2017年山东春季高考数学试题
2017年山东春季高考数学模拟试卷及答案(五)(DOC)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 2017年山东春季高考数学模拟试卷及答案(五)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)1.下列说法正确的是 ( ) A .-1的倒数是1 B. -1的相反数是-1 C. 1的算术平方根是1 D. 1的立方根是±12.下列运算错误的是 ( )A .3252a 3a 5a +=B .236a a ()= C .235a a a = D .24215a 5a a÷= 3.地球赤道长约为4410⨯千米,我国最长的河流——长江全长约为36.310⨯千米,赤道长约 等于长江长的 ( ) A .7倍 B .6倍 C .5倍 D .4倍 4.如图1,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于 ( ) A .25° B .30° C .45° D .60° 5.不等式组x 5332x 1⎧⎨⎩+≥-≥-的解集表示在数轴上正确的 ( )6.如图2,已知EF 是梯形ABCD 的中位线,若AB =8,BC =6, CD =2,∠B 的平分线交EF 于G ,则FG 的长是( )C ABD E(图1)CDFGEA B(图2)山东春季高考模拟试题---- 根据历年春季高考考试大纲出题OA B(图∵∠AOB=∠∴=.A.OABCD(图∵=∴AB=CD.B.OA B(图∵的度数为40°,∴∠AOB=80°.C.DOA BEMN(图∵MN垂直平分AD,∴=.D.A.1 B.1.5 C.2 D.2.57.观察图3-图6及相应推理,其中正确的是()8.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图7所示,那么甲、乙两人单独完成这件工作,下列说法正确的是()A.甲的效率高 B.乙的效率高C.两人的效率相等 D.两人的效率不能确定二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)9.在实数-2,13,0,-1.2,2中,无理数是。
济南市2016-2017学年度上学期春季高考联考数学试题

济南市中职学校文化课联合考试数学试题注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分120分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回。
2、本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确的到0.01。
第Ⅰ卷(选择题,共60分)一.选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将该选项的字母代号填涂在答题卡上) 1.“b c a 2=+”是“a,b,c ”成等差数列的( )A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件 2.设命题p :∅=0,q :3≥2,则下列结论正确的是( ). A .p q ∨为真B .p q ∧为真C .p 为真D . q ⌝为真3.设全集{}12345,,,,U =,集合{}1234,,,A =,集合{}1345,,,B =,则()U C A B ⋂的所有子集个数是( )A.1B.2C.4D.8 4.两个数的等比中项为8,等差中项为10,则这两个数为( ) A.8、8 B.4、16 C.2、18 D.6、14 5.若m >n >0,0<a <1,则下列各式成立的是( )A.a m ≥a nB.a m ≤a nC.log a m >log a nD.log a m <log a n 6.不等式012>--x 的解集是 ( ) A .{x x >-1} B .{xx <3}C .{x x >3或x <-1} D .{x-1<x <3}7.若函数()f x 满足(1)23f x x +=+,则(0)f =( )A .3B .1C .5D .32-8.函数x y 21-=的定义域是( )A .]0,(-∞B .),0[+∞C .),1[+∞D .]1,(-∞9.已知函数)1,0)((log ≠>+=a a b x y a 的图象过两点(0,0)和(1,1),则 A .a =2,b =1 B .a =1,b =2 C .a =2,b =2 D .a =1,b =1 10.下列函数中,在定义域上为奇函数的是( )A .x y lg =B .x x y sin =C .x xy +-=11lg D .x x y cos +=11.函数32++=bx ax y 在]1,(--∞上是增函数,在),1[+∞-上是减函数,则( ) A .00<>a b 且 B .02<=a b C .02>=a b D .02<-=a b12.已知奇函数)(x f 在),0(+∞上是增函数,且0)2(=f ,则0)(>x f 的解集为( ) A . )2,0( B .)0,2(- C .)0,2(-Y ),2(+∞D .)2,2(-13.如图:若0<a <1,函数y =a x 与y =x +a 的图像可能是( ).A .B .C .D .14.已知c bx x x f ++=2)(的对称轴是1=x ,则)3()0(f f 与的大小( ) A .)3()0(f f = B .)3()0(f f > C .)3()0(f f < D .无法比较 15.若x ,a ,2x ,b 成等比数列,则ba的值为( )A.22B.2C.2D.2116.已知数列的通项公式为a n =2n-1-1,则2047是这个数列的第( )项 A.10 B.11 C.12 D.1317.已知角α的终边经过点P (2,m), 若sin α=-54,则m 的值为( ).A.-38B.38C.±38D.-8318.已知tan (π+α)= 2,则cos 2α等于( ). A .54B .53C .52 D . 51 19.使sinx=a 2-1有意义的a 的取值范围是( )A .[-2,2]B .[0,2]C .[0,2]D .[-2,2] 20.已知函数f(x)=3sin ωx +cos ωx(ω>0)的图像与直线y=2的两个相邻的交点的距离等于π,则f(x)的单调增区间( )A .[k π-12π,k π+125π](k ∈Z)B .[k π+125π,k π+1211π](k ∈Z)C .[k π-3π,k π+6π](k ∈Z)D .[k π+6π,k π+32π](k ∈Z)第Ⅱ卷(非选择题,共60分)二.填空题(本大题共5个小题,每小题4分,共20分)21.若不等式ax 2+ax +a +3>0对一切实数x 恒成立,则实数a 的取值范围是_____________22.若函数f(x)是定义在R 上的偶函数,且图像经过点(-1,2),则f(-1)+f(1)= 23.已知f(x)=x 2+mx+1,若对任意实数x ∈R ,都有f(1+x)=f(1-x),m= ______.24.设等比数列{}n a 的q=2,且248a a =,则17a a =_____________ 25.函数f(x)=cos2x +3sinx 的值域为_________三.解答题(本大题共5个小题,共40分)26.一种车床变速箱8个齿轮的齿数成等差数列,其中首末两个齿轮的齿数分别是24和45,求其余各齿轮的齿数。
