人教版八年级数学下册 18.2.2.2菱形的判定 培优训练(含答案)

合集下载

2020-2021学年 八年级数学人教版 下册 18.2.2 菱形 课时训练(含答案)

2020-2021学年 八年级数学人教版 下册  18.2.2 菱形 课时训练(含答案)

人教版八年级数学18.2.2 菱形课时训练一、选择题1. 如图,若要使▱ABCD成为菱形,则可添加的条件是()A.AB=CDB.AD=BCC.AB=BCD.AC=BD2. (2020·南通)下列条件中,能判定□ABCD是菱形的是A.AC=BD B.AB⊥BC C.AD=BD D.AC⊥BD3. (2020·绍兴)如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB 向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形4. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以点A和点B 为圆心,大于AB的长为半径画弧,两弧相交于点C,D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A .矩形B .菱形C .一般的四边形D .平行四边形5. (2020·遵义)如图,在菱形ABCD 中,AB =5,AC =6,过点D 作DE ⊥BA ,交BA 的延长线于点E ,则线段DE 的长为( )A . 125B . 185C . 4D . 2456. (2020·牡丹江)如图,在菱形OABC 中,点B 在x 轴上,点A 的坐标为(2,23),将菱形绕点O 旋转,当点A 落在x 轴上时,点C 的对应点的坐标为 ( )A .(2,23)--或(23,2)-B .(2,23)C .(2,23)-D .(2,23)--或3)二、填空题7. 菱形的两条对角线将菱形分成全等三角形的对数为8. 菱形周长为52cm ,一条对角线长为10cm ,则其面积为 .9.如图,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离BO CA y16cm AB BC ==,则1∠=度.图21CBA10. 顺次连接四边形ABCD 各边中点形成一个菱形,则原四边形对角线AC ,BD 的关系是 .11. 如图,在菱形ABCD 中,AB =5,AC =8,则菱形的面积是________.12. 如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为________cm .三、解答题13. 如图,在菱形ABCD 中,点E.F 分别为AD .CD 边上的点,DE=DF ,求证:∠1=∠2.14. 如图,已知△ABC 中,AB =AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE ,连接BD 、CE 交于点F. (1)求证:△AEC ≌△ADB ;(2)若AB =2,∠BAC =45°,当四边形ADFC 是菱形时,求BF 的长.15. 已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.GF E DCBA16. 如图,E 是菱形ABCD 的边AD 的中点,EF AC ⊥于H ,交CB 的延长线于F ,交AB 于P ,证明:AB 与EF 互相平分17. 如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E 在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD .⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?AB CDGEF18. 如图,将矩形纸片ABCD(AD >AB)折叠,使点C 刚好落在线段AD 上,且折痕分别与边BC ,AD 相交.设折叠后点C ,D 的对应点分别为点G ,H ,折痕分别与边BC ,AD 相交于点E ,F.(1)判断四边形CEGF 的形状,并证明你的结论; (2)若AB =3,BC =9,求线段CE 的取值范围.人教版 八年级数学 18.2.2 菱形 课时训练-答案一、选择题1. 【答案】C2. 【答案】D【解析】根据菱形的定义和判断定理判断.定义:有一组邻边相等的平行四边形是菱形;判断定理:对角线互相垂直的平行四边形是菱形.只有D 能够判断出四边形ABCD 是菱形.故选D .3. 【答案】B【解析】本题考查了特殊四边形的判定.当点E 从点A 出发沿AB 向点B 运动时,四边形AECF 的形状依次如下图所示.因此本题选B .O D FO DF CO OD4. 【答案】B5. 【答案】DE ADOB C【解析】本题考查菱形的性质,菱形的面积,勾股定理的应用.在菱形ABCD中,AB =5,AO =12AC =3,AC ⊥BD ,∴BO =AB AO -22=4,BD =8.∴5DE =12AC ·BD =24,解得DE =245.故选D.6. 【答案】D【解析】菱形OABC 中,点A 的坐标为(2,23),所以OA=4,∠A=∠C=60°,分类讨论,①若顺时针旋转,旋转后的图形如图1所示,则OC=OA=4,∠C=60°,可求出点C 对应点的坐标为(-2,-23);②若逆时针旋转,旋转后的图形如图2所示,则OC=OA=4,∠C=60°,可求出点C 对应点的坐标为(2,23).二、填空题7. 【答案】8【解析】根据菱形的性质可知:共有8对8. 【答案】120【解析】菱形的边长为()52413cm ÷=,由勾股数和菱形对角线的性质得另一对角线长为()24cm ,故面积为()2120cm9. 【答案】120︒【解析】由题意可知:构成三角形为等边三角形10. 【答案】AC=BDy xABCOyxA BCO 图1图211. 【答案】24【解析】如解图,连接BD交AC于点O,∵四边形ABCD是菱形,AB=5,AC=8,且菱形的对角线互相垂直平分,∴OA=4,在Rt△AOB中,由勾股定理得OB=3,∴BD=6,∴S菱形ABCD =12AC·BD=12×8×6=24.解图12. 【答案】13【解析】如解图,连接AC、BD交于O,则有12AC·BD=120,∴AC·BD=240,又∵菱形对角线互相垂直平分,∴2OA·2OB=240,∴OA·OB =60,∵AE2=50, OA2+OE2=AE2,OA=OE,∴OA=5,∴OB=12,∴AB =OA2+OB2=122+52=13.解图三、解答题13. 【答案】∵四边形ABCD是菱形,∴AD=CD,在△ADF和△CDE中,AD CDD D DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CDE(SAS),∴∠1=∠2.14. 【答案】(1)证明:∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,AE =AC ,∠BAC =∠DAE ,(1分) ∵AB =AC ,∴AD =AB =AE =AC ,∠EAC =∠DAB , 在△AEC 和△ADB 中 ∵⎩⎪⎨⎪⎧AD = AE ∠EAC =∠DAB AB =AC, ∴△AEC ≌△ADB(SAS ).(3分)(2)解:当四边形ADFC 是菱形时,AC =DF ,AC ∥DF , ∴∠BAC =∠ABD , 又∵∠BAC =45°, ∴∠ABD =45°,(5分)又∵△ADE 是由△ABC 绕点A 沿顺时针方向旋转而得, ∴AD =AB ,∴∠DAB =90°,(6分) 又∵AB =2,由勾股定理可得:BD =AD 2+AB 2=2AB =22,在菱形ADFC 中,DF =AD =AB =2, ∴BF =BD -DF =22-2.(8分)15. 【答案】当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.16. 【答案】连结BD AF EB ,,,因为菱形ABCD 中BD AC ⊥,又因为EF AC ⊥,所以BD EF ∥,因为AD FC ∥,所以四边形BDEF 是平行四边形,可得ED FB =,因为AE ED =,所以AE FB =,从而AE FB ∥,AE FB =,因此四边形AFBE 是平行四边形,所以AB 与EF 互相平分17. 【答案】⑴ Rt DEC ∆是由Rt ABC ∆绕C 点旋转60︒得到∴AC DC =,60ACB ACD ∠=∠=︒ ∴ACD ∆是等边三角形 ∴AD DC AC ==又∵Rt ABF ∆是由Rt ABC ∆沿AB 所在 直线翻转180︒得到∴AC AF =,90ABF ABC ∠=∠=︒ ∴180FBC ∠=︒∴点F 、B 、C 三点共线∴AFC∆是等边三角形∴AF FC AC==∴AD DC FC AF===∴四边形AFCD是菱形.⑵四边形ABCG是矩形.由⑴可知:ACD⊥于E∆是等边三角形,DE AC∴AE EC∥=,又∵AG BC∴EAG ECB∠=∠,AGE EBC∠=∠∴AEG CEB=≌,∴AG BC∆∆∴四边形ABCG是平行四边形,而90∠=︒ABC∴四边形ABCG是矩形.18. 【答案】解:(1)四边形CEGF是菱形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠GFE=∠FEC,(2分)∵图形翻折后点G与点C重合,EF为折痕,∴∠GEF=∠FEC,∴∠GFE=∠GEF,∴GF=GE,(3分)∵图形翻折后EC与GE完全重合,FC与FG重合,∴GE=EC=GF=FC,∴四边形CEGF为菱形.(4分)(2)如解图①,当点F与点D重合时,四边形CEGF是正方形,(5分) 此时CE最小,且CE=CD=3;(6分)如解图②,当点G与点A重合时,CE最大.(7分)设EC=x,则BE=9-x,由折叠性质知,AE=CE=x,在Rt△ABE中,AB2+BE2=AE2,即9+(9-x)2=x2,解得x=5,∴CE=5,所以,线段CE的取值范围为3≤CE≤5.(8分)解图。

