结构设计中的七个重要参数
混凝土结构设计中的“七种比值”调整模型必备

比值 名称 意义 及作用 轴压比 刚度比 周期比 位移比 剪重比 刚重比 有效质量比
主要控制竖向构件的承载 主要是用来体现整体竖向 主要控制侧向刚度与扭转 力,保证抗震设计时结构 是否规则的重要指标,对 刚度之间的一种相对关 的延性。 判断是否为薄弱层、可否 系,主要控制结构在罕遇 用作嵌固端、转换层是否 大震下的扭转效应。 满足规范要求。 《高规》6.4.2、7.2.2.2 、7.2.13 《混规》11.4.16、 11.7.16、11.7.17 《抗规》6.3.6、6.4.2、 6.4.5 1、增大构件截面尺寸 2、提高混凝土强度等级 《高规》3.5.3、5.3.7、 《高规》3.4.5 附录E A级≦0.9 B级≦0.85 《抗规》3.4.3 《超限》3.3.1.6、 3.3.2.6 1、降低本层层高或增加 上层层高
是指楼层竖向构件的最大 是反映地震作用大小的重 是指结构稳定性的验算与 主要为控制结构的地震力 水平和层间位移角与本楼 要指标,为了保证结构有 控制避免建筑在地震、风 是否全计算出来 层平均值的比为控制建筑 足够的抗剪承载能力。 荷载下发生倾覆。 的扭转效应。 《高规》5.4.2、5.4.3、 《高规》5.1.13.1 5.4.4 大于90%
规范 要求
《高规》3.4.5 《高规》4.3.12 A级不宜大于1.2,不应大 于1.5 《抗规》5.2.5 《抗规》中没有明确相关 B级不宜大于1.2,不应大 要求,所以多层时参数可 于1.4 以适当放松
调整 方法
1、只能通过调整平面布 1、增大部分柱截面 置来改善.调整的原则是 2、增加刚度(增加柱、 加强结构的外围墙、柱、 2、增大部分梁截面 梁、墙截面)或减小上层 或梁的刚度,消弱结构中 间墙、柱的刚度。 柱、梁、墙截面
结构设计要注意的7个比值word版

结构设计中的七个比值一、周期与周期比(控制第一振型不扭转):规范中没有严格的规定,只在《建筑结构荷载规范》2012年版的附录E中给出经验公式。
周期太长结构过于柔,周期太短,结构过于刚,所以,在一般情况下,高层结构结构周期T=(0.007-0.013)n式中n为建筑层数。
周期比即为结构扭转为主的第一自震(也称第一扭震周期)与平动为主的第一自振周期(也称第一侧震周期)的比值,周期比主要控制结构扭转效应,减小结构扭转对结构产生的不利影响,使结构抗扭刚度不会太弱,因为两者相近时,由于振动藕连现象,结构扭转效应会明显加大。
二、位移比(控制扭转):高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,需要对其最大位移和层间位移加以控制,以保证主体结构始终处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度,保证填充墙,幕墙等非结构构件的影响,避免产生明显的破坏。
控制平面的规则性,以免扭转对结构产生不利影响。
计算结果的判别和调整特点:pkpm中的satwe程序对于每一层计算并输出最大位移,最大层间位移角,平均水平位移,平均层间位移角及相应比值,详见输出文件wdisp,但对于计算结果的判读,应注意以下几点:(1)若位移比(层间位移比)超过1.2,则要在总信息参数设置中考虑双向地震作用。
(2)验证位移比要考虑偶然偏心作用,验证位移角不需要考虑偶然偏心。
(3)验算位移比应当选择强制刚性楼板假定,但当凹凸或者局部楼板不连续时,应当采用复合楼板,平面内实际刚度变化的计算模型,当平面不连续时尚应考虑扭转影响。
(4)最大层间位移位移比是在刚性楼板假定下的控制参数。
构件设计与设计信息不是在同一个条件下的结果(即构件可以采用弹性楼板计算,而位移计算必须在刚性楼板假定下获得)固可以在刚性楼板假定下算出位移,而采用弹性楼板进行构件分析。
(5)因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元边角部位。
建筑结构设计七个重要参数

建筑结构设计七个重要参数建筑结构设计是建筑工程中至关重要的环节,它关乎到建筑的稳固性、经济性和安全性。
在进行建筑结构设计时,需要考虑七个重要参数,这些参数对于建筑结构的设计和建设起着至关重要的作用。
下面将详细介绍这七个重要参数。