2017年普通高等学校招生全国统一考试数学试题理(山东卷,含解析)

绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)理科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设函数x 2y=4-的定义域A ,函数y=ln(1-x)的定义域为B,则A B =(A )(1,2) (B )⎤⎦(1,2 (C )(-2,1) (D )[-2,1) 【答案】D【解析】由240x -≥得22x -≤≤,由10x ->得1x <,故A B={|22}{|1}{|21}x x x x x x -≤≤⋂<=-≤<,选D.(2)已知a R ∈,i 是虚数单位,若3,4z a i z z =+⋅=,则a= (A )1或-1 (B )7-7或 (C )-3 (D )3 【答案】A【解析】由3,4z a i z z =+⋅=得234a +=,所以1a =±,故选A.(3)已知命题p:()x x ∀+>0,ln 1>0;命题q :若a >b ,则a b 22>,下列命题为真命题的是 (A ) pq∧ (B )p q⌝∧ (C )p q ⌝∧ (D )p q ⌝⌝∧【答案】B(4)已知x,y 满足x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x ,则z=x+2y 的最大值是(A )0 (B ) 2 (C ) 5 (D )6 【答案】C【解析】由x y 3x y ⎧-+≤⎪+≤⎨⎪+≥⎩30+5030x 画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线3x +y 50=+与x -3=的交点(3,4)-时,2z x y =+最大为3245z =-+⨯=,选C. (5)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆybx a =+.已知101225ii x==∑,1011600i i y ==∑,ˆ4b=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170 【答案】C【解析】22.5,160,160422.570,42470166x y a y ==∴=-⨯==⨯+= ,选C.(6)执行两次右图所示的程序框图,若第一次输入的x 的值为7,第二次输入的x 的值为9,则第一次、第二次输出的a 的值分别为(A )0,0 (B )1,1 (C )0,1 (D )1,0【答案】D【解析】第一次227,27,3,37,1x b a =<=>= ;第二次229,29,3,39,0x b a =<===,选D. (7)若0a b >>,且1ab =,则下列不等式成立的是(A )()21log 2a b a a b b +<<+ (B )()21log 2a b a b a b<+<+ (C )()21log 2a ba ab b +<+< (D )()21log 2a b a b a b +<+<【答案】B【解析】221,01,1,log ()log 21,2aba b a b ab ><<∴<+>= 12112log ()a ba ab a a b b b+>+>+⇒+>+ ,所以选B. (8)从分别标有1,2,⋅⋅⋅,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 (A )518 (B )49 (C )59(D )79 【答案】C【解析】125425989C C =⨯ ,选C. (9)在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是(A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A. (10)已知当[]0,1x ∈时,函数()21y mx =-的图象与y x m =+的图象有且只有一个交点,则正实数m的取值范围是 (A )(])0,123,⎡+∞⎣(B )(][)0,13,+∞ (C )()0,223,⎤⎡+∞⎦⎣(D )([)0,23,⎤+∞⎦【答案】B二、填空题:本大题共5小题,每小题5分,共25分(11)已知()13nx +的展开式中含有2x 项的系数是54,则n = . 【答案】4【解析】()1C 3C 3rr r r rr n n x x +T ==⋅⋅,令2r =得:22C 354n ⋅=,解得4n =.(12)已知12,e e 123-e e 与12λ+e e 的夹角为60,则实数λ的值是 .3【解析】()()2212121121223333e e e e e e e e e e λλλλ-⋅+=+⋅-⋅-=,()22212121122333232e e e e e e e e -=-=-⋅+=,()222221212112221e e e e e e e e λλλλλ+=+=+⋅+=+22321cos601λλλ=+=+,解得:33λ=. (13)由一个长方体和两个14圆柱体构成的几何体的三视图如右图,则该几何体的体积为 .【答案】22π+【解析】该几何体的体积为21V 112211242ππ=⨯⨯⨯+⨯⨯=+. (14)在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x px p =>交于,A B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为 .【答案】22y x =±(15)若函数()x e f x ( 2.71828e =是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 .①()2x f x -=②()3x f x -=③()3f x x =④()22f x x =+【答案】①④【解析】①()22xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递增,故()2xf x -=具有M 性质;②()33xx x x e e f x e -⎛⎫=⋅= ⎪⎝⎭在R 上单调递减,故()3xf x -=不具有M 性质;③()3xxe f x e x =⋅,令()3xg x e x =⋅,则()()32232xxxg x e x e x x ex '=⋅+⋅=+,∴当2x >-时,()0g x '>,当2x <-时,()0g x '<,∴()3x x e f x e x =⋅在(),2-∞-上单调递减,在()2,-+∞上单调递增,故()3f x x =不具有M 性质;④()()22x x e f x e x =+,令()()22x g x e x =+,则()()()2222110xx x g x ex e x e x ⎡⎤'=++⋅=++>⎣⎦,∴()()22x x e f x e x =+在R 上单调递增,故()22f x x =+具有M 性质.三、解答题:本大题共6小题,共75分。
