是衡量材料表面抵抗机械压力的能力的一种指 标。
❖ 硬度的大小—材料的抗张强度和弹性模量 ❖ 硬度试验方法有划痕法、压入法和动态法。不同测
量方法所得硬度的量值和物理意义均不同。 ❖ 划痕法测得的硬度表示材料抵抗表面局部断裂的能
力,称为莫氏硬度;
❖ 拉伸:
杨氏模量 E (MPa) σ-应力 ε-应变 F-拉伸力 AO-试样原始截面积 lO-试样原始长度 Δl-伸长长度
F
E
A0 0
11
三种基本应变的模量
❖ 剪切:
剪切模量:G (MPa) σs ―剪切应力 γ ―剪切应变 = tg θ
G S F A0tg
12
三种基本应变的模量
❖ 压缩:
ν(泊松比):横向形变与纵向形变之比
m m 00纵 横向 向 形 形 变 t变t 0
15
不同材料的泊松比
材料名称 锌 钢 铜 铝 铅 汞
泊松比 0.21 0.25~0.35 0.31~0.34 0.32~0.36 0.45 0.50
材料名称 玻璃 石料 聚苯乙系 聚乙烯 赛璐珞 橡胶类
泊松比 0.25 0.16~0.34 0.33 0.38 0.39 0.49~0.50
2
二 应变类型 三种基本的应变类型
简单拉伸 简单剪切 均匀压缩
3
❖ 1 拉伸应变
❖ 在简单拉伸的情况下,材料受到的外力F是垂直于截面积的 大小相等、方向相反并作用于同一直线上的两个力,如下图 所示,这时材料的形变称为拉伸应变。
❖
式中W—冲断试样所消耗的功(冲击功)
21
❖ 5 硬度
❖ 硬度是衡量材料表面抵抗机械压力的能力的一种指 标。
❖ 硬度的大小—材料的抗张强度和弹性模量 ❖ 硬度试验方法有划痕法、压入法和动态法。不同测
量方法所得硬度的量值和物理意义均不同。 ❖ 划痕法测得的硬度表示材料抵抗表面局部断裂的能
力,称为莫氏硬度;
❖ 拉伸:
杨氏模量 E (MPa) σ-应力 ε-应变 F-拉伸力 AO-试样原始截面积 lO-试样原始长度 Δl-伸长长度
F
E
A0 0
11
三种基本应变的模量
❖ 剪切:
剪切模量:G (MPa) σs ―剪切应力 γ ―剪切应变 = tg θ
G S F A0tg
12
三种基本应变的模量
❖ 压缩:
ν(泊松比):横向形变与纵向形变之比
m m 00纵 横向 向 形 形 变 t变t 0
15
不同材料的泊松比
材料名称 锌 钢 铜 铝 铅 汞
泊松比 0.21 0.25~0.35 0.31~0.34 0.32~0.36 0.45 0.50
材料名称 玻璃 石料 聚苯乙系 聚乙烯 赛璐珞 橡胶类
泊松比 0.25 0.16~0.34 0.33 0.38 0.39 0.49~0.50
聚合物的屈服与断裂高级课件

(electronic material testing system)
学习培训
3
8.1.1非晶态高聚物的应力-应变曲线
σ
B
Y
σ
σ
B
y
0
ε
ε
εy
非晶态高聚物的应力-应变曲线
B
学习培训
4
一、非晶态高聚物的应力-应变曲线
σ
A
B
Y
σ
εY
y
0
σ
B
εB
ε
我们先对这条曲线定义几个术语:
1) A点称为“弹性极限点”,A 弹性极限应变 ,A弹性极限应力
n=0
s=0
学习培训
31
对于试样中倾角为β= a+π/2的斜截面(它与第一个斜截面
相互垂直)进行同样处理,我们也可以得到:
σβn=σ0 Cos2β=σ0 Sin 2α
σβs=σ0/2 Sin2β=-σ0/2 Sin 2α
显然: σβs= -σas,这说明两个互相垂直的斜截面上的
切应力大小相等、方向相反,而且它们总是同时出现的,之和
“软”和“硬”用于区分模量的低或高,“弱”和“强”是指
强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”
是指其断裂伸长和断裂应力都较高的情况,有时可将断裂功作
为“韧性”的标志。
学习培训
26
表1 五种应力-应变曲线的特征
类型
模量
拉伸
强度
屈服点
伸长率
曲线下
面积
实例
硬而脆
高
中
无
小(2%)
小
PS、PMMA、
和剪切应力下的分子链滑移(b)
学习培训
学习培训
3
8.1.1非晶态高聚物的应力-应变曲线
σ
B
Y
σ
σ
B
y
0
ε
ε
εy
非晶态高聚物的应力-应变曲线
B
学习培训
4
一、非晶态高聚物的应力-应变曲线
σ
A
B
Y
σ
εY
y
0
σ
B
εB
ε
我们先对这条曲线定义几个术语:
1) A点称为“弹性极限点”,A 弹性极限应变 ,A弹性极限应力
n=0
s=0
学习培训
31
对于试样中倾角为β= a+π/2的斜截面(它与第一个斜截面
相互垂直)进行同样处理,我们也可以得到:
σβn=σ0 Cos2β=σ0 Sin 2α
σβs=σ0/2 Sin2β=-σ0/2 Sin 2α
显然: σβs= -σas,这说明两个互相垂直的斜截面上的
切应力大小相等、方向相反,而且它们总是同时出现的,之和
“软”和“硬”用于区分模量的低或高,“弱”和“强”是指
强度的大小,“脆”是指无屈服现象而且断裂伸长很小,“韧”
是指其断裂伸长和断裂应力都较高的情况,有时可将断裂功作
为“韧性”的标志。
学习培训
26
表1 五种应力-应变曲线的特征
类型
模量
拉伸
强度
屈服点
伸长率
曲线下
面积
实例
硬而脆
高
中
无
小(2%)
小
PS、PMMA、
和剪切应力下的分子链滑移(b)
学习培训
高分子物理-第七章-屈服和强度