八年级数学下册 18.2.2 菱形练习 (新版)新人教版

八年级数学下册 18.2.2 菱形练习 (新版)新人教版

菱形一、基础达标知识点1 菱形的性质1.菱形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.(2014•长沙)如图,已知菱形ABCD的边长等于2,∠DAB=60°,则对角线BD的长为( )A.1B.C.2D.23.如图,在菱形ABCD中,对角线AC、BD交于点O,下列说法错误的是( )A.AB∥DCB.AC=BDC.AC⊥BDD.OA=OC4.(2014•上海)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是( )A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍5.(2014•烟台)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )A.28°B.52°C.62°D.72°6.(2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为__________.7.菱形的两邻角之比为1∶2,如果它较短的对角线长为2 cm,则它的周长为__________.8.如图,在菱形ABCD中,E,F分别是BC,CD的中点,连接AE,AF.AE和AF有什么样的数量关系?说明理由.知识点2 菱形的面积9.菱形ABCD的对角线AC、BD交于点O,若AO=3 cm,BO=4 cm,则菱形ABCD的面积是__________cm2.10.如图,菱形ABCD的边长为 2 cm,E是AB的中点,且DE⊥AB,则菱形ABCD的面积为__________cm2.二、能力提升11.如图,在菱形ABCD中,不一定成立的是( )A.四边形ABCD是平行四边形B.AC⊥BDC.△ABC是等边三角形D.∠CAB=∠CAD12.(2014•毕节)如图,在菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD 的周长为28,则OH的长等于( )A.3.5B.4C.7D.1413.如图,在菱形ABCD中,对角线AC,BD分别等于8和6,将BD沿CB的方向平移,使D与A 重合,B与CB延长线上的点E重合,则四边形AEBD的面积等于( )A.24B.48C.72D.9614.(2014•白银)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为__________.15.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F.请你猜想DE与DF的大小有什么关系,并证明你的猜想.16.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.(1)求∠ABD的度数;(2)求线段BE的长.17.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连接__________;(2)猜想:__________=__________;(3)证明:三、挑战自我18.菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形.参考答案一、基础达标1.C2.C3.B4.B5.C6.287.8 cm8.AE=AF.理由:∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,BC=CD.又∵E,F分别为BC,CD的中点,∴BE= BC,DF= CD,∴BE=DF.∴△ABE≌△ADF(SAS).∴AE=AF.9.24 10.2二、能力提升11.C 12.A 13.A 14.1215.DE=DF.证明:连接BD.∵四边形ABCD是菱形,∴∠CBD=∠ABD.又∵DF⊥BC,DE⊥AB,∴DF=DE.16.(1)在菱形ABCD中,AB=AD,∠A=60°,∴△ABD为等边三角形.∴∠ABD=60°.(2)由(1)可知BD=AB=4,又∵O为BD的中点,∴OB=2.又∵OE⊥AB,∠ABD=60°,∴∠BOE=30°.∴BE=1.17.(1)AF;(2)AF,AE;(3)证明:∵四边形ABCD是菱形,∴AB=AD.∴∠ABD=∠ADB.∴∠ABF=∠ADE.在△ABF和△ADE中,∴△ABF≌△ADE(SAS).∴AF=AE.三、挑战自我18.证明:(1)连接AC,∵四边形ABCD是菱形,∴AB=BC=CD.∵∠B=60°,∴△ABC是等边三角形.∵E是BC的中点,∴AE⊥BC.∵∠AEF=60°,∴∠FEC=90°-60°=30°.∵∠C=180°-∠B=120°,∴∠EFC=30°.∴∠FEC=∠EFC.∴CE=CF.∵BC=CD,∴BC-CE=CD-CF,即BE=DF;(2)连接AC,由(1)得△ABC是等边三角形,∴AB=AC.∵∠BAE+∠EAC=60°,∠EAF=∠CAF+∠EAC=60°,∴∠BAE=∠CAF.∵四边形ABCD是菱形,∠B=60°,∴∠ACF= ∠BCD=∠B=60°.∴△ABE≌△ACF.∴AE=AF.∴△AEF是等边三角形.。

人教版八年级下册数学 18.2.2菱形 同步练习(含解析)

人教版八年级下册数学 18.2.2菱形 同步练习(含解析)

∴AC⊥BD,OA=OC= AC= ×4=2,∠BAC= ∠BAD= ×120°=60°,
∴AC=4,∠AOB=90°, ∴∠ABO=30°, ∴AB=2OA=4,OB=2 , ∴BD=2OB=4 ,
7 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
∴该菱形的面积是: AC•BD= ×4×4
点睛:此题主要考查线段的垂直平分线的性质和菱形的性质,有一定的难度,解答本题时注 意先先连接 BD,BF,这是解答本题的突破口. 6.B 【解析】根据菱形四条边相等的性质可得 AB=AD,OB=OD,根据等腰三角形三线合一的性质 可得 AO⊥BD,即可得 AC⊥BD,所以正确的顺序为③→④→①→②,故选 B. 7.A 【解析】∵四边形 ABCD 是菱形,
点,将△AMN 沿 MN 所在的直线翻折得到△A′MN,连接 A′C,则线段 A′C 长度的最小值是
______.
12.如图,正△AEF 的边长与菱形 ABCD 的边长相等,点 E、F 分别在 BC、CD 上,则∠B 的度 数是_____.
3 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 24
B. 26
C. 30
D. 48
8.如图,四边形 ABCD 是菱形,对角线 AC,BD 相交于点 O,DH⊥AB 于 H,连接 OH,∠DHO=20°,
则∠CAD 的度数是( )
2 / 17
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A. 20° B. 25° C. 30° D. 40° 9.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到 第二个矩形,按照此方法继续下去.已知第一个矩形的面积为 1,则第 n 个矩形的面积为 ()

18.2.2.2 菱形的判定-八年级数学下学期同步训练(人教版)(解析版)

18.2.2.2 菱形的判定-八年级数学下学期同步训练(人教版)(解析版)

