几种中值滤波去噪方法分析

合集下载

几种中值滤波去噪方法分析

几种中值滤波去噪方法分析

几种中值滤波去噪方法分析在数字图像的转换、存储和传输等过程中,经常性由于电子设备工作环境的不稳定,由于设备中含有一些污染物等原因,导致数字图像中一些像素点的灰度值发生非常大的变化,变得非常小或者非常大;而且大气环境很容易干扰无线数据传输,从而让传输信号混入噪声,接收到的无线信号恢复成传输过来的数字图像较原图像相比也会有很大的不同。

在这些过程中,椒盐噪声很容易就会对数字图像造成感染。

客户满意的数字图像尽可能少或者没有受到椒盐噪声的污染。

所以我们需要去噪处理。

在现阶段处理椒盐噪声方面的研究成果方面,因为中值滤波有其非线性的特性,对比其他线性滤波方法可以取得更好的效果,同切同时还可以更好的保留图像的边缘信息。

很多学者在研究通过中值滤波消除椒盐噪声的影响,希望可以得到更好的去噪效果。

第一节标准中值滤波方法标准中值滤波是把这个窗口内的像素点按灰度值大小进行排列,把灰度值的平均值当作标准值。

我们以一个8位的图像作为例子,因为椒盐噪声会让受影响的像素点灰度值改为亮点,即灰度值为255;或者暗点,即灰度值为0。

我们在排序的时候,把收到污染的像素点的灰度值大小排列出来,取中间值为所有噪点值,那么就可以消除噪声污染对这个点的影响。

其具体步骤如下:①把窗口在图像中滑动,然后让窗口中心与某一像素点重合②记录下窗口中所有像素点的灰度值③将这些灰度值从小到大排序④记录下该灰度值序列中间的值⑤将所记录下的中间值替代窗口中心像素点的灰度值因为中值滤波的输出灰度值大小是由窗口的中值大小所决定的,所以中值滤波对于窗口内脉冲噪声远远没有均值滤波敏感。

因此相对于均值滤波,中值滤波可以在有效去除脉冲噪声的同时,减小更多的模糊图像。

由于由于中值滤波所采用的窗口大小会直接决定去噪效果和图像模糊程度,而且图像去噪后的用途也就决定了窗口的形式。

以5*5窗口为例,常见的形状如图2.1所示:图 2.1 常见的尺寸为5*5的中值滤波窗口尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。

加噪去噪的方法与引用场景

加噪去噪的方法与引用场景

加噪去噪的方法与引用场景
加噪和去噪是数字图像处理中的重要概念。

以下是几种加噪和去噪的方法,以及它们的引用场景:
加噪的方法:
1. 添加高斯噪声:在图像中添加高斯噪声可以模拟图像在传输或记录过程中受到的随机误差。

高斯噪声是一种以正态分布形式出现的随机噪声。

2. 添加椒盐噪声:椒盐噪声是一种由图像传感器、传输信道等引起的随机误差,表现为图像中突然出现的白点或黑点。

添加椒盐噪声可以模拟这种情况。

去噪的方法:
1. 中值滤波:中值滤波器是一种非线性滤波器,可以将图像中的噪声去除。

中值滤波器对某个区域内的所有像素值进行排序,并将中值作为输出,对于去除椒盐噪声特别有效。

2. 高斯滤波:高斯滤波器是一种线性滤波器,通过将每个像素的值替换为其邻域内像素的加权平均值来去除噪声。

高斯滤波适用于去除高斯噪声。

3. 傅里叶变换:傅里叶变换可以将图像从空间域转换到频率域,通过在频率域中进行滤波操作,再反变换回空间域,可以达到去除噪声的效果。

傅里叶变换可以用于去除各种类型的噪声。

引用场景:
1. 医学图像处理:在医学领域,图像处理技术广泛应用于诊断、治疗和手术导航等方面。

去噪算法可以用于提高医学图像的清晰度和可读性,帮助医生更准确地诊断病情。

2. 遥感图像处理:遥感图像经常受到噪声的干扰,影响其质量和解译效果。

去噪算法可以提高遥感图像的信噪比,从而提高遥感数据的可利用性和可靠性。

3. 通信系统:在通信系统中,噪声是影响信号传输质量的重要因素之一。

通过去噪算法可以降低噪声对信号的影响,提高通信系统的性能和可靠性。

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波

均值滤波,高斯滤波,中值滤波均值滤波,高斯滤波和中值滤波是数字图像处理中常用的三种平滑滤波技术,用于降低图像噪声和去除图像中的不相关细节。

本文将对这三种滤波方法进行介绍、比较和分析。

一、均值滤波均值滤波是一种简单的平滑滤波方法,它的原理是用滤波窗口内像素的平均值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,计算其邻域内所有像素的平均值,然后将结果作为中心像素的值。