银纹和剪切带
均有分子链取向,吸收能量,呈现屈服现象
主要区别
形
变
曲线特征
体
积
力
结
果
剪切屈服
45o
90o
a
抵抗外力的方式
两
种
抗张强度:抵抗拉力的作用
0
aan
aas
0 /2
抗剪强度:抵抗剪力的作用
0o
45o
90o
抗张强度什么面最大? a=0, an=0
抗剪强度什么面最大? a=45, as=0/2
当应力0增加时,法向应力和切向应力增大的幅度不同
在45o时, 切向应力最大
泊松比: 在拉伸实验中,材料横向应变
与纵向应变之比值的负数
m
v
l
m0
l0
T
常见材料的泊松比
泊松比数值
解
释
0.5
不可压缩或拉伸中无体积变化
0.0
没有横向收缩
0.49~40
塑料的典型数值
E, G, B and
E2
G
(1
)
EB
3 (1
2
第 一 期 的 入 党积极 分子培 训课将 要结束 了,在 培训期 间,通 过尊敬 的合江 县府王
督 学 、 学 院 党委王 书记及 学院党 办邬主 任和相 关领导 、教授 对党章 ,党课 及现阶
段 国 内 外 形 式的讲 解,以 及通过 参加学 院开展 的颂歌 献给党 、喜迎 十八大 歌咏比
赛 及 参 观 了 武警合 江中队 和合江 县清代 考试院 、合江 县汉代 石棺陈 列馆等 活
韧性断裂 ductile fracture
各种情况下的应力-应变曲线
高分子科学-第8章 聚合物的屈服与断裂讲解

聚合物的断裂
脆性断裂 :屈服点前断裂 韧性断裂 :屈服点后断裂
12
8.1.2 影响应力-应变曲线的因素
1. 温度
1
曲线1: T《Tg ,硬玻璃态,键长 键角的变化,形变小,高模量——
2
3
T
脆性断裂
4
曲线2.3: Tb<T<Tg,软玻璃态:
出现强迫高弹形变,外力除
16
玻璃态聚合物与结晶聚合物的拉伸比较
相似:
都经历弹性形变、屈服、发展大形变、应变硬化、断裂等阶段。
其中大形变在室温时都不能自发回复,加热后可回复,故本质 上两种拉伸造成的大形变都是强迫高弹形变——“冷拉”。
区别:
(1)产生冷拉的温度范围不同,
非晶态Tb~Tg
结晶态Tb~Tm
(2)玻璃态聚合物在冷拉过程中凝聚态只发生分子链的 取向不发生相变;晶态聚合物还包含结晶的破坏、取向 和再结晶等过程(相变)。
屈服
(链段开 始运动)
应变硬化
(分子链沿 外力取向形 变不可回复)
应变软化
(链段运动)
冷拉(强
迫高弹形变)
7
强迫高弹形变
玻璃态高聚物在屈服点后大外力作用下发生的大形变,本质与橡胶的高弹 形变一样都是链段运动引起的,并不是分子链的滑移,只不过表现形式有差别。 由于聚合物处在玻璃态,形变在停止拉伸后无法自动恢复,但是如果让温度升 到Tg附近形变又可恢复。
(1)温度:Tb~Tg
0
exp
E
RT
温度越低
链段运动的松 强迫高弹形变 弛时间τ越大
必须使用更 大外力
存在一个特征温度Tb,如果低于该温度,玻璃态高聚物不 能发生强迫高弹形变,而只会发生脆性断裂,该温度称为