2017年山东春季高考数学模拟试卷及答案(二)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题2017年山东春季高考数学模拟试卷及答案(二)一、选择题(本大题共5小题,每小题3分,共15分。
每小题给出四个答案,其中只有一个是正确的,请你把正确答案的字母代号用2B铅笔填涂在答题卡相应的位置上)。
1.如果向前运动5m记作+5m,那么向后运动3m,记作A.8mB.2mC.-3mD.-8m2.马大哈同学做如下运算题:①x5+ x5=x10②x5-x4=x ③x5•x5= x10④x10÷x5=x2⑤(x5)2=x25其中结果正确的是A.①②④B.②④C.③D.④⑤3.一个塑料袋丢弃在地上的面积约占0.023m2,如果100万个旅客每人丢一个塑料袋,那么会污染的最大面积用科学记数法表示是A.2.3×104m2B. 2.3×106m2C. 2.3×103m2山东春季高考模拟试题---- 根据历年春季高考考试大纲出题D. 2.3×10-2m2相交,则函数y=k/ x的图象所在的象限是4.若函数y=2 x +k的图象与y轴的正半轴...A.第一、二象限B.第三、四象限C.第二、四象限D.第一、三象限5.如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是A.2B.4C.8D.10山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 题 号二三四五小 计本卷总得 分1819 20 21 22 23 得 分(说明:由于本试卷第15小题另加3分,以上小计若超过105分,则作105分计算填入本卷总得分栏中)第 二 卷(非选择题。
共8页,满分105分)二、填空题(本大题共7小题,每小题3分,共21分。
请你把答案填在横线的上方)。
得分 评卷人山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 6.不等式组2>66<0x x ⎧⎨-⎩的解集是_____________________________________。
2017年山东春季高考数学模拟试卷及答案(五)

山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 2017年山东春季高考数学模拟试卷及答案(五)一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共24分)1.下列说法正确的是 ( ) A .-1的倒数是1 B. -1的相反数是-1 C. 1的算术平方根是1 D. 1的立方根是±12.下列运算错误的是 ( )A .3252a 3a 5a +=B .236a a ()= C .235a a a = D .24215a 5a a÷= 3.地球赤道长约为4410⨯千米,我国最长的河流——长江全长约为36.310⨯千米,赤道长约 等于长江长的 ( ) A .7倍 B .6倍 C .5倍 D .4倍 4.如图1,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于 ( ) A .25° B .30° C .45° D .60° 5.不等式组x 5332x 1⎧⎨⎩+≥-≥-的解集表示在数轴上正确的 ( )6.如图2,已知EF 是梯形ABCD 的中位线,若AB =8,BC =6, CD =2,∠B 的平分线交EF 于G ,则FG 的长是( )C ABD E(图1)CD FGEA B(图2)山东春季高考模拟试题---- 根据历年春季高考考试大纲出题 O A BA 'B '(图∵∠AOB =∠A OB ''∴ AB= A B ''. A.OABCD(图∵ AD= BC ∴AB =CD.B.OAB(图∵ AB的度数为40°, ∴∠AOB =80°.C.DOA BE M N(图∵MN 垂直平分AD , ∴ AM= ME . D.A .1B .1.5C .2D .2.5 7.观察图3-图6及相应推理,其中正确的是( )8.一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分 由乙继续完成,设这件工作的全部工作量为1,工作量与工作时 间之间的函数关系如图7所示,那么甲、乙两人单独完成这件工 作,下列说法正确的是 ( ) A .甲的效率高 B .乙的效率高 C .两人的效率相等 D .两人的效率不能确定二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共36分)9.在实数-2,13,0,-1.2,2中,无理数是。
2017年山东省春季高考数学真题答案

山东省2017年普通高校招生(春季)考试数学试题答案及解析 卷Ⅰ(选择题 共60分)一、选择题(本大题20个小题,每小题3分,共60分)卷Ⅱ(选择题 共60分)二、填空题(本大题5个小题,每小题4分,共20分)21. 3π 22.43 23.24 24.51 25.(-2,31)三、解答题(本大题5个小题,共40分)26(本小题7分)(1)要使函数f (x )=log 2(3+x )﹣log 2(3﹣x )有意义,则⇒﹣3<x <3,⇒函数f (x )的定义域为(﹣3,3);⇒f (﹣x )=log 2(3﹣x )﹣log 2(3+x )=﹣f (x ) ⇒函数f (x )为奇函数. (2)令f (x )=1,即,解得x=1.⇒sinα=1,⇒Z k ∈+=k 22,ππα27.(本小题8分)若按方案⇒缴费,需缴费50×0.9=45万元;若按方案⇒缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,⇒共需缴费S20===219﹣=524288﹣≈52.4万元,⇒方案⇒缴纳的保费较低.28.(本小题8分)(1)证明:取AC的中点F,连结EF,DF,⇒D,E,F分别是AB,A1C1,AC的中点,⇒EF⇒CC1,DF⇒BC,又DF∩EF=F,AC∩CC1=C,⇒平面DEF⇒平面BCC1B1,又DE⇒平面DEF,⇒DE⇒平面BCC1B1.(2)解:⇒EF⇒CC1,CC1⇒平面BCC1B1.⇒EF⇒平面BCC1B1,⇒⇒EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,⇒tan⇒EDF=.29.(本小题8分)解:(1)⇒=3sin(2x﹣),⇒函数的最小正周期T==π.(2)⇒令2kπ+≤2x﹣≤2kπ+,k⇒Z,解得:kπ+≤x≤kπ+,k⇒Z,⇒函数的单调递减区间为:[kπ+,kπ+],k⇒Z,(3)列表:x0π2π2x﹣y030﹣30描点、连线如图所示:30.(本小题9分)(1)根据题意,得F(1,0),⇒c=1,又e=,⇒a=2,⇒b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则⇒=0,⇒(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),⇒丨AB丨==,综上可知:线段AB长度为。
(完整版)2017年山东省春季高考数学试卷(解析版)