参数一:荷载荷载是指对建筑结构施加的外力和外载荷。
外力包括自重、活载(人员、设备等)、风载、地震载、温度变化引起的荷载等。
荷载是建筑结构设计的基础,合理估计和分析荷载有助于确保结构的稳定性和安全性。
参数二:强度强度是指结构材料所能承受的最大外力或应力。
在建筑结构设计中,需要考虑材料的强度和抗力,以确保结构的安全性。
强度设计要充分考虑结构的各种不利因素,如荷载类型、弯曲、剪切、压缩等,并根据设计规范进行相应的计算和分析。
参数三:刚度刚度是指结构抵抗外力变形的能力。
在建筑结构设计中,需要考虑结构的刚度,以确保结构在受力后能够保持稳定。
刚度设计要充分考虑结构的几何形状、材料的性质,以及结构的连接方式,采用合适的刚度设计有助于提高结构的稳定性和整体性。
参数四:稳定性稳定性是指建筑结构在受到外力作用后仍能保持平衡和稳定的能力。
在建筑结构设计中,需要考虑结构的整体稳定性,以确保结构不会发生失稳和倒塌。
稳定性设计要充分考虑结构的几何形状、重心位置、支座条件等因素,采用合适的稳定性设计有助于提高结构的抗风、抗震能力。
参数五:耐久性耐久性是指建筑结构能够在长期使用条件下保持强度、刚度和稳定性的能力。
在建筑结构设计中,需要考虑结构的耐久性,以确保结构能够长期使用而不会出现损坏和退化。
耐久性设计要充分考虑结构材料的性质、外界环境的影响,采用合适的防护措施有助于延长结构的使用寿命。
参数六:经济性经济性是指在保证结构安全、稳定和耐久的前提下,以最少的材料和成本达到设计要求。
在建筑结构设计中,需要考虑结构的经济性,以确保在有限的资源条件下实现设计目标。
经济性设计要充分考虑结构的材料选择、结构形式和施工工艺,采用合适的经济性设计有助于减少成本和资源消耗。
结构设计常用参数表

一、钢筋的计算截面面积及理论重量101151201注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋二、每米板宽内的钢筋截面面积表三、单肢箍Asv1/s(mm2/mm)四、梁内单层钢筋最多根数14 16九、混凝土保护层《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。
表9.2.1 纵向受力钢筋的混凝土保护层最小厚度(mm)梁注:基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm;当无垫层时不应小于70mm。
第9.2.3条板、墙、壳中分布钢筋的保护层厚度不应小于本规范表9.2.1中相应数值减10mm,且不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。
第9.2.4条当梁、柱中纵向受力钢筋的混凝土保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施。
通常在砼保护离构件表面10-15mm处增配φ4@150钢筋网片。
处于二、三类环境中的悬臂板,其上表面应采取有效的保护措施。
第9.2.5条对有防火要求的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
处于四、五类环境中的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。
注意事项:混凝土最低强度等级和保护层厚度问题1、±0.00以下(基础、底层柱)和屋面、露台梁板环境类别为二(a)类,应采用C25或以上混凝土。
2、基础混凝土保护层厚度为40mm,特别注意基础梁纵向钢筋净距是否满足规范要求。
3、应根据混凝土构件所处的环境类别和强度等级修改结构分析程序的保护层厚度。
十、纵向受力钢筋的配筋率10.1、考虑到满足最小配筋率要求,常见板纵向受力钢筋的最小配筋率应符合《混凝土结构设计规范》第9.5.1条的规定:《混凝土规范》第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。
住宅楼工程结构设计阐述

住宅楼工程结构设计阐述在当今社会,住宅楼作为人们生活的重要场所,其结构设计的合理性和安全性至关重要。
一个精心设计的住宅楼结构不仅能够为居民提供舒适、安全的居住环境,还能在一定程度上延长建筑物的使用寿命,降低维护成本。
