均值滤波 中值滤波 直方图均衡

合集下载

智能遥感图像处理技术的算法原理与应用实例

智能遥感图像处理技术的算法原理与应用实例

智能遥感图像处理技术的算法原理与应用实例遥感图像处理是利用遥感技术获取的卫星、航空等传感器获取的图像数据进行分析、处理和解释的过程。

智能遥感图像处理技术则是指利用人工智能和机器学习等技术将图像数据进行智能化处理和分析,以实现更精确、自动化的图像解释和应用。

算法原理智能遥感图像处理技术的算法原理主要包括以下几个方面:1. 数据预处理:在进行图像处理之前,通常需要对原始遥感图像数据进行预处理,以去除噪声、调整图像亮度和对比度等。

常见的预处理方法有均值滤波、中值滤波和直方图均衡化等。

2. 特征提取:特征提取是将图像数据转化为可以用于计算机处理的特征向量或特征图。

常见的特征提取方法有边缘检测、纹理特征提取和颜色直方图等。

3. 目标检测:目标检测是指从图像中自动识别和定位感兴趣的目标。

常见的目标检测算法有基于特征的方法、基于机器学习的方法和基于深度学习的方法等。

4. 分类与识别:分类与识别是将目标对象进行分类和识别的过程。

常见的分类与识别算法有支持向量机、随机森林和卷积神经网络等。

5. 地物提取与变化检测:地物提取与变化检测是指从遥感图像中提取具体地物信息和检测地物变化的过程。

常见的地物提取与变化检测算法有阈值分割、区域生长和多时相影像分析等。

应用实例智能遥感图像处理技术在许多领域中具有广泛的应用,下面将介绍几个具体实例:1. 土地利用与覆盖分类:利用遥感图像处理技术,可以自动化地对土地利用和覆盖进行分类和监测。