这样可以有效地平滑图像并去除高频噪声。

然而,均值滤波的缺点是它不能很好地保留图像的边缘信息,使得图像看起来模糊且失去细节。

二、高斯滤波高斯滤波是一种基于高斯分布的平滑滤波方法,它认为像素点的邻域内的像素值与中心像素点的距离越近,其权重越大。

它的滤波过程是在滤波窗口内,对每个像素点进行加权平均。

加权的权重由高斯函数决定,距离中心像素点越近的像素点的权重越大,距离越远的像素点的权重越小。

通过这种加权平均的方式,可以更好地保留图像的细节和边缘信息,同时有效地去除噪声。

高斯滤波的唯一缺点是计算复杂度较高,特别是对于大型滤波窗口和高分辨率图像来说。

三、中值滤波中值滤波是一种统计滤波方法,它的原理是用滤波窗口内像素的中值来代替中心像素的值。

具体来说,对于滤波窗口内的每个像素,将其邻域内的像素按照大小进行排序,然后将排序后像素的中值作为中心像素的值。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,能够保持图像的边缘信息,避免了均值滤波和高斯滤波的模糊问题。

然而,中值滤波的缺点是不能去除高斯噪声和高频噪声,因为当滤波窗口内的像素含有这些噪声时,中值滤波会产生失真效果。

比较和分析:三种滤波方法各有优劣,应根据实际需求选择合适的滤波方法。

均值滤波是最简单、计算复杂度最低的方法,在去除高斯噪声和低频噪声方面效果较差,但对边缘信息的保留效果较差。

高斯滤波通过加权平均的方式更好地保留了图像的细节和边缘信息,适用于处理高斯噪声并且具有一定的平滑效果。

中值滤波对于椒盐噪声和脉冲噪声有很好的去噪效果,并保持了图像的边缘信息,但对于高斯噪声和高频噪声则效果较差。

10种常用滤波方法

10种常用滤波方法

10种常用滤波方法
滤波是信号处理领域中常用的技术,用于去除噪声、增强信号的一些特征或改变信号的频谱分布。

在实际应用中,经常使用以下10种常用滤波方法:
1.均值滤波:将像素点周围邻域像素的平均值作为该像素点的新值,适用于去除高斯噪声和椒盐噪声。

2.中值滤波:将像素点周围邻域像素的中值作为该像素点的新值,适用于去除椒盐噪声和激动噪声。

3.高斯滤波:使用高斯核函数对图像进行滤波,通过调整高斯窗口的大小和标准差来控制滤波效果。

适用于去除高斯噪声。

4.双边滤波:通过考虑像素的空间距离和像素值的相似性,对图像进行滤波。

适用于平滑图像的同时保留边缘信息。

5. 锐化滤波:通过滤波操作突出图像中的边缘和细节信息,常用的方法有拉普拉斯滤波和Sobel滤波。

6.中可变值滤波:与中值滤波相似,但适用于非线性信号和背景噪声的去除。

7.分位值滤波:通过对像素值进行分位数计算来对图像进行滤波,可以去除图像中的异常像素。

8.快速傅里叶变换滤波:通过对信号进行傅里叶变换,滤除特定频率的成分,常用于频谱分析和滤波。

9.小波变换滤波:利用小波变换的多尺度分析特性,对信号进行滤波处理,适用于图像去噪和图像压缩。

10.自适应滤波:通过根据信号的局部特征自动调整滤波参数,适用于信号中存在时间和空间变化的情况。

以上是常见的10种滤波方法,每种方法都有不同的适用场景和优缺点。

在实际应用中,选择合适的滤波方法需要根据具体的信号特征和处理需求来确定。

图像处理中的图像去噪算法使用方法

图像处理中的图像去噪算法使用方法

图像处理中的图像去噪算法使用方法图像去噪算法是图像处理领域的一个重要研究方向,它的主要目标是通过消除或减少图像中的噪声,提高图像的视觉质量和信息可读性。

图像噪声是由于图像信号的获取、传输和存储过程中引入的不可避免的干扰所致,例如传感器噪声、电磁干扰等,使图像中的细节模糊,影响图像的清晰度和准确性。

因此,图像去噪算法在许多应用领域中都具有重要的意义,如医学图像处理、计算机视觉、图像识别等。

现在,我们将介绍几种常见的图像去噪算法及其使用方法。

1. 中值滤波算法:中值滤波算法是一种简单而有效的图像去噪方法。