§18.2.2.2菱形的判定一、知识导航菱形的判定二、重难点突破重点1利用对角线互相垂直的平行四边形是菱形进行判定例1.如图,在▱ABCD 中,E ,F 分别是AD ,BC 上的点,且DE =BF ,AC ⊥EF ,求证:四边形AECF是菱形.【分析】根据对角线互相垂直的平行四边形是菱形即可证明【详解】证明: 四边形ABCD 是平行四边形,AD BC ∴=,//AD BC ,DE BF = ,AE CF ∴=,//AE CF ,∴四边形AECF 是平行四边形,AC EF ⊥ ,∴四边形AECF 是菱形.【点睛】本题考查平行四边形的性质、菱形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.类别判定方法符号语言图形边有一组邻边相等的平行四边形是菱形在ABCD 中,AB BC = ,ABCD ∴ 是菱形四条边相等的四边形是菱形在四边形ABCD 中,∵AB BC CD DA===∴四边形ABCD 是菱形对角线对角线互相垂直的平行四边形是菱形在ABCD 中,AC BD⊥ ABCD ∴ 是菱形变式1-1如图,在▱ABCD 中,作对角线BD 的垂直平分线EF ,垂足为O ,分别交AD ,BC 于E ,F ,连接BE ,DF .求证:四边形BFDE是菱形.【分析】根据平行四边形的性质以及全等三角形的判定方法证明出△DOE ≌△BOF ,得到OE=OF ,利用对角线互相平分的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用对角线互相垂直的平行四边形是菱形得出四边形BFDE 为菱形.【详解】∵在▱ABCD 中,O 为对角线BD 的中点,∴BO=DO ,∠EDB=∠FBO ,在△EOD 和△FOB 中,EOD FBO OD OB EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DOE ≌△BOF (ASA ),∴OE=OF ,又∵OB=OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,∴四边形BFDE 为菱形.【点睛】本题考查了菱形的判定,平行四边形的性质以及全等三角形的判定与性质等知识,得出OE=OF 是解题关键.变式1-2已知:如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别相交于点E 、F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A 、E 、C 、F为顶点的四边形是菱形?并给出证明.【分析】(1)由矩形的性质:OB =OD ,AE //CF ,进一步即可证明△BOE ≌△DOF ;重点点拨:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.(2)若四边形为菱形,则对角线互相垂直,因此可添加条件:EF ⊥AC ,再根据(1)的结论和题目条件证明OA =OC ,OE =OF ,根据对角线互相垂直且平分的四边形是菱形得出结论.【详解】(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形.证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,菱形得判定等知识,证明定理的综合运用能力是解决问题的关键.重点2利用有一组邻边相等的平行四边形是菱形进行判定例2.如图,在平行四边形ABCD 中,DB DA =,点F 是AB 的中点,连接DF 并延长,交CB 的延长线于点E ,连接AE .求证:四边形AEBD是菱形;【分析】由△AFD ≌△BFE ,推出AD=BE ,可知四边形AEBD 是平行四边形,再根据BD=AD可得结论;【详解】∵四边形ABCD 是平行四边形∴//AD BC ,∴ADE DEB∠=∠∵F 是AB 的中点,∴AF BF=∴在AFD ∆与BFE ∆中,,,ADE DEB AF BF AFD BFE∠=∠=∠=∠∵//AD BC ,∴四边形AEBD 是平行四边形∵DB DA =,∴四边形AEBD 是菱形【点睛】本题考查平行四边形的判定和性质、菱形的判定和性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.变式2如图,在 ABCD 中,E 是对角线BD 上的一点,过点C 作CF ∥DB ,且CF =DE ,连接AE ,BF ,EF(1)求证:△ADE ≌△BCF ;(2)若∠ABE +∠BFC =180°,则四边形ABFE 是什么特殊四边形?说明理由.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∴∠ADB =∠DBC .∵CF ∥DB ,∴∠BCF =∠DBC ,∴∠ADB =∠BCF在△ADE 与△BCF 中DE CF ADE CBF AD BC ⎧⎪∠∠⎨⎪⎩==,=∴△ADE ≌△BCF (SAS ).(2)四边形ABFE 是菱形理由:∵CF ∥DB ,且CF =DE ,∴四边形CFED 是平行四边形,∴CD =EF ,CD ∥EF .∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴AB =EF ,AB ∥EF ,∴四边形ABFE 是平行四边形.∵△ADE ≌△BCF ,∴∠AED =∠BFC .∵∠AED +∠AEB =180°,∴∠ABE =∠AEB ,∴AB =AE ,∴四边形ABFE 是菱形.【点睛】本题考查平行四边形的性质,牢记平行四边形的性质和全等三角形的判定以及菱形的判定知识点是解题的关键.重点3利用四条边相等的四边形是菱形进行判定例3.如图,在四边形ABCD 中,AB=AD ,CB=CD ,E 是CD 上一点,BE 交AC 于F ,连接DF ,(1)证明:∠BAC=∠DAC .(2)若∠BEC=∠ABE ,试证明四边形ABCD是菱形.【分析】由AB=AD ,CB=CD 结合AC=AC 可得△ABC ≌△ADC ,由此可得∠BAC=∠DAC ,再证△ABF ≌△ADF 即可得到∠AFB=∠AFD ,结合∠AFB=∠CFE 即可得到∠AFD=∠CFE ;(2)由AB ∥CD 可得∠DCA=∠BAC 结合∠BAC=∠DAC 可得∠DCA=∠DAC ,由此可得AD=CD 结合AB=AD ,CB=CD 可得AB=BC=CD=AD ,即可得到四边形ABCD 是菱形.【详解】(1)在△ABC 和△ADC 中,∵AB=AD ,CB=CD ,AC=AC ,∴△ABC ≌△ADC ,∴∠BAC=∠DAC ,在△ABF 和△ADF 中,重点点拨:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠ACD=∠CAD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形.【点睛】本题主要考查了特殊平行四边形的性质应用,准确运用全等三角形的性质及菱形的判定是解题的关键.变式3如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于12AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.【分析】(1)由作图知PQ为线段AC的垂直平分线,从而得到AE=CE,AD=CD.然后根据CF∥AB 得到∠EAC=∠FCA,∠CFD=∠AED,利用“AAS”证得两三角形全等即可;(2)根据(1)中全等得到AE=CF.然后根据EF为线段AC的垂直平分线,得到EC=EA,FC=FA.从而得到EC=EA=FC=FA,利用“四边相等的四边形是菱形”判定四边形AECF为菱形.【详解】(1)由作图知PQ为线段AC的垂直平分线,∴AE=CE,AD=CD.∵CF∥AB,∴∠EAC=∠FCA,∠CFD=∠AED在△AED 与△CFDEAC =∠FCA ,AED =∠CFD ,=CD ,∴△AED ≌△CFD(AAS)∵△AED ≌△CFD∴AE =CF∵EF 为线段AC 的垂直平分线∴EC =EA ,FC =FA∴EC =EA =FC =FA∴四边形AECF 为菱形.【点睛】判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.难点4菱形的性质与判定的综合例4.如图,矩形ABCD 中,4AB =,2BC =,点E 、F 分别在AB 、CD 上,且32BE DF ==.(1)求证:四边形AECF 是菱形;(2)求线段EF 的长.【分析】(1)根据菱形的性质得到4CD AB ==,2AD BD ==,CD AB ,90D B ∠=∠=︒,求得35422CF AE ==-=,根据勾股定理得到52AF CE ==,于是得到结论;(2)过F 作FH AB ⊥于H ,得到四边形AHFD 是矩形,根据矩形的性质得到32AH DF ==,2FH AD ==,根据勾股定理即可得到结论.【详解】(1)证明:∵在矩形ABCD 中,4AB =,2BC =,∴4CD AB ==,2AD BD ==,CD AB ,90D B ∠=∠=︒,重点点拨:在无法确定一个四边形是平行四边形的情况下,要证明该四边形是菱形,可考虑利用“四条边相等的四边形是菱形”进行证明.∵32 BE DF==,∴35422 CF AE==-=,∴52 AF CE==,∴52 AF CF CE AE====,∴四边形AECF是菱形;(2)解:过F作FH AB⊥于H,则四边形AHFD是矩形,∴32AH DF==,2FH AD==,∴53122EH=-=,∴EF==【点睛】本题考查了矩形的性质,菱形的判定和性质,勾股定理,熟练掌握矩形的性质是解题的关键.变式4如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=6,AB=8,求菱形ADCF的面积.【分析】(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;(2)将菱形ADCF的面积转换成△ABC的面积,再用S△ABC=12AB•AC,结合条件可求得答案.【详解】(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠AFE=∠DBE.在△AEF和△DEB中AFE DBE DEB AEF AE DEìÐ=ÐïïïïÐ=Ðíïïï=ïî∴△AEF≌△DEB(AAS),∴AF=DB.∵D是BC的中点,∴BD=CD=AF,∴四边形ADCF是平行四边形.∵∠BAC=90°,∴AD=CD=12 BC.∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8,∴S菱形ADCF =CD•h=12BC•h=S△ABC=12AB•AC=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.难点点拨:利用菱形的性质和判定解决问题,一般是先判定一个四边形是菱形,再根据菱形的性质解决其他问题.判定一个四边形是菱形的思路:三、提升训练1.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,添加下列条件不能判定四边形ABCD 是矩形的是()A .AC ⊥BDB .AB ⊥BC C .AC =BD D .∠1=∠2【答案】A 【分析】根据菱形和矩形的判定、等腰三角形的性质、平行四边形的性质逐项判断即可得.【详解】解:A 、由对角线互相垂直的平行四边形是菱形可知,添加AC BD ⊥能判定ABCD 是菱形,不一定是矩形,则此项符合题意;B 、由有一个角是直角的平行四边形是矩形可知,添加AB BC ⊥能判定ABCD 是矩形,则此项不符题意;C 、由对角线相等的平行四边形是矩形可知,添加AC BD =能判定ABCD 是矩形,则此项不符题意;D 、12∠=∠ ,OA OD ∴=,四边形ABCD 是平行四边形,2,2AC OA BD OD ∴==,AC BD ∴=,ABCD ∴ 是矩形,即添加12∠=∠能判定ABCD 是矩形,则此项不符题意;故选:A .【点睛】本题考查了菱形和矩形的判定、等腰三角形的性质、平行四边形的性质,熟练掌握矩形的判定方法是解题关键.2.顺次连接矩形的各边中点,所得的四边形一定是()A .正方形B .菱形C .矩形D .