通过分析遥感数据并运用合适的分类算法,可以实现对不同类型的土地利用和覆盖进行精确的检测和分类,如农田、森林、湖泊等。

2. 灾害监测与预警:智能遥感图像处理技术还可以应用于灾害监测与预警中。

通过对遥感图像数据进行实时监测和分析,可以准确快速地检测出地震、洪水、火灾等灾害发生的位置和范围,并及时预警和采取相应的救援措施。

3. 城市规划与交通管理:智能遥感图像处理技术在城市规划和交通管理中的应用也越来越重要。

图像相关问题分析与解法总结

图像相关问题分析与解法总结

图像相关问题分析与解法总结随着科技的不断发展,图像处理技术在各个领域中扮演着越来越重要的角色。

无论是在医学影像诊断、人脸识别还是虚拟现实等方面,图像相关问题都是我们需要面对和解决的挑战。

本文将就图像相关问题进行分析,并总结一些解决方法。

一、图像噪声问题在图像处理过程中,噪声是一个常见的问题。

噪声会导致图像细节模糊、失真等问题,影响最终的图像质量。

针对图像噪声问题,我们可以采用以下解决方法:1.滤波器:通过应用滤波器来消除噪声。

常见的滤波器包括均值滤波器、中值滤波器和高斯滤波器等。

不同的滤波器适用于不同类型的噪声,选择合适的滤波器可以有效地降低噪声。

2.小波变换:小波变换是一种多尺度分析方法,可以将信号分解成不同频率的子信号。

通过对图像进行小波变换,可以将噪声和信号分离开来,并对噪声进行去除。

3.深度学习方法:近年来,深度学习在图像处理领域取得了显著的成果。

通过训练深度神经网络,可以学习到噪声的模式,并对图像进行去噪处理。

深度学习方法在图像去噪方面表现出了很大的潜力。

二、图像分割问题图像分割是将图像分成不同的区域或对象的过程。

图像分割在计算机视觉和图像处理中具有广泛的应用,例如目标检测、图像识别等。

以下是一些常用的图像分割方法:1.阈值分割:阈值分割是一种简单而常用的图像分割方法。

通过选择一个适当的阈值,将图像中的像素分为不同的类别。

对于灰度图像,可以根据像素的灰度值来确定阈值;对于彩色图像,可以根据像素的颜色值来确定阈值。

2.边缘检测:边缘是图像中灰度或颜色变化明显的地方。

通过检测图像中的边缘,可以将图像分割成不同的区域。

常用的边缘检测算法包括Sobel算子、Canny 算子等。

3.区域生长:区域生长是一种基于像素相似性的图像分割方法。

该方法从一个或多个种子点开始,根据像素的相似性逐渐扩展区域,直到达到某个停止条件。

三、图像增强问题图像增强是改善图像质量的过程,使图像更加清晰、明亮、对比度更强等。

均值滤波 中值滤波 直方图均衡

均值滤波 中值滤波 直方图均衡

实验报告一.实验目的对图像进行空域增强,实现均值滤波、中值滤波、直方图均衡。

二.实验内容对加入椒盐噪声的图像进行均值滤波、中值滤波,对图像实现直方图均衡,通过改变图像的直方图来改变图像中像素的灰度,以达到图像增强的目标。

三.实验原理均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。

再用模板中的全体像素的平均值来代替原来像素值。

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。

线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,)x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,)u x y,即x y,作为处理后图像在该点上的灰度值(,)1(,)(,)u x y f x y m=∑,m 为该模板中包含当前像素在内的像素总个数。

中值滤波的原理中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。

中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。

在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。

中值滤波的目的是保护图像边缘的同时去除噪声。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口,在处理之后,将窗口正中的像素灰度值用窗口内各像素灰度值的中值来代替。

设有一个维序列12,,...n f f f ,取窗口长度为奇数m ,对此序列进行中值滤波,就是从输入序列中相续抽出m 个数,,,,,i v i i v f f f -+,其中为窗口的中心值(1)/2v m =-,再将这m 个点的数值按其数值大小排列,取其序号为正中间的那个数作为滤波输出。

中值滤波表达式为:{}v i i v i i f f f Med F +-=,,,,对二维序列{X i,j }的中值滤波,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。

中值滤波和均值滤波

中值滤波和均值滤波

中值滤波和均值滤波中值滤波和均值滤波是数字图像处理中常用的两种滤波方法,它们在图像去噪和平滑处理中起着重要的作用。

本文将从原理、应用以及优缺点等方面介绍这两种滤波方法。

一、中值滤波中值滤波是一种非线性滤波方法,其基本原理是用像素点周围邻域内的中值来代替该像素点的灰度值。

中值滤波可以有效地去除图像中的椒盐噪声和脉冲噪声,同时能够保持图像的边缘信息。

其处理过程如下:1.选取一个模板,模板的大小根据噪声的程度来确定;2.将模板中的像素点按照灰度值大小进行排序,取其中位数作为中心像素点的灰度值;3.将中心像素点的灰度值替换为中值;4.重复以上步骤,对整个图像进行滤波。

中值滤波的优点是能够有效地去除椒盐噪声和脉冲噪声,同时保持图像的边缘信息。

然而,中值滤波也存在一些缺点,例如不能处理高斯噪声和均匀噪声,对图像细节信息的保护效果较差。

二、均值滤波均值滤波是一种线性平滑滤波方法,其基本原理是用像素点周围邻域内的平均值来代替该像素点的灰度值。

均值滤波可以有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。

其处理过程如下:1.选取一个模板,模板的大小根据滤波效果来确定;2.计算模板内所有像素点的灰度值的平均值;3.将中心像素点的灰度值替换为平均值;4.重复以上步骤,对整个图像进行滤波。

均值滤波的优点是能够有效地去除高斯噪声和均匀噪声,同时能够保持图像的整体平滑。

然而,均值滤波也存在一些缺点,例如不能处理椒盐噪声和脉冲噪声,对图像细节信息的保护效果较差。

中值滤波和均值滤波在图像处理中各有优劣。

中值滤波适用于去除椒盐噪声和脉冲噪声,能够保持图像的边缘信息,但在处理高斯噪声和均匀噪声时效果较差。

而均值滤波适用于去除高斯噪声和均匀噪声,能够保持图像的整体平滑,但对于细节信息的保护效果较差。

在实际应用中,根据图像的特点和噪声的类型选择合适的滤波方法是很重要的。

如果图像受到椒盐噪声和脉冲噪声的影响,可以选择中值滤波进行去噪处理;如果图像受到高斯噪声和均匀噪声的影响,可以选择均值滤波进行平滑处理。

图像增强的方法有哪些

图像增强的方法有哪些

图像增强的方法有哪些
图像增强的方法包括以下几种:
1. 直方图均衡化(Histogram equalization):通过调整图像的像素分布,增强图像的对比度。