它的基本原理是对图像中的每个像素点周围的邻域进行排序,然后取中间值作为该像素点的输出值。

中值滤波算法适用于去除椒盐噪声和脉冲噪声,它能够保持图像的边缘和细节信息。

使用中值滤波算法时,需要设置一个邻域大小,根据该大小确定图像中每个像素点周围的邻域大小。

较小的邻域大小可以去除小型噪声,但可能会丢失一些细节信息,较大的邻域大小可以减少噪声,但可能会使图像模糊。

2. 均值滤波算法:均值滤波算法是一种基本的线性滤波技术,它的原理是计算图像中每个像素点周围邻域像素的平均值,并将平均值作为该像素点的输出值。

均值滤波算法简单易实现,适用于消除高斯噪声和一般的白噪声。

使用均值滤波算法时,同样需要设置邻域大小。

相较于中值滤波算法,均值滤波算法会对图像进行平滑处理,减弱图像的高频细节。

3. 降噪自编码器算法:降噪自编码器算法是一种基于深度学习的图像去噪算法。

它通过使用自编码器网络来学习图像的特征表示,并借助重建误差来去除图像中的噪声。

降噪自编码器算法具有较强的非线性建模能力,可以处理复杂的图像噪声。

使用降噪自编码器算法时,首先需要训练一个自编码器网络,然后将噪声图像输入网络,通过网络进行反向传播,优化网络参数,最终得到去噪后的图像。

4. 小波变换去噪算法:小波变换去噪算法是一种基于小波分析的图像去噪算法。

它将图像分解为不同尺度下的频域子带,通过对各个子带进行阈值处理来消除图像中的噪声。

C语言十大滤波算法

C语言十大滤波算法

C语言十大滤波算法C语言是一种广泛应用于嵌入式系统、图形界面、游戏开发等领域的编程语言。

在信号处理和图像处理等领域,滤波算法是一种重要的处理方式。

滤波算法可以对信号进行去噪、平滑、边缘检测等操作,从而提高信号的质量和准确度。

在C语言中,有许多优秀的滤波算法被广泛应用。

下面将介绍C语言中的十大滤波算法,并讨论它们的原理和应用领域。

1.均值滤波算法:均值滤波是一种简单有效的滤波算法,通过计算像素周围若干个邻域像素的平均值作为滤波结果。

均值滤波适用于去除高频噪声,但会造成图像细节的模糊。

2.中值滤波算法:中值滤波算法通过计算像素周围若干个邻域像素的中值作为滤波结果。

中值滤波可以有效去除椒盐噪声,但不能处理高斯噪声。

3.高斯滤波算法:高斯滤波算法利用高斯函数对图像进行滤波,以平滑图像并去除噪声。

高斯滤波在保持图像边缘信息的同时,能够有效降低噪声。

4.自适应中值滤波算法:自适应中值滤波算法根据像素邻域内像素的不同情况选择中值滤波器的大小,对不同噪声情况进行适应性处理。

5.双边滤波算法:双边滤波算法是一种非线性滤波算法,通过同时考虑空间信息和灰度差异信息,可在去噪的同时保持图像的边缘信息。

6.快速傅里叶变换(FFT)滤波算法:FFT滤波是一种频域滤波算法,通过将信号从时域转换到频域,对频谱进行滤波后再进行逆变换,能够有效去除周期性噪声。

7.小波变换滤波算法:小波变换是一种时频联合分析方法,将信号分解为不同频率的子带,通过阈值处理可以实现去噪。

8.自适应滤波算法:自适应滤波算法根据图像中的纹理复杂度自动选择合适的滤波器,能够在保持图像细节的同时去除噪声。

9.协同滤波算法:协同滤波算法是一种基于用户行为数据的推荐算法,通过分析用户的历史数据和相似用户群体的数据,对用户进行个性化推荐。

10.卡尔曼滤波算法:卡尔曼滤波算法是一种利用动态模型对状态进行推断的滤波算法,适用于系统状态估计、信号恢复等应用。

以上是C语言中的十大滤波算法,它们在不同领域的应用有所差异,但都能够有效地处理信号和数据,提高数据质量和准确度。

数据去噪算法及公式

数据去噪算法及公式

数据去噪算法及公式
数据去噪是一种常见的信号处理技术,用于从含有噪声的数据中提取出干净的信号。

以下是一些常见的数据去噪算法及其公式:
1. 均值滤波(Mean Filter):
公式:y[n] = (x[n] + x[n-1] + x[n+1]) / 3
这种方法将每个数据点的值替换为它周围邻近数据点的平均值。