2017年山东省春季高考数学试卷一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+35.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣326.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.69.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.28812.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣214.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.1815.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4 18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为()成绩分析表甲乙丙丁平均成绩96 96 85 85标准差s 4 2 4 2A .甲B .乙C .丙D .丁 20.已知A 1,A 2为双曲线(a >0,b >0)的两个顶点,以A 1A 2为直径的圆与双曲线的一条渐近线交于M ,N 两点,若△A 1MN 的面积为,则该双曲线的离心率是( ) A .B .C .D .二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于. 22.在△ABC 中,a=2,b=3,∠B=2∠A ,则cosA= . 23.已知F 1,F 2是椭圆+=1的两个焦点,过F 1的直线交椭圆于P 、Q 两点,则△PQF 2的周长等于 .24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是 . 25.对于实数m ,n ,定义一种运算:,已知函数f (x )=a*a x ,其中0<a <1,若f (t ﹣1)>f (4t ),则实数t 的取值范围是 .三、解答题:26.已知函数f (x )=log 2(3+x )﹣log 2(3﹣x ),(1)求函数f (x )的定义域,并判断函数f (x )的奇偶性; (2)已知f (sinα)=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l 与椭圆的另一个交点为B,求线段AB的长.2017年山东省春季高考数学试卷参考答案与试题解析一、选择题1.已知全集U={1,2},集合M={1},则∁U M等于()A.∅B.{1}C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},则∁U M={2}.故选:C.2.函数的定义域是()A.[﹣2,2]B.(﹣∞,﹣2]∪[2,+∞)C.(﹣2,2)D.(﹣∞,﹣2)∪(2,+∞)【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,∴|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是(﹣∞,﹣2)∪(2,+∞).故选:D.3.下列函数中,在区间(﹣∞,0)上为增函数的是()A.y=x B.y=1 C.D.y=|x|【考点】3E:函数单调性的判断与证明.【分析】根据基本初等函数的单调性,判断选项中的函数是否满足条件即可.【解答】解:对于A,函数y=x,在区间(﹣∞,0)上是增函数,满足题意;对于B,函数y=1,在区间(﹣∞,0)上不是单调函数,不满足题意;对于C,函数y=,在区间(﹣∞,0)上是减函数,不满足题意;对于C,函数y=|x|,在区间(﹣∞,0)上是减函数,不满足题意.故选:A.4.二次函数f(x)的图象经过两点(0,3),(2,3)且最大值是5,则该函数的解析式是()A.f(x)=2x2﹣8x+11 B.f(x)=﹣2x2+8x﹣1 C.f(x)=2x2﹣4x+3 D.f(x)=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f(x)=a(x﹣1)2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f(x)的图象经过两点(0,3),(2,3),则对称轴x=1,最大值是5,可设f(x)=a(x﹣1)2+5,于是3=a+5,解得a=﹣2,故f(x)=﹣2(x﹣1)2+5=﹣2x2+4x+3,故选:D.5.等差数列{a n}中,a1=﹣5,a3是4与49的等比中项,且a3<0,则a5等于()A.﹣18 B.﹣23 C.﹣24 D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得(a3)2=4×49,结合解a3<0可得a3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,则(a3)2=4×49,解可得a3=±14,又由a3<0,则a3=﹣14,又由a1=﹣5,则a5=2a3﹣a1=﹣23,故选:B.6.已知A(3,0),B(2,1),则向量的单位向量的坐标是()A.(1,﹣1)B.(﹣1,1)C.D.【考点】95:单位向量.【分析】先求出=(﹣1,1),由此能求出向量的单位向量的坐标.【解答】解:∵A(3,0),B(2,1),∴=(﹣1,1),∴||=,∴向量的单位向量的坐标为(,),即(﹣,).故选:C.7.“p∨q为真”是“p为真”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题”则p或q为真命题,故由充要条件定义知p∨q为真”是“p为真”必要不充分条件【解答】解:“p∨q为真命题”则p或q为真命题,所以“p∨q为真”推不出“p为真”,但“p为真”一定能推出“p∨q为真”,故“p∨q为真”是“p为真”的必要不充分条件,故选:B.8.函数y=cos2x﹣4cosx+1的最小值是()A.﹣3 B.﹣2 C.5 D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=(cox﹣2)2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,故选:B.9.下列说法正确的是()A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与已知平面垂直D.经过平面外一点有且只有一条直线与已知平面垂直【考点】LJ:平面的基本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与已知平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与已知平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与已知平面垂直,故D正确.