2. 自适应直方图均衡化(Adaptive histogram equalization):与直方图均衡化类似,但是对图像的小区域进行局部均衡化,可以更好地保留细节信息。

3. 均值滤波(Mean filter):用图像中像素的平均值替代该像素的值,平滑图像的同时增强细节。

4. 中值滤波(Median filter):用图像中像素的中值替代该像素的值,能够有效去除椒盐噪声,保留图像边缘。

5. 高斯滤波(Gaussian filter):使用高斯函数对图像进行平滑,可以模糊图像的同时去除噪声。

6. 锐化增强(Sharpening):利用锐化算子对图像进行卷积,突出图像的边缘和细节。

7. 退化与恢复(Degradation and restoration):通过建立图像模糊模型和噪
声模型,对退化图像进行恢复。

8. 增强滤波(Enhancement filter):通过设计特定的增强滤波器,对图像进行增强,如Sobel滤波器、Prewitt滤波器等。

9. 超分辨率(Super-resolution):通过使用多帧图像或者其他方法,提高低分辨率图像的细节和清晰度。

以上仅是图像增强的一些常见方法,随着图像处理技术的不断发展,还有很多其他方法可以用于图像增强。

LabVIEW中的像处理滤波和增强

LabVIEW中的像处理滤波和增强

LabVIEW中的像处理滤波和增强LabVIEW中的图像处理滤波和增强LabVIEW(Laboratory Virtual Instrument Engineering Workbench)是一款功能强大的图形化编程环境,广泛应用于科学研究、工程设计、图像处理等领域。

在LabVIEW中,图像处理滤波和增强是常见而重要的任务,通过使用LabVIEW的图像处理工具箱,可以实现对图像的滤波和增强操作。

一、图像处理滤波1. 空域滤波在LabVIEW中,空域滤波是一种基于像素点的运算,通过对图像中每个像素点进行计算,达到滤波的效果。

常见的空域滤波算法包括均值滤波、中值滤波、高斯滤波等。

(这里可以继续详细介绍每种滤波算法的原理和在LabVIEW中的实现方法,可以配图示例)2. 频域滤波频域滤波是一种将图像从时域转换到频域进行处理的方法,通过对图像的频谱进行操作,可以实现滤波的效果。

常见的频域滤波算法包括快速傅里叶变换(FFT)、高通滤波、低通滤波等。

(同样可以详细介绍每种滤波算法的原理和LabVIEW中的实现方法,并配以图例)二、图像处理增强1. 灰度级转换LabVIEW提供了多种灰度级转换函数,可以实现将图像的灰度级进行转换的操作。