梯形【答案】B【分析】题中给出的条件是中点,所以利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【详解】解:连接A C 、BD ,在△ABD 中,∵AH =HD ,AE =EB ,∴EH =12BD ,同理FG =12BD ,HG =12AC ,EF =12AC ,又∵在矩形ABCD 中,AC =BD ,∴EH =HG =GF =FE ,∴四边形EFGH 为菱形.故选:B .【点睛】本题考查了三角形中位线定理、矩形的性质和菱形的判定方法,解题的关键是掌握菱形的判定方法有:有一组邻边相等的平行四边形称为菱形;四条边都相等的四边形是菱形;对角线互相垂直平分的四边形是菱形.3.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF =3,那么菱形ABCD 的周长为()A.24B.18C.12D.9【答案】A【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.4.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD 于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.16【答案】D【分析】先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=12BF=6,由勾股定理求出OA,即可得出AE的长.【详解】如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠BEA ,∴AB =BE ,同理可得AB =AF ,∴AF =BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,∴AE ⊥BF ,OA =OE ,OB =OF =12BF =6,∴OA ,∴AE =2OA =16.故选:D .【点睛】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF 是菱形是解决问题的关键.5.如图,在矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=︒,FO FC =.则下列结论:①FB 垂直平分OC ;②四边形DEBF 为菱形;③OC FB =;④2AM BM =;⑤:3:2BOM AOE S S = .其中正确结论的个数是()A .5个B .4个C .3个D .2个【答案】C 【分析】证明△OFB ≌△CFB ,可判断结论①正确;利用菱形的定义,可判断结论②正确;根据OC=OB ,斜边大于直角边,可判断结论③错误;根据30度角的性质,可判断AB=2BM ,故结论④是错误的;证NE ∥BM ,AN=NO=OM ,所以BM=3NE ,AO=2OM ,利用三角形面积公式计算判断,结论⑤正确.【详解】连接BD ,∵四边形ABCD 是矩形,∴AC=BD ,AC 、BD 互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,∵FO=FC,BF=BF∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∴△AOE≌△COF,∴OE=OF,FC=AE,∴DF=BE,DF∥BE,∴四边形EBFD是平行四边形,∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴BE=BF,∴四边形EBFD是菱形,∴结论②正确;∵OA=OB,∴∠OAB=∠OBA=30°,∵FO=OE=FC=AE,∴∠AOE=∠FOM=30°,∴∠BOF=90°,∴FB>OB,∵OB=OC,∴FB>OC,∴③错误,在直角三角形AMB 中,∵∠BAM=30°,∠AMB=90°,∴AB=2BM ,∴④错误,设ED 与AC 的交点为N ,设AE=OE=2x ,则NE=x ,BE=4x ,∴AB=6x ,∴BM=3x ,∴11::22BOM AOE S S OM BM AO NE =⋅⋅ =3:2OM x OM x⋅⋅=3:2,结论⑤正确.故选C .【点睛】本题考查了矩形的性质,等腰三角形三线合一性质,全等三角形,直角三角形30°角的性质,菱形的判定,熟练掌握,灵活运用是解题的关键.6.如图,将两张对边平行且相等的纸条交叉叠放在一起,则重合部分构成的四边形ABCD_________菱形(是,或不是).【答案】是【分析】如图(见解析),先根据“两张对边平行且相等的纸条”得出//,//,AB CD AD BC BE DF =,再根据平行四边形的判定可得四边形ABCD 是平行四边形,然后根据三角形全等的判定定理与性质可得AB AD =,最后根据菱形的判定即可得.【详解】如图,过点B 作BE AD ⊥,交DA 延长线于点E ,过点D 作DF AB ⊥,交BA 延长线于点F由题意得://,//,AB CD AD BC BE DF=∴四边形ABCD 是平行四边形在ABE △和ADF 中,90BAE DAF AEB AFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩(AAS)ABE ADF ∴≅ AB AD∴=∴平行四边形ABCD 是菱形故答案为:是.【点睛】本题考查了平行四边形与菱形的判定、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形与菱形的判定是解题关键.7.已知四边形ABCD 是矩形,点E 是矩形ABCD 的边上的点,且EA EC =.若6AB =,AC =DE 的长是___.【答案】83或3【分析】根据EA EC =,则E 在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,先证明四边形12AE CE 是菱形,再利用菱形的性质与勾股定理可得答案.【详解】EA =EC ,E ∴在AC 的中垂线上,作AC 的中垂线交,DC AB 于12,,E E 交AC 于O ,所以:如图的12,E E 都符合题意,矩形,ABCD //,AB DC ∴12,CE O AE O ∴∠=∠21,,OA OC AOE COE =∠=∠ 21,AOE COE ∴ ≌21,OE OE ∴=12,,OA OC AC E E =⊥ ∴四边形12AE CE 是菱形,1122,AE E C CE AE ∴===6AB = ,210AC =,90ABC ∠=︒,()22210642,BC ∴=-==2,AD ∴=设1,DE x =则116,CE AE x ==-()22262,x x ∴-=+8,3x ∴=18,3DE ∴=218106,33AE AE ∴==-=222102342,33DE ⎛⎫∴=+= ⎪⎝⎭DE ∴的长为:83或234.3【点睛】本题考查的是矩形的性质,菱形的判定与性质,勾股定理的应用,线段的垂直平分线的性质,掌握以上知识是解题的关键.8.如图平行四边形ABCD中,AC与BD交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点,下列结论:①FE=GE;②AE=GF;③AE⊥GF;④FE⊥GE;⑤∠ADB=2∠CBE;⑥GF平分∠AGE,其中正确的有_____.【答案】①③⑤⑥【分析】根据平行四边形的性质可得证明△BOC是等腰三角形,根据等腰三角形的性质可得BE⊥AC,根据直角三角形斜边中线定理得GE=12AB,由三角形中位线得EF=12CD,进而得到EG=EF,可判断①;证明四边形AGEF是菱形可判断②③⑥;④易证BE⊥AE,四边形BEFG是平行四边形,由EG=EF,要使EF⊥GE,则∠EFG=∠EBA=∠EAB=45°,没有条件AE=BE,或∠BAC=45°,可判断④;根据平行线的性质和等腰三角形的性质可判断⑤.【详解】①∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,DO=BO=12 BD,∵BD=2AD,∴AD=DO,BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=12 AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=12 CD,∴EG=EF,故①正确;②连接AF,Rt△AEB中,G是AB的中点,∴EG=12AB=AG,∵EG=EF,∴AG=EF,∵E、F分别是OC、OD的中点,∴EF//CD,∵AB//CD,∴AG//EF,∴四边形AGEF是菱形,∴AE⊥FG,GF平分∠AGE,故②错误,③⑥正确;③∵E、F分别是OC、OD的中点,∴EF//DC,∵DC//AB,∴EF//AB,∴∠EFG=∠AGF,∵EF=EG,∴∠EFG=∠EGF,∴∠EGF=∠AGF,∴GF平分∠AGE,故③正确;④由①知:BE⊥AE,由②、③得:EF//AB,EF=12CD=12AB=BG,∴四边形BEFG是平行四边形,∵EG=EF,∴要使EF⊥GE,则∠EFG=∠EBA=∠EAB=45°,没有条件AE=BE,或∠BAC=45°,故④错误;⑤∵AD//BC,∴∠ADB =∠CBD =2∠CBE ,∴故⑤正确;本题正确的有:①③⑤⑥.故答案为:①③⑤⑥.【点睛】此题主要考查了平行四边形的性质、直角三角形的性质、三角形中位线定理、等腰三角形的性质,关键是掌握等腰三角形三线合一的性质.9.在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:△AEF ≌△DEB ;(2)证明四边形ADCF是菱形.【分析】(1)根据题意,直接运用“角角边”证明即可;(2)结合(1)的结论,先证明其为平行四边形,然后证明一组邻边相等,根据菱形的定义判定即可.【详解】(1)∵//BC AF ,∴AFE DBE ∠=∠,∵E 是AD 的中点,∴AE DE =,在△AEF 与△DEB 中,AFE DBE AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AEF DEB AAS ≅△△;(2)由(1)可知,AF BD =,∵D 是BC 的中点,∴BD CD =,∴AF CD =,∵//AF CD ,∴四边形ADCF 是平行四边形,又∵△ABC 为直角三角形,∴DA DC =,∴四边形ADCF 是菱形.【点睛】本题考查全等三角形的判定与性质,菱形的判定,熟练掌握直角三角形中斜边上的中线等于斜边的一半是解题关键.10.如图,已知,矩形ABCD 中,AB=4cm ,BC=8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O ,连接AF 、CE .(1)求证:△AOE ≌△COF ;(2)求证:四边形AFCE 为菱形;(3)求菱形AFCE的周长.【分析】(1)求出AO =OC ,∠AOE =∠COF ,根据平行的性质得出∠EAO =∠FCO ,根据ASA 即可得出两三角形全等;(2)根据全等得出OE =OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(3)设AF =x cm ,则CF =AF =x cm ,BF =(8-x )cm ,在Rt △ABF 中,由勾股定理得出方程42+(8-x )2=x 2,求出x 的值,进而得到菱形AFCE 的周长.【详解】(1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO =∠FCO .在△AOE 和△COF 中,EAO FCO OA OC AOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOE ≌△COF (ASA );(2)证明:∵△AOE ≌△COF ,∴OE =OF ,∵OA =OC ,∴四边形AFCE 为平行四边形,又∵EF⊥AC,∴平行四边形AFCE为菱形;(3)解:设AF=x cm,则CF=AF=x cm,BF=(8﹣x)cm,在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,即42+(8﹣x)2=x2,解得x=5.所以菱形AFCE的周长为5×4=20cm.【点睛】本题考查了菱形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,矩形的性质等知识.根据勾股定理并建立方程是解题的关键.。