故选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是()A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:直线的斜率k=﹣3,故直线方程是:y+2=﹣3(x﹣1),整理得:3x+y﹣1=0,故选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意选出4个排成节目单,则能排出不同节目单的数量最多是()A.72 B.120 C.144 D.288【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,则以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,则一共可以排出24+192+72=288个不同节目单,故选:D.12.若a,b,c均为实数,且a<b<0,则下列不等式成立的是()A.a+c<b+c B.ac<bc C.a2<b2D.【考点】R3:不等式的基本性质.【分析】A,由a<b<0,可得a+c<b+c;B,c的符号不定,则ac,bc大小关系不定;C,由a<b<0,可得a2>b2;D,由a<b<0,可得﹣a>﹣b⇒;【解答】解:对于A,由a<b<0,可得a+c<b+c,故正确;对于B,c的符号不定,则ac,bc大小关系不定,故错;对于C,由a<b<0,可得a2>b2,故错;对于D,由a<b<0,可得﹣a>﹣b⇒,故错;故选:A13.函数f(x)=2kx,g(x)=log3x,若f(﹣1)=g(9),则实数k的值是()A.1 B.2 C.﹣1 D.﹣2【考点】4H:对数的运算性质.【分析】由g(9)=log39=2=f(﹣1)=2﹣k,解得即可.【解答】解:g(9)=log39=2=f(﹣1)=2﹣k,解得k=﹣1,故选:C14.如果,,那么等于()A.﹣18 B.﹣6 C.0 D.18【考点】9R:平面向量数量积的运算.【分析】由已知求出及与的夹角,代入数量积公式得答案.【解答】解:∵,,∴,且<>=π.则==3×6×(﹣1)=﹣18.故选:A.15.已知角α的终边落在直线y=﹣3x上,则cos(π+2α)的值是()A.B.C.D.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由直线方程,设出直线上点的坐标,可求cosα,利用诱导公式,二倍角的余弦函数公式可求cos(π+2α)的值.【解答】解:若角α的终边落在直线y=﹣3x上,(1)当角α的终边在第二象限时,不妨取x=﹣1,则y=3,r==,所以cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=;(2)当角α的终边在第四象限时,不妨取x=1,则y=﹣3,r==,所以sinα=,cosα=,可得cos(π+2α)=﹣cos2α=1﹣2cos2α=,故选:B.16.二元一次不等式2x﹣y>0表示的区域(阴影部分)是()A.B.C.D.【考点】7B:二元一次不等式(组)与平面区域.【分析】利用二元一次不等式(组)与平面区域的关系,通过特殊点判断即可.【解答】解:因为(1,0)点满足2x﹣y>0,所以二元一次不等式2x﹣y>0表示的区域(阴影部分)是:C.故选:C.17.已知圆C1和C2关于直线y=﹣x对称,若圆C1的方程是(x+5)2+y2=4,则圆C2的方程是()A.(x+5)2+y2=2 B.x2+(y+5)2=4 C.(x﹣5)2+y2=2 D.x2+(y﹣5)2=4【考点】J1:圆的标准方程.【分析】由已知圆的方程求出圆心坐标和半径,求出圆C1的圆心关于y=﹣x的对称点,再由圆的标准方程得答案.【解答】解:由圆C1的方程是(x+5)2+y2=4,得圆心坐标为(﹣5,0),半径为2,设点(﹣5,0)关于y=﹣x的对称点为(x0,y0),则,解得.∴圆C2的圆心坐标为(0,5),则圆C2的方程是x2+(y﹣5)2=4.故选:D.18.若二项式的展开式中,只有第4项的二项式系数最大,则展开式中的常数项是()A.20 B.﹣20 C.15 D.﹣15【考点】DB:二项式系数的性质.【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幂指数等于0,求得r 的值,即可求得展开式中的常数项的值. 【解答】解:∵二项式的展开式中只有第4项的二项式系数最大,∴n=6,则展开式中的通项公式为 T r +1=C 6r •(﹣1)r •x.令6﹣3r=0,求得r=2,故展开式中的常数项为 C 62•(﹣1)2=15, 故选:C .19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最佳人选为( ) 成绩分析表甲 乙 丙 丁 平均成绩96 96 85 85标准差s 4 2 4 2A .甲B .乙C .丙D .丁 【考点】BC :极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙,由此知乙同学成绩较高,且发挥稳定,应选乙参加. 故选:B .20.已知A 1,A 2为双曲线(a >0,b >0)的两个顶点,以A 1A 2为直径的圆与双曲线的一条渐近线交于M ,N 两点,若△A 1MN 的面积为,则该双曲线的离心率是( ) A .B .C .D .【考点】KC :双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A 1(﹣a ,0)到直线渐近线的距离d ,根据三角形的面积公式,即可求得△A 1MN 的面积,即可求得a 和b 的关系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程y=±x,设以A1A2为直径的圆与双曲线的渐近线y=x交于M,N两点,则A1(﹣a,0)到直线y=x的距离d==,△A1MN的面积S=×2a×==,整理得:b=c,则a2=b2﹣c2=c2,即a=c,双曲线的离心率e==,故选B.二、填空题:21.若圆锥的底面半径为1,母线长为3,则该圆锥的侧面积等于3π.【考点】L5:旋转体(圆柱、圆锥、圆台).【分析】圆锥侧面展开图是一个扇形,半径为l,弧长为2π,则圆锥侧面积S=πrl,由此能求出结果.【解答】解:圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积:S==πrl=π×1×3=3π.故答案为:3π.22.在△ABC中,a=2,b=3,∠B=2∠A,则cosA=.【考点】HR:余弦定理.【分析】由二倍角的正弦函数公式,正弦定理即可计算得解.【解答】解:∵∠B=2∠A,∴sin∠B=2sin∠Acos∠A,又∵a=2,b=3,∴由正弦定理可得:,∵sin∠A≠0,∴cos∠A=.故答案为:.23.已知F1,F2是椭圆+=1的两个焦点,过F1的直线交椭圆于P、Q两点,则△PQF2的周长等于24.【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF2|=2a=12,|QF1|+|QF2|=2a=12即可求得△PQF2的周长.【解答】解:椭圆+=1的焦点在y轴上,则a=6,b=4,设△PQF2的周长为l,则l=|PF2|+|QF2|+|PQ|,=(|PF1|+|PF2|)+(|QF1|+|QF2|)=2a+2a,=4a=24.∴△PQF2的周长24,故答案为:24.24.