灰度级转换常用于增强图像的对比度、亮度等特征,常见的灰度级转换方法包括线性变换、非线性变换等。

(在这里可以展示LabVIEW中的灰度级转换函数的使用方法,并给出实际示例)2. 直方图均衡化直方图均衡化是一种通过重新分配图像的灰度级来增强图像对比度的方法。

LabVIEW中提供了直方图均衡化的函数,可以方便地对图像进行增强操作。

(类似地,可以给出直方图均衡化函数的使用范例)总结:通过LabVIEW中的图像处理工具箱,我们可以方便地实现图像的滤波和增强操作。

通过空域滤波和频域滤波,可以对图像进行模糊、锐化等处理,而灰度级转换和直方图均衡化则可以增强图像的对比度和亮度。

LabVIEW的图像处理功能的强大性和易用性使得它成为了科学研究和工程设计中不可或缺的工具之一。

图像处理常见问题解析与解决方案

图像处理常见问题解析与解决方案

图像处理常见问题解析与解决方案图像处理是现代科技中一个重要的领域,它涉及到从图像获取、处理、分析到图像识别等多个方面。

然而,在实践中,我们经常会遇到一些常见问题,如图像噪声、图像失真、图像分割等。

本文将对几个常见的图像处理问题进行解析,并提供相应的解决方案。

1. 图像噪声图像噪声是指在图像采集、传输或处理过程中引入的随机干扰信号。

常见的图像噪声类型包括高斯噪声、椒盐噪声和周期性噪声等。

对于图像噪声的处理,可以采用以下解决方案:(1) 均值滤波均值滤波是一种简单的滤波方法,它通过取邻域像素的平均值来减小噪声的影响。

然而,均值滤波容易导致图像细节的丢失。

(2) 中值滤波中值滤波是一种非线性滤波方法,它通过对邻域像素进行排序并取中值来减小噪声的影响。

相比均值滤波,中值滤波能更好地保留图像细节。

(3) 小波去噪小波去噪是一种基于小波变换的图像降噪方法,它通过对小波系数进行阈值处理来减小噪声的影响。

小波去噪能有效地去除图像中的噪声,并保持图像细节。

2. 图像失真图像失真是指在图像图像传输、压缩或复制等过程中导致图像质量下降的问题。

常见的图像失真类型包括模糊、锐化和颜色偏移等。

对于图像失真的处理,可以采用以下解决方案:(1) 图像复原图像复原是一种通过数学模型重建原始图像的方法,它通过对图像进行模型建立和参数估计来恢复图像的细节和清晰度。

常用的图像复原方法包括最小二乘法、马尔科夫随机场和贝叶斯推断等。

(2) 锐化滤波锐化滤波是一种用于增强图像边缘和细节的滤波方法,它通过选择合适的卷积核来加强图像的轮廓。

常用的锐化滤波方法包括拉普拉斯滤波和Sobel滤波等。

(3) 色彩校正色彩校正是一种用于解决图像颜色偏移问题的方法,它通过调整图像的色彩分布来改善图像的视觉效果。

常用的色彩校正方法包括直方图均衡化和灰度世界算法等。

3. 图像分割图像分割是指将图像划分为不同的区域或对象的过程。

它在图像识别、目标检测和目标跟踪等领域具有重要应用。

数字图像处理 算法原理

数字图像处理 算法原理

数字图像处理算法原理
数字图像处理是指应用数字计算机对图像进行处理与分析的技术。

其中涉及到的算法原理包括:
1. 灰度变换算法:通过改变图像中像素的灰度级分布,实现对图像亮度、对比度、伽马校正等属性的调整。

常用的灰度变换算法有线性变换、逆变换、非线性自适应直方图均衡化等。

2. 图像滤波算法:用于平滑图像、强调图像细节或检测图像中的边缘。

常用的滤波算法包括均值滤波、中值滤波、高斯滤波、导向滤波等。

3. 图像增强算法:通过改善图像的质量和可视化效果,使图像更适合人眼观察和计算机分析。

常用的图像增强算法有直方图均衡化、局部对比度增强、锐化增强等。

4. 彩色图像处理算法:针对彩色图像的特点,进行颜色空间转换、亮度调整、色彩增强、色彩平衡等操作。

常用的彩色图像处理算法有RGB空间转换为HSV空间、色彩补偿、白平衡调整等。

5. 图像分割与边缘检测算法:将图像划分为不同的区域或提取图像中感兴趣的目标,常用的算法包括阈值分割、基于边缘的分割、基于区域的分割等。

6. 图像压缩与编解码算法:将图像数据经过压缩编码处理,以减少存储空间和传输带宽。

常用的压缩算法有无损压缩算法
(如RLE、Huffman编码)和有损压缩算法(如JPEG)。

除了以上算法原理外,还包括图像配准、图像恢复、形态学处理、基于特征的图像分析等其他算法。

这些算法原理的应用能够有效地处理数字图像,对于图像识别、图像搜索、医学图像分析等领域具有广泛的应用价值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告一.实验目的对图像进行空域增强,实现均值滤波、中值滤波、直方图均衡。

二.实验内容对加入椒盐噪声的图像进行均值滤波、中值滤波,对图像实现直方图均衡,通过改变图像的直方图来改变图像中像素的灰度,以达到图像增强的目标。

三.实验原理均值滤波的原理均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个象素,构成一个滤波模板,即去掉目标象素本身)。

再用模板中的全体像素的平均值来代替原来像素值。

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。

线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(,)x y,选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(,)u x y,即x y,作为处理后图像在该点上的灰度值(,)1(,)(,)u x y f x y m=∑,m 为该模板中包含当前像素在内的像素总个数。

中值滤波的原理中值滤波是一种非线性滤波,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。

中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所应用。

在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。

中值滤波的目的是保护图像边缘的同时去除噪声。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口,在处理之后,将窗口正中的像素灰度值用窗口内各像素灰度值的中值来代替。

设有一个维序列12,,...n f f f ,取窗口长度为奇数m ,对此序列进行中值滤波,就是从输入序列中相续抽出m 个数,,,,,i v i i v f f f -+,其中为窗口的中心值(1)/2v m =-,再将这m 个点的数值按其数值大小排列,取其序号为正中间的那个数作为滤波输出。