本文将对住宅楼工程结构设计进行详细阐述。
一、工程概述首先,让我们来了解一下本次住宅楼工程的基本情况。
该住宅楼位于具体地址,总建筑面积为具体面积平方米,地上层数为层数层,地下层数为层数层。
建筑高度为高度米,结构形式为结构形式,如框架结构、剪力墙结构等。
二、设计依据在进行结构设计之前,我们需要依据一系列的规范和标准,以确保设计的合法性和可靠性。
主要的设计依据包括但不限于:《建筑结构荷载规范》(GB 50009-2012)、《混凝土结构设计规范》(GB50010-2010)、《建筑抗震设计规范》(GB 50011-2010)等。
同时,还需要考虑地质勘察报告提供的地质条件、建筑物的使用功能和业主的特殊要求等因素。
三、荷载取值荷载是结构设计中非常重要的参数,它直接影响到结构的安全性和经济性。
在住宅楼的结构设计中,主要考虑的荷载包括恒载、活载、风荷载和地震作用。
恒载主要包括结构自重、建筑面层、隔墙等的重量。
这些荷载的取值通常根据建筑材料的实际重量和尺寸进行计算。
活载则根据不同的使用功能进行取值。
例如,住宅卧室、客厅的活载一般为具体数值kN/m²,阳台的活载一般为具体数值kN/m²。
风荷载的取值需要考虑建筑物所在地区的基本风压、地面粗糙度以及建筑物的体型系数等因素。
通过计算确定风荷载对结构的作用。
地震作用的计算则需要根据建筑物所在地区的抗震设防烈度、设计基本地震加速度、场地类别等参数进行。
四、结构选型结构选型是住宅楼结构设计中的关键环节。
根据建筑物的高度、使用功能、地质条件等因素,选择合适的结构形式。
对于多层住宅楼,框架结构是一种常见的选择。
框架结构具有布置灵活、空间利用率高的优点,但在抗震性能方面相对较弱。
建筑结构设计计算参数

建筑结构设计计算参数新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。
如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。
以PKPM软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。
1 计算开始以前参数的正确设定(1)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。
设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发现该角度绝对值大于15度时,应将该数值回填(代入设计参数中)到软件的“ 水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。
(2)结构基本周期是计算风荷载的重要指标。
设计人员如果不能事先知道其准确值,可先按经验公式:T1=0.25+0.35×10-3H2/3√B计算代入软件,亦可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。
2 确定整体结构的科学性和合理性(1)刚重比是结构刚度与重力荷载之比。
它是控制结构整体稳定性的重要因素,也是影响重力二阶效应(P—△效应)的主要参数。
通常用增大系数法来考虑结构的重力二阶效应,如考虑重力二阶效应的结构位移可用未考虑P—△效应的计算结果乘以位移增大系数,但保持位移限制条件不变(框架结构层间位移角≤1/550);考虑结构构件重力二阶效应的端部弯矩和剪力值,可采用未考虑P—△效应的计算结果乘以内力增大系数。
一般情况下,对于框架结构若满足:Dj≥20∑Gj/hj(j=1,2,…n)结构不考虑重力二阶效应的影响。
结构的刚重比增大P—△效应减小,P—△效应控制在20%以内,结构的稳定具有适宜的安全储备,该值如果不满足要求,则可能引起结构失稳倒塌,应当引起设计人员的足够重视。
高层建筑结构设计中7个比值的设计与调整

高层结构设计中七个 比值的控制与调整龙广成摘 要 随着城市的发展和科学技术的进步,高层建筑(10层及10层以上或房屋高度超过28m的建筑物)的应用日益广泛。
在满足使用功能的情况下,高层建筑如何才能达到既安全又经济的设计要求,这是结构设计人员必须面对的问题。
对于高层结构设计来说,位移比、周期比、刚度比、层间受剪承载力比、刚重比、剪重比、轴压比是保证结构规则、安全、经济的七个极其重要的参数,!抗震规范∀、!混凝土规范∀、!高规∀均在相关章节对以上"七个比值"进行了严格控制。