2. 中值滤波(Median Filter):
公式:y[n] = Median(x[n-k], ..., x[n], ..., x[n+k])
这种方法将每个数据点的值替换为它周围邻近数据点的中值,其中k是滤波器的大小。

3. 加权平均滤波(Weighted Average Filter):
公式:y[n] = (w1*x[n-1] + w2*x[n] + w3*x[n+1]) / (w1 + w2 + w3)
这种方法根据权重系数对每个数据点进行加权平均。

4. 傅里叶变换滤波(Fourier Transform Filter):
这种方法基于频域分析和滤波,通过将信号转换到频域进行滤波处理,然后再进行逆变换得到去噪后的信号。

这些只是一些常见的数据去噪算法,具体选择哪种算法取决于数据的特点和噪声类型。

还有其他更高级的算法,如小波去噪、卡尔曼滤波等,可以根据具体需求选择合适的方法。

图像处理中的图像去噪方法与效果评估

图像处理中的图像去噪方法与效果评估

图像处理中的图像去噪方法与效果评估图像去噪是数字图像处理中的一项关键任务,它旨在从图像中去除噪声,使其更清晰、更易于分析和理解。

在图像处理的众多应用中,图像去噪是一个必备的步骤,它可以用于医学图像、卫星图像、摄影图像等领域。

目前,有许多图像去噪方法可供选择,这些方法可以根据去噪原理、去噪效果和计算效率等方面进行分类。

下面将介绍几种常用的图像去噪方法,并对它们的效果进行评估。

1. 统计滤波方法统计滤波是一种基于统计原理的去噪方法,它通过对图像的像素值进行统计分析来判断噪声像素和信号像素,并通过滤波操作来抑制噪声。

常用的统计滤波方法包括中值滤波、高斯滤波和均值滤波。

中值滤波是一种简单有效的统计滤波方法,它通过对图像中的每个像素周围的邻域进行排序,然后取中间值作为该像素的新值。

中值滤波对于椒盐噪声和斑点噪声有较好的去除效果,但对于高斯噪声和高频噪声效果较差。

高斯滤波是一种基于高斯函数的滤波方法,它将像素的值与其周围像素的值进行加权平均,权值由高斯函数确定。

高斯滤波可以有效地平滑图像,并且保持边缘信息,但对于噪声的去除效果较差。

均值滤波是一种简单的滤波方法,它将像素的值与其邻域像素的平均值进行替换,可以有效地降低噪声的影响,但会导致图像模糊。

2. 小波变换方法小波变换是一种多尺度分析方法,可以将图像分解为不同频率的子带,然后根据子带的特征对噪声进行去除。

小波变换方法具有良好的去噪效果和较高的计算效率,在图像压缩、细节增强等应用中得到了广泛的应用。

小波去噪方法通常包括两个步骤:小波分解和阈值处理。

在小波分解阶段,图像被分解为不同频率的子带;在阈值处理阶段,对每个子带的系数进行阈值处理,然后通过逆小波变换将图像重建。

常用的小波去噪方法包括基于软阈值和硬阈值的去噪方法。

软阈值方法将小于某个阈值的系数置零,大于阈值的系数乘以一个缩放因子;硬阈值方法将小于阈值的系数置零,大于等于阈值的系数保持不变。

这两种方法在去除噪声的同时也会对图像细节造成一定的损失。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几种中值滤波去噪方法分析
在数字图像的转换、存储和传输等过程中,经常性由于电子设备工作环境的不稳定,由于设备中含有一些污染物等原因,导致数字图像中一些像素点的灰度值发生非常大的变化,变得非常小或者非常大;而且大气环境很容易干扰无线数据传输,从而让传输信号混入噪声,接收到的无线信号恢复成传输过来的数字图像较原图像相比也会有很大的不同。