中值滤波表达式为:{}v i i v i i f f f Med F +-=,,,,对二维序列{X i,j }的中值滤波,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,如线状、方形、圆形、十字形、圆环形等。

二维中值滤波可表示为:{}为滤波窗口,A x Med F j i Aj i ,,=在实际使用窗口时,窗口的尺寸一般先用33⨯再取55⨯逐渐增大,直到其滤波效果满意为止。

由于中值滤波是非线性运算,在输入和输出之间的频率上不存在一一对应关系,故不能用一般线性滤波器频率特性的研究方法。

设G 为输入信号频谱,F 为输出信号频谱,定义F G H /=为中值滤波器的频率响应特性,实现表明H 是与G 有关,呈不规则波动不大的曲线,其均值比较平坦,可以认为信号经中值滤波后,传输函数近似为1,即中值滤波对信号的频域影响不大,频谱基本不变。

直方图均衡的原理利用直方图统计的结果,通过使图像的直方图均衡的方法称为直方图均衡化,可以达到增强图像的显示效果的作用。

由于通过直方图统计,可以观察出,图像中各种亮度所占的比例大都分布不均匀,设法增加在直方图统计中所占比例高的像素和其他占的比例少的像素之间的亮度差,可以提高图像的显示效果。

简单来说,直方图增强的方法就是压缩直方图中比例少的像素所占用的灰度范围,多出来的灰度空间按照统计比例分配给直方图中比例高的像素使用。

这种方法主要是针对人眼对灰度差别越大的图像更容易分辨的特点而做的增强。

灰度直方图的计算十分简单,依据定义在离散形式下有下面的公式成立:()1,1,0,-==L k nn k pk公式中:k n 为图像中出现k s 级灰度的像素数,n 是图像像素总数,而nn k即为频数。

计算累积直方图各项:()1,1,0,00-===∑∑==L k i p n n t ki ki ik 取整扩展:int[(1)0.5]k k t L t =-+映射对应关系:k k t =>四. 实验结果 均值滤波1. 读取图像,并对图像加入椒盐噪声。

结果图一和图二所示。

图一 原始图像图二 加噪图像2. 采用1/9模板对图像卷积采用1/91/91/91/91/91/91/91/91/9x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦模板对图像33⨯区域进行平均,得到均值即为当前像素取值,得到均值滤波结果如图三所示。

图三均值滤波图像中值滤波1.读取图像和加噪过程与均值滤波相同。

2.采用取用中值对图像滤波。

区域取值并进行排序取中值,得到的中值即为当前像素的值。

结对图像33果如图四所示。

图四中值滤波图像直方图均衡1.读取图像读取图像与上相同。

结果如图五所示。

图五原始图像2.统计原始图像灰度直方图和概率分布。

读取每个像素点,得到像素点的灰度直方图分布,并除以总像素点数目,将其转换为概率分布。

得到结果如图六、图七所示。

图六原始图像直方图图七原始图像直方图概率分布3. 累积概率k t对概率分布进行累积。

得到累积概率分布如图八所示。

图八 累积概率分布4. 对累积概率分布取整扩展对累积概率用int[(1)0.5]k k t L t =-+进行扩展。

得到新的灰度分布。

然后将原图像中各个点进行灰度映射,映射到当前灰度分布中去,即可得到直方图均衡图像和新图像的直方图分布。

结果如图九和图十所示。

图九 直方图均衡图像图十均衡图像的直方图五.结果分析均值滤波和中值滤波对比分析:根据以上实验结果进行对比分析,可以得出以下结论:1、均值滤波, 对椒盐噪声的影响不大,因为在削弱噪声的同时整幅图像内容总体也变得模糊,其噪声仍然存在。

2、对于中值滤波,由图可以看出,中值滤波对去除“椒盐”噪声可以起到很好的效果,因为椒盐噪声只在画面中的部分点上随机出现,所以根据中值滤波原理可知,通过数据排序的方法,将图像中未被噪声污染的点代替噪声点的值的概率比较大,因此噪声的抑制效果很好,同时画面的轮廓依然比较清晰。