某博物馆需要志愿者协助工作,若从6名志愿者中任选3名,则其中甲、乙两名志愿者恰好同时被选中的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,基本事件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的基本事件个数:m==4,∴其中甲、乙两名志愿者恰好同时被选中的概率是:p===.故答案为:.25.对于实数m,n,定义一种运算:,已知函数f(x)=a*a x,其中0<a<1,若f(t﹣1)>f(4t),则实数t的取值范围是(﹣,2] .【考点】5B:分段函数的应用.【分析】求出f(x)的解析式,得出f(x)的单调性,根据单调性得出t﹣1和4t的大小关系,从而可得t的范围.【解答】解:∵0<a<1,∴当x≤1时,a x≥a,当x>1时,a>a x,∴f(x)=.∴f(x)在(﹣∞,1]上单调递减,在(1,+∞)上为常数函数,∵f(t﹣1)>f(4t),∴t﹣1<4t≤1或t﹣1≤1<4t,解得﹣<t≤或.∴﹣.故答案为:(﹣,2].三、解答题:26.已知函数f(x)=log2(3+x)﹣log2(3﹣x),(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)已知f(sinα)=1,求α的值.【考点】4N:对数函数的图象与性质.【分析】(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3即可,由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判断函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.即sinα=1,可求得α.【解答】解:(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则⇒﹣3<x<3,∴函数f(x)的定义域为(﹣3,3);∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函数f(x)为奇函数.(2)令f(x)=1,即,解得x=1.∴sinα=1,∴α=2k,(k∈Z).27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;②按照航行天数交纳:第一天缴纳0.5元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:若按方案①缴费,需缴费50×0.9=45万元;若按方案②缴费,则每天的缴费额组成等比数列,其中a1=,q=2,n=20,∴共需缴费S20===219﹣=524288﹣≈52.4万元,∴方案①缴纳的保费较低.28.已知直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.(1)求证:DE∥平面BCC1B1;(2)求DE与平面ABC所成角的正切值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】(1)取AC的中点F,连结EF,DF,则EF∥CC1,DF∥BC,故平面DEF ∥平面BCC1B1,于是DE∥平面BCC1B1.(2)在Rt△DEF中求出tan∠EDF.【解答】(1)证明:取AC的中点F,连结EF,DF,∵D,E,F分别是AB,A1C1,AC的中点,∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,∴平面DEF∥平面BCC1B1,又DE⊂平面DEF,∴DE∥平面BCC1B1.(2)解:∵EF∥CC1,CC1⊥平面BCC1B1.∴EF⊥平面BCC1B1,∴∠EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,则DF=,EF=1,∴tan∠EDF=.29.已知函数.(1)求该函数的最小正周期;(2)求该函数的单调递减区间;(3)用“五点法”作出该函数在长度为一个周期的闭区间上的简图.【考点】HI:五点法作函数y=Asin(ωx+φ)的图象;H2:正弦函数的图象.【分析】(1)由已知利用两角差的正弦函数公式可得y=3sin(2x﹣),利用周期公式即可得解.(2)令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得函数的单调递减区间.(3)根据五点法作图的方法先取值,然后描点即可得到图象.【解答】解:(1)∵=3sin(2x﹣),∴函数的最小正周期T==π.(2)∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k ∈Z,∴函数的单调递减区间为:[kπ+,kπ+],k∈Z,(3)列表:x2x﹣0π2πy030﹣30描点、连线如图所示:30.已知椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如图所示.(1)求椭圆的标准方程;(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l 与椭圆的另一个交点为B,求线段AB的长.【考点】KL:直线与椭圆的位置关系.【分析】(1)根据题意得F(1,0),即c=1,再通过e=及c2=a2﹣b2计算可得椭圆的方程;(2)将准线方程代入椭圆方程,求得A点坐标,求得抛物线的切线方程,由△=0,求得k的值,分别代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得线段AB的长.【解答】解:(1)根据题意,得F(1,0),∴c=1,又e=,∴a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为:(2)抛物线的准线方程为x=﹣1由,解得,,由A位于第二象限,则A(﹣1,),过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,则△=0,∴(﹣4)2﹣4k(4k+6)=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=(x+1),则,整理得:(x+1)2=0,直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2(x+1),由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2=,则y1=,y2=﹣,由以上可知点A(﹣1,),B(,﹣),∴丨AB丨==,综上可知:线段AB长度为第21页(共21页)。
2017年山东春季高考数学模拟试题及答案III