18.2.2菱形培优训练人教版2024—2025学年八年级下册

18.2.2菱形培优训练人教版2024—2025学年八年级下册

18.2.2菱形培优训练人教版2024—2025学年八年级下册一、知识梳理班级:姓名:1.如图,在菱形ABCD中,对角线AC,BD交于点O,下列说法错误的是()A.∠ADB=∠CDB B.AC=BDC.AC⊥BD D.AB=AD第1题图第2题图第3题图第4题图2.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC3.如图,在菱形ABCD中,点M、N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为.4.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边的中点,连接EF,若EF=2,BD=2,则菱形ABCD的面积为.5.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.二、典型例题例1.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.例2.在Rt△ABC中,△BAC=90°,D是BC的中点,E是AD的中点.过点A作AF△BC 交BE的延长线于点F.(1)求证:△AEF△△DEB;(2)证明四边形ADCF是菱形;(3)若AC=3,AB=4,求菱形ADCF的面积.例3.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.例4.如图,在Rt△ABC中,△B=90°,BC=5,△C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF△BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.三、巩固练习1.下列说法正确的是()A.对角线垂直的四边形是菱形B.对角线互相平分的四边形是菱形C.菱形的对角线相等且互相平分D.菱形的对角线互相垂直且平分2.如图,在平行四边形ABCD中,AC平分△DAB,AB=2,则平行四边形ABCD的周长为()A.4B.6C.8D.12第2题图第3题图第4题图3.如图,已知四边形ABCD的四边都相等,等边△AEF的顶点E、F分别在BC、CD上,且AE=AB,则△C=()A.100°B.105° C.110° D.120°4.如图,将两条宽度都为3的纸条重叠在一起,使△ABC=60°,则四边形ABCD的面积为.5.一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.6.如图,在四边形ABCD中,AC=BD=6,E、F、G、H分别是AB、BC、CD、DA的中点,则EG2+FH2=.第6题图第7题图7.如图,在菱形ABCD中,△BAD=60°,AC与BC交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC、AD于点F、G,连接OG,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)△OG=AB;△与△EGD全等的三角形共有5个;△S四边形CDGF>S△ABF;△由点A、B、D、E构成的四边形是菱形.8.已知:如图,在梯形ABCD中,AD△DC,AB=DC,E,F,M,N分别是AD,BC,BD,AC的中点.猜想EF与MN的关系,并证明.9.如图,在△ABC中,△ABC=90°,BD为AC的中线,过点C作CE△BD于点E,过点A 作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:BD=DF;(2)求证:四边形BDFG为菱形;(3)若AG=13,CF=6,求四边形BDFG的周长.10.已知:△1=△2,3=△4,过点P作PD△BC交直线AB于点D,交直线AC于点H,PK△AC 交直线BC于点K,请你解答下列问题:(1)如图1,求证:BD=DH﹣PK;(2)如图2、3,DH、PK、BD又有怎样的数量关系?直接写出你的猜想,不需要证明;(3)在(1)(2)的条件下,若DB=10,CH=4,则DH=.。

人教版八年级下册数学 18.2.2 菱形 同步练习题(含答案)

人教版八年级下册数学 18.2.2 菱形 同步练习题(含答案)