在这些过程中,椒盐噪声很容易就会对数字图像造成感染。

客户满意的数字图像尽可能少或者没有受到椒盐噪声的污染。

所以我们需要去噪处理。

在现阶段处理椒盐噪声方面的研究成果方面,因为中值滤波有其非线性的特性,对比其他线性滤波方法可以取得更好的效果,同切同时还可以更好的保留图像的边缘信息。

很多学者在研究通过中值滤波消除椒盐噪声的影响,希望可以得到更好的去噪效果。

第一节标准中值滤波方法
标准中值滤波是把这个窗口内的像素点按灰度值大小进行排列,把灰度值的平均值当作标准值。

我们以一个8位的图像作为例子,因为椒盐噪声会让受影响的像素点灰度值改为亮点,即灰度值为255;或者暗点,即灰度值为0。

我们在排序的时候,把收到污染的像素点的灰度值大小排列出来,取中间值为所有噪点值,那么就可以消除噪声污染对这个点的影响。

其具体步骤如下:
①把窗口在图像中滑动,然后让窗口中心与某一像素点重合
②记录下窗口中所有像素点的灰度值
③将这些灰度值从小到大排序
④记录下该灰度值序列中间的值
⑤将所记录下的中间值替代窗口中心像素点的灰度值
因为中值滤波的输出灰度值大小是由窗口的中值大小所决定的,所以中值滤
波对于窗口内脉冲噪声远远没有均值滤波敏感。

因此相对于均值滤波,中值滤波可以在有效去除脉冲噪声的同时,减小更多的模糊图像。

由于由于中值滤波所采用的窗口大小会直接决定去噪效果和图像模糊程度,而且图像去噪后的用途也就决定了窗口的形式。

以5*5窗口为例,常见的形状如图2.1所示:
图 2.1 常见的尺寸为5*5的中值滤波窗口
尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。

但是它判断像素点是否被噪声影响的机制不明确,尽管采用该方法时已经对所有像素点进行了一次滤波操作,还是会在一定程序上对图像的边缘、细节信息产生破坏。

第二节带权值的中值滤波方法
Brownrigg提出了一种改进的中值滤波方法:带权值的中值滤波方法。

这个滤波的步骤和SM基本一样,不同的地方在于:WM在排序取中值的时候要在
SM 之前,而且会先对窗口内所有像素点设置相应的权值,并在排序时统计每个像素点需要按照其权值的数值出现多少次。

我们先假定点集(){}*,*x 是输入窗口的像素点集合,对应的(){}*,*y 就是输出窗口像素点集合。

对于当前进行滤波操作的像素点(s, t),以其为中心选取一个
()()21*21N N ++ 的滤波窗口(){},,Win i j s N i s N t N j t N =-≤≤+-≤≤+ 。

对于窗口Win ,其权值()()()(){}
,,,,,i j Win Weight h i j i j Win h i j C ∈=∈=∑ 。

其中C 为
奇数,且应大于或等于窗口的大小。

在排序操作时,则窗口内任意像素点X(i,j)需重复h(i,j)次,窗口中心点(s,t)的值被修改为:
()()()(){}
,,,,Y s t median h i j X i j x i j Win =∈ (2.1) 以一个一维的WM 滤波窗口Win 为例,设Win 是以X(4,0)为中心,左右各取一个像素点的窗口,即()()(){}3,0,4,0,5,0Win x x x = 。

设该窗口各个像素点的权值()()(){}{}3,0,4,0,5,02,3,2Weights x x x = ,对于该窗口,其输出值,即滤波后窗口中心像素点Y 值为:
()()()()()()()(){}0,03,0,3,0,4,0,4,0,4,0,5,0,5,0Y median x x x x x x x =(2.2)
我们通过观察窗口内各个像素点的不同权值,发现可以大大加强滤波器输出结果和窗口内其他像素点之间的联系。

而且设定合适的权值,WM 滤波方法相比SM 滤波方法不但可以更好的保护图像的细节及边缘信息,还能够较好的去除噪声污染。

第三节 三态中值滤波方法
tri-state 中值滤波方法首先通过噪声检测机制的手段,来判断当前像素点是否已经被噪声感染。

如果未被感染,则输出结果仍旧为该像素点的灰度值。

如果已经被感染,则根据之前检测的结果选择采用CWM 或者SM 进行滤波操作,以
去除噪声。

其算法结构可以用图2.2表示:
图 2.2 tri -state 滤波器结构图
TSM 滤波器的输出值可以根据TSM 的特性可得到以下公式表达: 1212ij TSM TSM ij ij SM
ij X T d Y Y d T d Y T d ⎧≥⎪=≤<⎨⎪<⎩
(2.3)
式2.2中, CWM ij Y 即对于ij X ,经过CWM 滤波器得到的输出值, SM ij Y 则是通过SM 滤波器得到的输出值。

d1和d2分别代表ij X 与SM ij Y 和CWM ij Y 的差值。

根据SM 与CWM 滤波器的计算方法不难证明明, 21d d ≤ 。

1,2SM CWM ij ij ij ij d x Y d X Y =-=-
(2.4)
我们为了到达更好的除噪效果可以通过以下手段:
①保持输出灰度值与输入灰度值一致可以保护图像的细节信息;
②采用SM 和CWM 滤波器这两种滤波算法可以有效的去除椒盐噪声。