2017年某某春季高考数学模拟试题及答案III一、精心选一选(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的. 把所选项前的字母代号填在括号内. 相信你一定会选对!)1、函数24-=x y 中自变量x 的取值X 围是( ) A 、2>x B 、2≥x C 、2≠x D 、2<x 2、某物体的三视图如下,那么该物体形状可能是( )A 、长方体B 、圆锥体C 、立方体D 、圆柱体 3、下列图形中,既是轴对称,又是中心对称图形的是( )4、如图1,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值X 围,在数轴上可表示为( )5、把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得( )正视图左视图俯视图0 12B 0AA图10 1 2A2 1 C 0 1D 2A .1-(1-x)=1B .1+(1-x)=1C .1-(1-x)=x-2D .1+(1-x)=x-26、在一副52X 扑克牌中(没有大小王)任意抽取一X 牌,抽出的这X 牌是方块的机会是( )A 、21B 、41C 、31D 、07.将函数762++=x x y 进行配方正确的结果应为( ) A 2)3(2++=x y B 2)3(2+-=x y C 2)3(2-+=x y D 2)3(2--=x y8、一个形式如圆锥的冰淇淋纸筒,其底面直径为cm 6,母线长为cm 5,围成这样的冰淇淋纸筒所需纸片的面积是 ( ) A 、 266cm π B 、 230cm π C 、 228cm π D 、 215cm π9、某村的粮食总产量为a (a 为常量)吨,设该村粮食的人均产量为y (吨),人口数为x ,则y 与x 之间的函数图象应为图中的( )10、在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存. 现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1∶2∶3∶5. 若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( )A 、甲B 、乙C 、丙D 、丁二、细心填一填(本大题共有5小题,每空4分,共20分.)甲乙丙丁Oxy AOxy BOxy COxyD11、分解因式:3x 2-12y 2=.12.如图9,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件,使△ADE 与△ABC 相似.你添加的条件是.13.如下图所示,摆第一个“小屋子”要5枚棋子, 摆第二个要11枚棋子,摆第三个要17枚棋子,则摆 第30个“小屋子”要枚棋子14、如图是2005年6月份的日历,如图中那样,用一个圈竖着圈住3个数.如果被圈的三个数的和为39,则这三个数中最大的一个为.15.如图,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30︒,则⊙O的直径为__________cm.三、认真答一答(本大题共10小题,满分100分. 只要你认真思考, 仔细运算, 一定会解答正确的!)16、(本题满分8分)计算:解方程组:{4,2 5.x y x y -=+=日 一 二 三 四 五 六1 2 345678910 11 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30(1)(2)(3)第13题17.(本题满分8分)(3)先将⎪⎭⎫⎝⎛-⋅-+x x x x 11122化简,然后请自选一个你喜欢的x 值,再求原式的值.18.(本题满分8分) 在如图的方格纸中(每个小方格的边长都是1个单位)有一点O 和△ABC.(1)请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),得到△A ′B ′C ′.(2)请用适当的方式描述△A′B′C′的顶点A′、B′、C′的位置.19.(本题满分10分)(1)如图,在□ABCD中,对角线AC、BD相交于点O. 请找出图中的一对全等三角形,并给予证明. AB C DO ·OAB C20(本小题满分10分)在某旅游景区上山的一条小路上,有一些断断续续的台阶.图11是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:(1)两段台阶路有哪些相同点和不同点? (2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不娈的情况下,请你提出合理的整修建议.21.(本题满分10分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?22.(本题满分10分)小明和小亮进行百米赛跑,小明比小亮跑得快,如果两人同时起跑,小明肯定赢,现在小明让小亮先跑若干米,两人的路程y(米)分别与小明追赶时间x(秒)的函数关系如图所示。
17年普通高等学校招生全国统一考试数学试题文(山东卷,参考解析)
绝密★启用前2017年普通高等学校招生全国统一考试(山东卷)文科数学一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.(1)设集合{}11M x x =-<,{}x 2N x =<,则M N =A.(-1,1)B. (-1,2)C. (0,2)D. (1,2)【答案】C【解析】由|1|1x -<得02x <<,故M N={|02}{|2}{|02}x x x x x x =<<⋂<=<< ,选C.(2)已知i 是虚数单位,若复数满足1zi i =+,则2z =A.-2iB.2iC.-2D.2【答案】A【解析】由1zi i =+得22()(1)zi i =+,即22z i -=,故22z i =-,选A.(3)已知x,y 满足约束条件x 2y 50x 30x 2⎧≤⎪≥⎨⎪≤⎩-++则z=x+2y 的最大值是A.-3B.-1C.1D.3【答案】D【解析】由x 2y 50x 30y 2⎧≤⎪≥⎨⎪≤⎩-++画出可行域及直线20x y +=如图所示,平移20x y +=发现,当其经过直线x 2y 50=-+与y 2=的交点(1,2)-时,2z x y =+最大为1223z =-+⨯=,选D.(4)已知34cosx =,则2cos x = (A)- 14 (B) 14 (C) - 18 (D) 18【答案】D(5) 已知命题p :x R ∃∈ , 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是(A )p Λ q (B)p Λ⌝ q (C) ⌝ p Λ q (D) ⌝ p Λ ⌝ q【答案】B【解析】由0x =时210x x -+≥成立知p 是真命题,由222212,1(2)<<-可知q 是假命题,故选B.(6)执行右侧的程序框图,当输入的x 值时,输入的y 的值为2,则空白判断框中的条件可能为(A )x>3 (B) x>4 (C)x ≤ 4 (D)x ≤ 5【答案】B【解析】输入x 为4,要想输出y 为2,则程序经过2log 42y ==,故判断框填4x >,选B.(7)函数cos2+=y x x 最小正周期为 A 2π B 23π C π D 2π 【答案】C 【解析】由题意2sin(2)6y x π=+,其周期22T ππ==,故选C. (8)如图所示的茎叶图记录了甲乙两组各5名工人某日的产量数据(单位:件)。
2017年山东省春季高考数学试卷及参考答案
14. (3 分)如果 A.﹣18
B.﹣6 C.0
15. (3 分)已知角 α 的终边落在直线 y=﹣3x 上,则 cos(π+2α)的值是( A. B. C. D. )
16. (3 分)二元一次不等式 2x﹣y>0 表示的区域(阴影部分)是(
A.