由此看来,对于椒盐噪声密度较小时,尤其是孤立噪声点,用中值滤波的效果非常好的。

对于高斯噪声。

对图像加入均值为0,方法0.005的高斯噪声。

结果如图十一所示。

图十一图像加入高斯噪声分别进行均值滤波和中值滤波,结果如图十二、图十三所示。

图十二高斯噪声图像均值滤波图十三高斯噪声图像中值滤波对比发现两种滤波方式对于高斯噪声滤波都不太理想。

使用20张高斯噪声污染的图像相加的方法滤波结果如图十四所示。

图十四图像相加去噪对比发现对于高斯噪声,图像相加去噪结果更好。

直方图均衡本文中的直方图均衡化算法,采用灰度映射方法,简单明了,易于实现,均衡化后的各灰度级更加均衡,接近理想值。

同时对于灰度范围小,直方图分布极不均匀的图像,可人为的适当的扩大灰度范围,均衡化后能取得较好的层次感,使图像信息变得更清晰。

此方法在图像增强方面,有很大的实用价值。

六.实验心得本次实验时首次接触图像处理,发现图像处理必须思路清晰,表达明确,而且发现对于像素级的图像处理,数据量很大,程序运行慢,还有优化的空间。

对于图像处理,以矩阵运算为基础,以后要多加练习。

附录实验程序代码如下。

均值滤波和中值滤波clear all;close all;clc;I=imread('D:\My Documents\MATLAB\kecheng\shuzituxiang\2.jpg'); I=I(:,:,1);figure(1)imshow(I);title('原始图像');colormap(gray(256));figure(2);imhist(I);title('原始图像直方图');J=imnoise(I,'salt & pepper',0.02);figure(3);imshow(J);title('加噪图像');colormap(gray(256));figure(4);imhist(J);title('加噪图像直方图');x=double(ones(3)/9); %必须将1/9变为double型模板A=size(J);%% 均值滤波for i=2:A(1)-1for j=2:A(2)-1x1=double(J(i-1:i+1,j-1:j+1));%将数据转换类型y=x.*x1; %均值su=sum(sum(y)); %求和d(i,j)=uint8(su); %转换为整形endendfigure(5);imshow(d);title('均值滤波图像');%% 中值滤波for i=2:A(1)-1for j=2:A(2)-1x2=J(i-1:i+1,j-1:j+1);x2=[x2(1,:) x2(2,:) x2(3,:)];c(i,j)=median(x2);endendfigure(6);imshow(c);title('中值滤波图像');图像相加去除高斯噪声clear all;close all;clc;%% 图像加法实现消除噪声[filename, pathname, filterindex] = uigetfile({'*.jpg';'*.bmp'}, 'Pick a file'); datafile=[pathname,filename];if filterindex==0returnendI=imread(datafile);I=I(:,:,1);figure(1);imshow(I);title('原始图像');%% 图像加噪k=20; %加噪图像数目z=cell(1,k); %构造多幅加噪图像for i=1:kz{i}=imnoise(I,'gaussian',0,0.005);endfigure(2);imshow(z{2});title('加入高斯噪声图像');%% 图像相加取平均J=0;for i=1:kJ=J+double(z{i});endJ=uint8(J/k);figure(3);imshow(J);title('图像相加去噪');直方图均衡clear all;close all;clc;%% 直方图均衡%%严格按照直方图均衡化的步骤来做,一共六步,思路要清晰A=imread('D:\My Documents\MATLAB\kecheng\shuzituxiang\2.jpg');A=A(:,:,1);[m,n]=size(A);B=zeros(m,n);N=m*n; %像素总个数s=zeros(1,256);t=zeros(1,256);%% 原始直方图概率分布for i=1:mfor j=1:ns(A(i,j)+1)=s(A(i,j)+1)+1; %计算各个灰度级像素个数endends=s./N; %各个灰度级的频率%% 累积分布tkt(1)=s(1);for k=2:256t(k)=t(k-1)+s(k); %累积分布函数累积频率endz=t;%% 取整扩展for k=1:256t(k)=floor(255*t(k)+0.5); %tk取整扩展end%% 确定映射关系,将原图像中点的数值变为映射后的数值for i=1:mfor j=1:nB(i,j)=t(A(i,j)+1);endendA=uint8(A);B=uint8(B);figure(1);imshow(A);title('原始图像');figure(2);imhist(A);title('原始图像直方图');figure(3);stem(z,'fill');title('累积直方图');figure(4);imshow(B);title('均衡图像');figure(5);imhist(B);title('均衡图像直方图');figure(6);stem(s,'fill');title('原始图像直方图概率分布');。

相关文档
最新文档