18.2 .2 菱形同步练习题基础训练1.如图,▱ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件__________使其成为菱形(只填一个即可).2.下列命题中正确的是()A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线相等的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形3.如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD 为菱形的是()A.BA=BCB.AC,BD互相平分C.AC=BDD.AB∥CD4.在▱ABCD中,下列结论不一定正确的是()A.AC=BDB.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.AB=CD5.如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是__________.(只填写序号)6.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=ADB.AC⊥BDC.AC=BDD.∠BAC=∠DAC7.如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4C.4D.88.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°9.如图,△ABC中,AD是角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F,若AE=4 cm,那么四边形AEDF的周长为()A.12 cmB.16 cmC.20 cmD.22 cm10.如图,将▱ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是()A.AF=EFB.AB=EFC.AE=AFD.AF=BE11.下列命题:①四边都相等的四边形是菱形;②两组邻边分别相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形;④对角线相等的四边形是菱形;⑤一条对角线平分一组对角的平行四边形是菱形.其中正确的是.(填序号)提升训练12.图,在Rt△ABC中,∠B=90°,点E是AC的中点,AC=2AB,∠BAC的平分线AD 交BC于点D,作AF∥BC,连接DE并延长交AF于点F,连接FC.求证:四边形ADCF是菱形.13.如图所示,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.探究培优14.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM,DN.(1)求证:四边形BMDN是菱形;(2)若AB=8,AD=16,求MD的长.15.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定点E的位置,使∠EFD=∠BCD,并说明理由.参考答案1.【答案】AC⊥BD(答案不唯一)2.【答案】D3.【答案】B4.【答案】A5.【答案】③6.【答案】C解:根据菱形的定义可得,当AB=AD时▱ABCD是菱形,故A正确;根据对角线互相垂直的平行四边形是菱形可得,当AC⊥BD时,▱ABCD是菱形,故B正确;对角线相等的平行四边形是矩形,不一定是菱形,故C不正确;当∠BAC=∠DAC时,在▱ABCD中,AD∥BC,∴∠ACB=∠DAC,∴∠BAC=∠ACB,∴AB=BC,∴▱ABCD是菱形.故D正确.7.【答案】A解:如图,连接OE,与DC交于点F,易得四边形OCED为菱形,得到对角线互相平分且垂直,然后求出OE,DC的长,即可求出菱形OCED的面积.8.【答案】A9.【答案】B10.【答案】C11.错解:①②③⑤诊断:②是最容易出错的,两组邻边分别相等的四边形不一定是菱形,如图,AB=AD,BC=CD,但四边形ABCD不是菱形.判定菱形时,要区分是在四边形还是平行四边形的基础上进行判定的,要注意两者的区别与联系.正解:①③⑤12.证明:∵AF∥CD,∴∠AFE=∠CDE.∵E是AC的中点,∴AE=CE.在△AFE和△CDE中,∴△AFE≌△CDE(AAS).∴AF=CD.∵AF∥CD,∴四边形ADCF是平行四边形.∵∠B=90°,AC=2AB,∴∠ACB=30°,∠BAC=60°.∵AD平分∠BAC,∴∠DAC=∠DAB=30°=∠ACD.∴DA=DC.∴四边形ADCF是菱形.13.(1)证明:∵在▱ABCD中,AD∥BC,∴∠EAO=∠FCO.∵点O是AC的中点,∴AO=CO.又∵∠EOA=∠FOC,∴△AOE≌△COF.(2)解:当EF⊥AC时,四边形AFCE是菱形.理由如下:由(1)知△AOE≌△COF,∴OE=OF.又∵AO=CO,∴四边形AFCE是平行四边形.∴当EF⊥AC时,四边形AFCE是菱形.14.(1)证明:∵MN是BD的垂直平分线,∴MB=MD,NB=ND,MN⊥BD.∴∠BMN=∠DMN.又∵AD∥BC,∴∠DMN=∠BNM.∴∠BMN=∠BNM.∴BM=BN.∴BM=BN=ND=MD.∴四边形BMDN是菱形.(2)解:∵MB=MD,设MD的长为x,则MB=x,在Rt△AMB中,BM2=AM2+AB2,即x2=(16-x)2+82,解得x=10.∴MD的长为10.15.(1)证明:在△ABC和△ADC中,∴△ABC≌△ADC(SSS).∴∠BAC=∠DAC.在△ABF和△ADF中,∴△ABF≌△ADF(SAS).∴∠AFB=∠AFD.∵∠AFB=∠CFE,∴∠AFD=∠CFE.(2)证明:∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠DAC=∠ACD.∴AD=CD.又∵AB=AD,CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)解:当BE⊥CD,即E为过B且和CD垂直的垂线与CD的交点时,∠EFD=∠BCD. 理由:∵四边形ABCD为菱形,∴∠BCF=∠DCF.在△BCF和△DCF中,∴△BCF≌△DCF(SAS). ∴∠CBF=∠CDF.∵BE⊥CD,∴∠BEC=∠DEF=90°. ∴∠EFD=∠BCD.。

人教版八年级下册数学课时练《18.2.2 菱形》(含答案解析)

人教版八年级下册数学课时练《18.2.2 菱形》(含答案解析)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版数学八年级下册《18.2.2菱形》单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF Ð的度数是()A .90°B .60°C .45°D .30°2.菱形ABCD 中,60BAD Ð=°,对角线AC =)A .2B .4C .D .3.如图,在ABCD 中,8AC =,6BD =,5AD =,则ABCD 的面积为()A .6B .12C .24D .484.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=()A .100°B .105°C .110°D .120°5.如图,四边形ABCD 的对角线互相平分,要使它变为菱形,需要添加的条件是()A .AB =CD B .AD =BC C .AC =BD D .AB =BC6.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A .10cm 2B .20cm 2C .40cm 2D .80cm 2二、填空题7.△ABC 中,延长BA 至D 使得AB =AD ,延长CA 至E 使得AC =AE ,当△ABC 满足条件________时,四边形BCDE 是菱形.8.已知菱形的两条对角线长为6和8,菱形的周长是_______,面积是________.9.如图,矩形ABCD 的对角线,AC BD 相交于O ,∠AOB =120°,//,//CE BD DE AC ,若4=AD 则四边形CODE 的周长为______________.10.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,且OA=OC ,OB=OD .请你添加一个适当的条件:______________,使四边形ABCD 成为菱形.11.如图,菱形ABCD 中,E 、F 分别在BC CD 、边上,AB AE =,且AEF 是等边三角形,则C Ð=_______.12.已知菱形的周长为40,两个相邻角度数之比为1∶2,则较长对角线的长为______.三、解答题13.如图,在ABCD 中,AC 为对角线,EF AC ^于点O ,交AD 于点E ,交BC 于点F ,连接AF ,CE .请你探究当点O 满足什么条件时,四边形AFCE 是菱形,并说明理由.14.如图,在菱形ABCD 中,∠ABC =120°,对角线AC ,BD 相交于点O ,AE 平分∠CAD ,分别交OD ,CD 于F ,E 两点,求∠AFO 的度数.15.如图,四边形ABCD 是边长为13cm 的菱形,其中对角线BD 长10cm .求:(1)对角线AC 的长度;(2)菱形ABCD 的面积.16.如图,ABCD 中,对角线AC BD 、交于O ,AH BC ^于H ,12Ð=Ð.(1)求证:ABCD是菱形:(2)若4AC AH==,求菱形ABCD的面积.17.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.18.如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8cm,BD=6cm,DH⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.参考答案1.B 2.B 3.C 4.A 5.D 6.A7.∠BAC =90°8.20249.1610.AB=AD.11.100°12.13.解:当点O 是AC 的中点时,四边形AFCE 是菱形.理由如下:∵四边形ABCD 是平行四边形,∴//AD BC ,∴AEO CFO Ð=Ð,EAO FCO Ð=Ð.∵O 是AC 的中点,∴AO CO =,∴AOE COF D D ≌,∴OE OF =,∴四边形AFCE 是平行四边形,又∵EF AC ^,∴平行四边形AFCE 是菱形.14.【解析】∵在菱形ABCD 中,∠ABC=120°,∴∠BAD=60°,∵对角线AC 、BD 交于点O ,∴∠BAC=∠CAD=30°,∠DOA=90°∵AE 平分∠CAD ,∴∠OAF=15°,∴∠AFO 的度数为:90°-15°=75°.15.解:(1)∵四边形ABCD 是菱形,AC 与BD 相交于点E ,∴90AED Ð=°(菱形的对角线互相垂直),11105(cm)22DE BD ==´=(菱形的对角线互相平分).∴12(cm)AE ===.∴221224(cm)AC AE ==´=(菱形的对角线互相平分);(2)ABD BDC ABCD S SS =+菱形1122BD AE BD CE =×+×1()2BD AE CE =×+12BD AC =×110242=´´2120(cm )=.16.【解析】(1)证明: AH BC ^,\90AHC Ð=°,190ACH Ð+Ð=°,12Ð=Ð,\290ACH Ð+Ð=°,\在BOC D 中,180(2)BOC ACH Ð=°-Ð+Ð=1809090°-°=°,BO OC \^,即ABCD 的对角线BD AC ^,\ABCD 是菱形;(2)在Rt AHC D 中,2HC ==, ABCD 是菱形,\AB BC =,设==AB BC x ,则2BH x =-,在Rt ABH D 中,由勾股定理得:222AH BH AB +=中,即2224(2)x x +-=,解得5x =,=5420ABCD S BC AH \×=´=菱形.17.【解析】(1)∵AC 、BD 分别是∠BAD 、∠ABC 的平分线,∴∠DAC=∠BAC ,∠ABD=∠DBC ,∵AE ∥BF ,∴∠DAB+∠CBA=180°,∴∠BAC+∠ABD=12(∠DAB+∠ABC )=12×180°=90°,∴∠AOD=90°;(2)证明:∵AE ∥BF ,∴∠ADB=∠DBC ,∠DAC=∠BCA ,∵AC 、BD 分别是∠BAD 、∠ABC 的平分线,∴∠DAC=∠BAC ,∠ABD=∠DBC ,∴∠BAC=∠ACB ,∠ABD=∠ADB ,∴AB=BC ,AB=AD∴AD=BC ,∵AD ∥BC ,∴四边形ABCD 是平行四边形,∵AD=AB ,∴四边形ABCD 是菱形.18.【解析】(1)∵四边形ABCD 是菱形,AC=8cm ,BD=6cm ,∴S 菱形ABCD =12AC•BD=12×6×8=24cm 2,(2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=OC=12AC=4cm ,OB=OD=3cm ,∴在直角三角形AOB 中,5cm ,∴DH=ABCD S AB =4.8cm .。