B.
C.
D.
17. (3 分)已知圆 C1 和 C2 关于直线 y=﹣x 对称,若圆 C1 的方程是(x+5)2+y2=4, 则圆 C2 的方程是( A. (x+5)2+y2=2 ) B.x2+(y+5)2=4 C. (x﹣5)2+y2=2 D.x2+(y﹣5)2=4
5. (3 分)等差数列{an}中,a1=﹣5,a3 是 4 与 49 的等比中项,且 a3<0,则 a5 等于( A.﹣18 ) B.﹣23 C.﹣24 D.﹣32 的单位向量的坐标是( D. ) )
6. (3 分)已知 A(3,0) ,B(2,1) ,则向量 A. (1,﹣1) B. (﹣1,1) C. 7. (3 分)“p∨q 为真”是“p 为真”的( A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
A.72 B.120 C.144 D.288 12. (3 分)若 a,b,c 均为实数,且 a<b<0,则下列不等式成立的是( A.a+c<b+c B.ac<bc C.a2<b2 D. )
13. (3 分)函数 f(x)=2kx,g(x)=log3x,若 f(﹣1)=g(9) ,则实数 k 的值 是( A.1 ) B.2 C.﹣1 D.﹣2 , ,那么 D.18 ) 等于( )
3. (3 分)下列函数中,在区间(﹣∞,0)上为增函数的是( A.y=x B.y=1 C. D.y=|x|
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2017年普通高校招生(春季)考试
数学试题
注意事项:
1.本试卷分卷一(选择题)和卷二(非选择题)两部分。
满分120分,考试时间为120分钟。
考生请在答题卡上答题。
考试结束后,去诶能够将本试卷和答题卡一并交回。
2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到0.01。
卷一(选择题,共60分)
一、选择题(本大题20个小题,每小题3分,共60分。
在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的字母选项代号选出,并填涂在答题卡上。
)
1.已知全集1,2U ,集合1M ,则U C M 等于()
(A )(B )
1
(C )2(D )1,2
2.函数12
y x
的定义域是()
(A )[2,2]
(B )(
,2]
[2,
,2)
(C )(2,2)(D )(
,2)
(2,
,2)
3.下列函数中,在区间(,0)上为增函数的是()(A )y
x
(B )1
y (C )1y
x
(D )y
x
4.已知二次函数()f x 的图像经过两点(0,3),(2,3),且最大值是5,则该函数的解析式是(
)
(A )2
()2811f x x x (B )2
()281f x x
x (C )2
()
243
f x x
x (D )2
()
243
f x x
x
5. 在等差数列n a 中, 15a ,3a 是4和49的等比中项,且3
0a ,则5a 等于(
)
(A )18
(B )
23
(C )24
(D )32
6.已知(3,0),(2,1)A B ,则向量AB 的单位向量的坐标是(
)
(A )(1,1)
(B )(1,1)
(C )22(
,
)
2
2
(D )22(
,
)
2
2
7.对于命题,p q ,“p q ”是真命题是“p 是真命题”的()
(A )充分比必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件
8.函数2
cos 4cos 1y x
x 的最小值是()
(A )3
(B )
2
(C )5 (D )6
9.下列说法正确的是(
)
(A )经过三点有且只有一个平面(B )经过两条直线有且只有一个平面
(C )经过平面外一点有且只有一个平面与已知平面垂直(D )经过平面外一点有且只有一条直线与已知平面垂直10. 过直线1
0x y
与24
0x
y
的交点,且一个方向向量
(1,3)v 的直线方程是
(
)
(A )310x y (B )350x
y (C )33
0x
y
(D )35
x y
11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,若从中任意
选出4个排成节目单,则能排出不同节目单的数量最多是()
(A )72
(B )120
(C )144 (D )288
12.若,,a b c 均为实数,且0a b
,则下列不等式成立的是()(A )a
c
b
c
(B )ac
bc
(C )2
2
a b
(D )
a
b 13. 函数3()2,()
log kx
f x
g x x ,若(1)(9)f g ,则实数k 的值是(
)
(A )1(B )2
(C )-1
(D )-2
14. 如果3,2a b
a ,那么a
b 等于(
)
(A )-18(B )-6(C )0(D )18
15. 已知角终边落在直线3y x 上,则cos(2)的值是(
)
(A )
35
(B )
45
(C )35
(D )
45。