TSM 作为从SM 和CWM 提出来的新滤波方法,TSM 的优势在于根据SM 与CWM 滤波器的结果,控制阈值T 检测噪声并调节输出结果。

所以对于SM 和CWM 这两种方法能处理的噪声点,TSM 不但都可以有效的进行滤除;而且对于未受椒盐噪声感染的像素点,可以保持原图像不变。

综上所述TSM 相对于SM 和CWM ,它不但在处理噪声表现良好,而且在保持图像细节信息的处理上更为合理有效[8]。

第四节 自适应中值滤波方法
我们通过对中心权值进行分析,不难得出以下结论:假设权值为1时,CWM 则退化成为SM ,然而当权值不小于窗口大小时,CWM 滤波器的输出值始终为初始值,也就是会导致CWM 失去去噪效果。

通过科学实验验证,当中心权值取3的时候,可以得到相比其他值更好的滤波效果。

从上面的结论可知,CWM 的中心权值为3时,可以增加序列里中心像素点占所有像素点的比重,以便得到更好的去噪效果。

那对于SM ,通过改变序列中值左右两个值的大小,观察其去噪效果会发生什么变化呢?
对于SM 滤波器,除了序列中值外,序列中中值前面一个值与中值后面一个值对去噪的效果也会起到了明显作用。

于是结合CWM 的这些优点,并整合了TSM 和NASWF 等滤波器设计的思想,设计了一个改进的自适应中值滤波器( Adaptive Median Filter, AM)[10]。

其主要滤波方法如下:
()()()()122212221122211212
2ij ij ws ws ij ij ij ij ws ws ij WS rank W WS SM R R if rank X AM WS rank W WS SM R R ifrank X WS ++++⎧⎢+⎥-⎪⎢⎥+⎪⎢⎥--⨯≤⎪⎢⎥⎪⎢⎥⎪⎣⎦=⎨⎡+⎤⎪-⎢⎥⎪+⎢⎥--⨯>⎪-⎢⎥⎪⎢⎥⎪⎢⎥⎩ (2.5)
式2.4中,WS 表式窗口大小,R i 表示序列中第i 个元素的值,rank(X)表示元素X 在序列中的位置,点(i,j)为窗口中心像素点。

对于点(I,j),经过AM 滤波后的输出值即为AM ij 。

根据TSM 中设计的阈值策略,Chang 在其设计中也加入了类似的策略,通过阈值T 来判断是否需对当前像素点采用式2.4进行滤波,或者保留原值:
ij ij
ij ij ij ij ij AM X AM T Y X X AM T ⎧-≥⎪=⎨-<⎪⎩
(2.6)
图 3.5 AM 滤波器结构图
第五节 本章小结
本章主要是研究了四种常见的中值滤波方法,并对这些算法进行研究可以得到以下结论。

尽管标准中值滤波方法称得上是现在市面上的一种最简单有效的去除椒盐噪声的方法。

但是它判断像素点是否被噪声影响的机制不明确,尽管采用该方法时已经对所有像素点进行了一次滤波操作,还是会在一定程序上对图像的边缘、细节信息产生破坏。

我们通过观察窗口内各个像素点的不同权值,发现可以大大加强滤波器输出结果和窗口内其他像素点之间的联系。

而且设定合适的权值,WM 滤波方法相比SM 滤波方法不但可以更好的保护图像的细节及边缘信息,还能够较好的去除噪声污染。

TSM 作为从SM 和CWM 提出来的新滤波方法, TSM 的优势在于根据SM 与CWM 滤波器的结果,控制阈值T 检测噪声并调节输出结果。

所以对于SM 和CWM 这两种方法能处理的噪声点,TSM 不但都可以有效的进行滤除;而且对于未受椒盐噪声感染的像素点,可以保持原图像不变。

综上所述TSM 相对于SM 和CWM ,它不但在处理噪声表现良好,而且在保持图像细节信息的处理上更为合理有效[8]。

输出
Switch
输入
脉冲噪声检测
AM。

相关文档
最新文档