人教版数学八年级下册《菱形的性质》培优训练(含答案)

人教版数学八年级下册《菱形的性质》培优训练(含答案)

人教版数学八年级下册《菱形的性质》培优训练一、选择题(共10小题,3*10=30)1.(十堰中考)菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 如图所示,菱形ABCD中,∠B=60°,AB=2,E、F分别是BC、CD的中点,连接AE、EF、AF,则△AEF的周长为( )A.2 3 B.3 3 C.4 3 D.33.如图,菱形ABCD中,∠D=150°,则∠1=( )A.30° B.25° C.20° D.15°4.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为点E,连接DF,则∠CDF等于( )A.50° B.60° C.70° D.80°5. 如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是()A.18 3 -9π B.18-3πC.9 3 -9π D.18 3 -3π6. 求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O. 求证:AC⊥BD.以下是排乱的证明过程:①又BO=DO;②∴AO⊥BD,即AC⊥BD;③∵四边形ABCD是菱形;④∴AB=AD.证明步骤正确的顺序是()A.③→②→①→④B.③→④→①→②C.①→②→④→③D.①→④→③→②7. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为()A.5 cm B.10 cm C.14 cm D.20 cm8. 如图,四边形ABCD为菱形,A,B两点的坐标分别是(2,0),(0,1),点C,D在坐标轴上,则菱形ABCD的周长等于()A. 5 B.4 3 C.4 5 D.209. 已知菱形的边长为3,较短的一条对角线的长为2,则该菱形较长的一条对角线的长为() A.2 2 B.2 5 C.4 2 D.21010. 如图,在平面直角坐标系中,四边形OABC为菱形,O(0,0),A(4,0),∠AOC=60°,则对角线交点E的坐标为( )A.(2, 3 ) B.( 3 ,2) C.( 3 ,3) D.(3, 3 )二.填空题(共8小题,3*8=24)11.如图,菱形ABCD的周长为24 cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长为________.12. 如图,在菱形ABCD中,对角线AC、BD相交于点O,若若AC=8 cm,BD=6 cm,则该菱形的面积为________cm2,周长为________cm.13.在菱形ABCD中,对角线AC、BD相交于点O,若∠ABC=140°,则∠BAD=________°,∠ABD=________°,∠BCA=________°;14.如图,菱形ABCD的边长为2 cm,E是BC的中点,且AE⊥BC,则菱形ABCD的面积为______.15. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为______.16. 如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A′B′O′.当点A′与点C重合时,点A与点B′之间的距离为______.17. 如图,在平面直角坐标系中,△ACE是以菱形ABCD的对角线AC为边的等边三角形,AC=2,点C与点E关于x轴对称,则点D的坐标是___________.18. 如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边的中点,则MP+PN的最小值是______.三.解答题(共7小题,46分)19.(6分) 如图,在菱形ABCD中,点E,F分别为AD,CD边上的点,DE=DF,求证:∠1=∠2.20.(6分) 已知:如图,在△ABC中,CD平分∠ACB交AB于点D,DE∥AC交BC于点E,DF∥BC交AC于点F. 四边形DECF是菱形吗?为什么?21.(6分)如图,在菱形ABCD中,对角线AC与BD相交于点O,BD=12 cm,AC=6 cm.求菱形的周长.22.(6分) 如图,四边形ABCD是菱形,对角线AC,BD相交于点O,且AB=2.(1)求菱形ABCD的周长;(2)若AC=2,求BD的长.23.(6分) 如图,四边形ABCD是菱形,对角线AC和BD相交于点O,AC=8 cm,BD=6 cm,DH ⊥AB于H.(1)求菱形ABCD的面积;(2)求DH的长.24.(8分) 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,求EP+FP的最小值.25.(8分) 如图,在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.参考答案1-5BBDBA 6-10 BDCCD11. 312. 24,2013. 40,70,20 14. 2 3 cm 215.2416.10 17. (33,0) 18.119. 证明:∵四边形ABCD 是菱形,∴AD =CD ,在△ADF 和△CDE 中,⎩⎪⎨⎪⎧AD =CD ,∠D =∠D ,DF =DE ,∴△ADF ≌△CDE(SAS),∴∠1=∠220. 解:四边形DECF 是菱形.理由如下:∵DE ∥FC ,DF ∥EC ,∴四边形DECF 为平行四边形.由AC ∥DE ,知∠2=∠3.∵CD 平分∠ACB ,∴∠1=∠2,∴∠1=∠3,∴DE =EC ,∴平行四边形DECF 为菱形.21. 解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12AC ,BO =12BD. ∵AC =6 cm ,BD =12 cm ,∴AO =3 cm ,BO =6 cm.在Rt △ABO 中,由勾股定理,得AB =AO 2+BO 2=32+62=3 5 cm , ∴菱形的周长=4AB=4×3 5 =12 5 cm.22. 解:(1)∵四边形ABCD 是菱形,∴AB =BC =CD =AD =2.∴菱形ABCD 的周长为8.(2)∵四边形ABCD 是菱形,∴OA =OC =12AC =1,OB =OD ,且∠AOB =90°. ∴OB =AB 2-OA 2=22-12= 3.∴BD =2OB =2 3.23. 解:(1)∵四边形ABCD 是菱形,AC =8 cm ,BD =6 cm ,∴S 菱形ABCD =12AC·BD =12×6×8=24(cm 2). (2)∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =4 cm ,OB =OD =3 cm , ∴在直角三角形AOB 中,AB =OB 2+OA 2=32+42=5 cm ,∴DH =S 菱形ABCD AB=4.8 cm. 24. 解:如图,作F 点关于BD 的对称点F′,则PF =PF′,连接EF′交BD 于点P.∴EP +FP =EP +F′P.由两点之间线段最短可知:当E 、P 、F′在一条直线上时,EP +FP 的值最小,此时EP +FP =EP +F′P =EF′.∵四边形ABCD 为菱形,周长为12,∴AB =BC =CD =DA =3,AB ∥CD ,∵AF =2,AE =1,∴DF′=DF =AE =1,∴四边形AEF′D 是平行四边形,∴EF′=AD =3.∴EP +FP 的最小值为3.25. 证明:(1)∵四边形ABCD 是菱形,∴AB =AD ,AD ∥BC .∴∠BP A =∠DAE .∵∠ABC =∠AED ,∴∠BAF =∠ADE .∵∠ABF =∠BPF ,∠BP A =∠DAE ,∴∠ABF =∠DAE .∵AB =DA ,∴△ABF ≌△DAE (ASA).(2)∵△ABF ≌△DAE ,∴BF =AE ,AF =DE .∵AF =AE +EF =BF +EF ,∴DE =BF +EF .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学下册
18.2.2.2 菱形的判定
培优训练
一、选择题(共10小题,3*10=30)
1.下列命题中,正确的是( )
A.有一个角是60°的平行四边形是菱形
B.有一组邻边相等的四边形是菱形
C.有两边相等的平行四边形是菱形
D.四条边相等的四边形是菱形