关键词 高层建筑;结构设计;七个"比值";规范条文;SATW E程序;电算结果;名词释义;控制与调整引言:随着城市的发展和科学技术的进步,高层建筑(10层及10层以上或房屋高度超过28m的建筑物)的应用日益广泛。
在满足使用功能的情况下,高层建筑如何才能达到既安全又经济的设计要求,这是结构设计人员必须面对的问题。
对于高层结构设计来说,位移比、周期比、刚度比、层间受剪承载力比、刚重比、剪重比、轴压比是保证结构规则、安全、经济的七个极其重要的参数,!建筑抗震设计规范GB50011-2001∀(2008年版)(以下简称为抗规); !混凝土结构设计规范G B50010-2002∀(以下简称为砼规);!高层建筑混凝土结构技术规程J G J3-2002∀(以下简称为高规)均在相关章节对"七个比值"进行了严格控制。
在初步设计和施工图设计阶段,结构设计人员和审图人员对"七个比值"都非常重视,各类结构设计软件都有相应的详细电算结果输出,便于设计人员进行分析与调整。
本文仅以我国目前较为权威且应用最为广泛的PKPM软件中的SAT W E程序的电算结果,结合规范条文要求,谈谈如何对电算结果进行判读、控制与调整。
1 位移比1.1 名词释义位移比包含两项内容:(1)楼层竖向构件的最大水平位移与平均水平位移的比值。
高层住宅剪力墙结构设计控制及调整

高层住宅剪力墙结构设计控制及调整高层住宅设计中广泛采用剪力墙结构,本文给出了剪力墙结构的布置原则及设计时的注意事项;汇总了剪力墙结构计算的各个设计指标以及对应的调整方法。
随着社会进步,科技发展,人们对住宅的功能要求越来越丰富,建筑设计越来越符合功能和审美的要求;为实现建筑的要求,结构选型主要与其使用功能直接相关,同时拟建场地的地理位置,抗震烈度也是影响结构选型的重要因素。
为了进一步提高土地利用率,建设单位倡导建设高层住宅,以满足市场的需求及企业自身经济效益的要求;目前高层住宅成为人们的主要居住形式,高层住宅主要的结构形式多为剪力墙结构。
1剪力墙结构的特点剪力墙结构是由竖向剪力墙和水平楼面梁板组成的结构。
剪力墙既作为承受水平和竖向作用的构件,又有分隔房间的作用。
其布置原则除了应满足建筑使用要求,对结构受力是否合理至关重要,剪力墙布置是否合理进一步决定了该建筑的建设费用,所以更多的建设单位在前期建筑方案及与相应的结构选型上尽量优化,而达到节省造价的目的。
2建模时的注意事项(1)剪力墙:目前结构常用计算软件:中国建筑科学研究院开发的软件PKPM,北京盈建科软件XXXX有限公司编制的软件YJK,均可进行剪力墙结构的计算。
(2)剪力墙平面布置原则:依据建筑平面图:①外墙可布置为剪力墙,增加建筑平面的抗扭刚度。
②内墙布置时,平面均匀对称布置,竖向连续,避免楼层错洞保证剪力墙边缘构件上下连续贯通,同时避免墙肢开洞过大形成抗震性能较差的短肢墙(短肢剪力墙指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙)。
③剪力墙的截面厚度及构造配筋应当依据实际工程剪力墙部位及抗震等级,参见《高层建筑混凝土结构技术规程(JGJ3-2010)》7.2.1,10.4.6,《建筑抗震设计规范(GB52022-0510)》(以下简称抗规)6.4.1,6.4.3条。
④内墙长度除应满足建筑条件,还要考虑墙下桩最小桩间距的要求,例如:常规设计时,桩直径700mm,桩间距不小于3倍桩径,加上0.5倍的桩径,建议上部剪力墙的长度为2500mm,上部如有结构洞口,宜尽量使洞口避开桩位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、轴压比
轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。
轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。
轴压比不满足时的调整方法:
增大该墙、柱截面或提高该楼层墙、柱混凝土强度。
02周期比
周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。
一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规
4.3.5。
刚度越大,周期越小。
抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。
结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。
当第一振型为扭转时:
说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。
当第二振型为扭转时:
说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。
周期比不满足时的调整方法:
通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。
03、位移比/位移角
位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概
念一样都是为了控制建筑的扭转效应提出的控制参数。
见抗规3.4.3,高规
4.3.5。
位移比不满足时只能经过人工调整结构平面布置,减小结构刚心与形心的偏心距。
调整方法如下:
1)改变结构平面布置,减小刚心与形心的偏心距;
2)在编号简图中找到位移最大的节点加强其刚度,位移小的削弱刚度。
位移角:主要为限制结构在正常使用状态,水平荷载作用下水平位移过大,是
人产生不舒适感。
见高规3.7 相关要求。
位移角不满足要求时调整方法:
1)增加整楼的刚度,加大柱子的截面
2)提高柱子混凝土强度等级
04、剪重比
剪重比要求结构承担足够的地震作用,设计时不能小于规范的要求。
具体见抗
规5.2.5,高规3.3.13。
前提是当“有效质量系数”大于90%时,再考察结构的剪重比是否合适,有效
质量系数与振型数有关,如果有效质量系数不满足90%,则可以通过增加振型
数来满足。
剪重比不满足时的调整方法:
1)程序调整。
在SATWE的“调整信息2”中勾选“按抗震规范5.2.5调整各楼
层地震内力”;
2)人工调整。
假设还需人工干预,可按下列三种状况停止调整:
①外地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提高刚度。
②外地震剪力偏大而层间侧移角偏小时,说明结构过刚,宜适当减小墙、柱截面,降低刚度,以取得适宜的经济技术目的。
③外地震剪力偏小而层间侧移角又恰事先,可在SATWE的“调整信息2”中的
“全楼地震作用缩小系数”中输入大于1的系数增大地震作用,以满足剪重比要求。
05、刚重比
刚重比主要是控制结构的稳定性,避免结构在风载或地震作用下整体失稳。
具
体见高规5.4.1,高规5.4.4。
刚重比不满足要求:
说明结构的刚度相对于重力荷载过小;但刚重比过分大,则说明结构的经济技
术指标较差,宜适当减小墙、柱等竖向构件的截面面积。
06、刚度比
刚度比主要是控制结构的竖向规则性,以免竖向刚度突变,形成薄弱层。
具体
见抗规3.4.3,高规4.4.2,对于形成的薄弱层则按高规3.5.8予以加强。
刚度比不满足时的调整方法:
1)程序调整。
假设某楼层刚度比的计算结果不满足要求,则SATWE自动将该楼
层定义为薄弱层,并按高规3.5.8 将该楼层地震剪力放大1.25 倍。
2)人工调整。
假设还需要人工干预,可按以下方法调整:
①适当降低本层层高,或适当提高上部相关楼层的层高。
②适当增强本层墙、柱和梁的刚度,或适当削弱上部相关楼层墙、柱和梁的刚度。
07、层间受剪承载力比
主要为限制结构竖向布置的不规则性,避免楼层抗侧力结构的受剪承载能力沿
竖向突变,形成薄弱层。
见抗规3.4.3,高规3.5.3 及相应的条文说明;对于
形成的薄弱层应按高规3.5.8 将该楼层地震剪力放大1.25 倍。
层间受剪承载力比不满足时的调整方法:
1)程序调整:在SATWE 的“调整信息2”中的“指定薄弱层个数”中填入该楼层层号,将该楼层强制定义为薄弱层,SATWE 按高规3.5.8 将该楼层地震剪力
放大1.25 倍。
2)人工调整。
假设还需人工干预,可适当提高本层构件强度(如增大柱箍筋和
墙水平散布筋、提高混凝土强度或加大截面)以提高本层墙、柱等抗侧力构件
的抗剪承载力,或适当降低上部相关楼层墙、柱等抗侧力构件的抗剪承载力。