2.如图,在▱ABCD中,AC,BD交于点O,AB=13,AC=24,DB=10,则四边形ABCD是() A.一般的平行四边形B.长方形C.菱形D.形状不能确定
3. 如图,下列条件之一能使平行四边形ABCD是菱形的为( )
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A、①③
B、②③
C、③④
D、①②③
4. 如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )
A.AC⊥BD B.AB=AD
C.AC=BD D.∠ABD=∠CBD
5. 如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD是菱形的只有()
C.AC=BD D.∠1=∠2
6. 如图,四边形ABCD的两条对角线相交于点O,且互相平分,添加下列条件,仍不能判定四边形ABCD为菱形的是()
A.AC⊥BD B.AB=AD
C.AC=BD D.∠ABD=∠CBD
7. 如图,将▱ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成立的是() A.AF=EF B.AB=EF
C.AE=AF D.AF=BE
8. 四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是( )
A. 平行四边形
B. 矩形
C. 菱形
D. 正方形
9.如图,四边形ABCD的四边相等,且面积为120 cm2,对角线AC=24 cm,则四边形ABCD的周长为()
A.52 cm B.40 cm
C.39 cm D.26 cm
10. 如图,分别以Rt△ABC的斜边AB和直角边AC为边向△ABC外作等边三角形ABD和等边三角形ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠BAC=30°.给出以下结论:
①EF⊥AC;②四边形ADFE为菱形;③AD=4AG; ④FH=1
4BD.其中正确的结论是()
二.填空题(共8小题,3*8=24)
11.如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________.
12. 如图在矩形ABCD中,对角线AC、BD相交于点O,且DE∥AC,CE∥BD,则四边形OCED 的形状是_________.
13. 如图,在长方形ABCD中,AB=12,AD=14,E为AB的中点,点F,G分别在CD,AD上,若CF=4,且△EFG 为等腰直角三角形,则EF的长为_________.
14. 如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为_________.
15.下列命题:
①四边都相等的四边形是菱形;
②两组邻边分别相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形;
④对角线相等的四边形是菱形;
⑤一条对角线平分一组对角的平行四边形是菱形.
其中正确的是__________(填序号).
16. 把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,
17. 如图,把长方形纸片ABCD折叠,使其对角顶点C与A重合.若长方形的长BC为8,宽AB为4,则折痕EF的长度为_________.
18. 在菱形ABCD中,AE为BC边上的高,若AB=5,AE=4,则线段CE的长为.三.解答题(共7小题,46分)
19.(6分)如图,在平行四边形ABCD中,AC平分∠DAB,AB=2 cm,求平行四边形ABCD的周长为.
20.(6分) 如图,E,F是菱形ABCD对角线上的两点,且AE=CF.求证:四边形BEDF是菱形;
21.(6分) 如图,在△ABC中,AD平分∠BAC,过点D分别作DE∥AC、DF∥AB,分别交AB、AC于点E、F.求证:四边形AEDF是菱形.
22.(6分) 如图,在△ABC中,AD平分∠BAC,将△ABC折叠,
使点A与点D重合,展开后折痕分别交AB,AC于点E,F,连接DE,DF.
求证:四边形AEDF是菱形.
23.(6分) 如图,在▱ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.
(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.
24.(8分) 如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.
(1)求证:△ABE≌△CDF;
(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.
25.(8分) 如图,将一张矩形纸片ABCD进行折叠,具体操作如下:
第一步:先对折,使AD与BC重合,得到折痕MN,展开;
第二步:再折叠一次,使点A落在MN上的点A′处,并使折痕经过点B,得到折痕BE,同时,得到线段BA′,EA′,展开,如图①;
第三步:再沿EA′所在的直线折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,展开,如图②.
求证:(1)∠ABE=30°;(2)四边形BFB′E为菱形.
参考答案
1-5DCACC 6-10 CCCAC
11. AB=AD或AC⊥BD
12. 菱形
13.10 2
14.3
15. ①③⑤
16. 60
17.2 5
18. 2或8
19. 解:如图.∵四边形ABCD为平行四边形,∴∠1=∠4,∠2=∠3,
∵AC平分∠DAB,∴∠1=∠2,
∴∠1=∠3,∴AD=DC,
四边形ABCD为菱形,
∴四边形ABCD的周长=4×2=8.
20. 证明:连接BD,交AC于O.
∵四边形ABCD是菱形,
∴OA=OC,OB=OD,AC⊥BD,
∵AE=CF,∴OE=OF,
∴四边形BEDF是平行四边形,
∵EF⊥BD,∴四边形BEDF是菱形;
21. 证明:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形.
∵AD平分∠BAC,∴∠BAD=∠CAD.
∵DE∥AC,∴∠EDA=∠CAD,
∴∠EDA=∠BAD,
∴四边形AEDF 是菱形.
22. 证明:(方法不唯一)由折叠性质知:AE =DE ,AF =DF , ∴∠DAE =∠EDA ,∠ADF =∠FAD , ∵∠DAE =∠FAD ,
∴∠DAE =∠ADF ,∠DAF =∠EDA , ∴DF ∥AE ,DE ∥AF , ∴四边形AEDF 是平行四边形, ∵AE =DE ,∴四边形AEDF 是菱形
23. (1)证明:∵在▱ABCD 中,对角线AC ,BD 相交于点O ,AB =5,AC =6,BD =8,∴AO =1
2AC
=3,BO =1
2BD =4,
∵AB =5,且32+42=52, ∴AO 2+BO 2=AB 2,
∴△AOB 是直角三角形,且∠AOB =90°, ∴AC ⊥BD ,∴四边形ABCD 是菱形. (2)解:∵四边形ABCD 是菱形, ∴BC =AB =5,
∵S △ABC =12AC·BO =12BC·AH ,∴12×6×4=1
2×5×AH ,
解得:AH =24
5
.
24. 解:(1)证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°, AB =CD ,AD =BC ,AD ∥BC ,
在Rt △ABE 和Rt △CDF 中,⎩⎪⎨⎪
⎧AE =CF ,AB =CD ,
∴Rt △ABE ≌Rt △CDF(HL)
(2)解:当AC ⊥EF 时,四边形AECF 是菱形,理由如下: ∵△ABE ≌△CDF ,∴BE =DF , ∵BC =AD ,∴CE =AF , ∵CE ∥AF ,
∴四边形AECF 是平行四边形, 又∵AC ⊥EF ,∴四边形AECF 是菱形
∴∠AEB=∠A′EB.
∵第三步折叠,点B落在AD上的点B′处,得到折痕EF,同时得到线段B′F,∴∠A′EB=∠FEB′.
∵∠AEB+∠A′EB+∠FEB′=180°,
∴∠AEB=∠A′EB=∠FEB′=60°,
∴∠ABE=30°
(2)∵沿EA′所在的直线折叠,点B落在AD上的点B′处,
∴BE=B′E,BF=B′F.
∵AD∥BC,∴∠BFE=∠FEB′=60°,
∴△BEF是等边三角形,
∴BE=BF,∴BE=B′E=B′F=BF,
∴四边形BFB′E为菱形。

相关文档
最新文档