空调器结构和工作原理

合集下载

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理空调器是一种通过改变室内空气温度、湿度、流速和洁净度来提供舒适室内环境的设备。

它由以下主要组件构成:压缩机、蒸发器、冷凝器、膨胀阀和风扇。

空调器的工作原理基于热力学的制冷循环过程。

该过程涉及四个基本元素:压缩、冷却、膨胀和加热。

以下是空调器的工作原理:1.蒸发器:空调器中的蒸发器是制冷循环的起点。

蒸发器内具有许多绕以冷媒的螺旋管道,冷媒在其中蒸发。

当室内空气通过蒸发器时,热空气会使冷媒蒸发,吸收热量,从而使空气温度下降。

2.压缩机:压缩机是空调器中最重要的组件之一、它负责将冷媒从蒸发器吸入,然后通过压缩媒体,增加其温度和压力。

这样,冷媒能够在接下来的循环过程中顺利流动。

3.冷凝器:冷凝器是空调器中的热交换器,其主要功能是将压缩机中的高温高压冷媒中的热量排出,并将其转化为液体。

冷媒经过冷凝器后,其温度和压力都明显降低,准备好进入下一个阶段。

4.膨胀阀:膨胀阀是一个狭小的孔洞,连接着冷凝器和蒸发器。

当冷媒通过膨胀阀时,其温度和压力会继续降低,从而使液体冷媒得以放松,并准备好重新进入蒸发器。

5.风扇:空调器中的风扇有两个作用。

首先,它通过循环空气来平衡室内温度。

其次,它通过蒸发器和冷凝器之间的热交换,增加空气流动,以提高效率。

整个循环过程会不断重复,直到达到所需的温度。

当室内温度达到设定值时,空调系统将自动停止,并在需要时重新启动。

除了上述组件外,空调器还通常具有一些控制装置,例如温度传感器和定时器,以便用户可以根据需要调节系统运行时间和温度。

总之,空调器通过制冷循环过程中的压缩、冷却、膨胀和加热阶段,改变和控制室内空气的温度和湿度,从而提供舒适室内环境。

这些组件相互配合,实现了空调器的工作原理和功能。

空调系统的结构及功能原理

空调系统的结构及功能原理

制热时四通阀的工作原理
图中S为压缩机的吸气口(连接毛细管b),此处制冷剂为低压状态; D口为压缩机排气口(连接毛细管d),此处制冷剂为高压状态。当制 热工况时,线圈得电,使铁芯和阀碗一起向右移动,此时毛细管b和c 连通(低压),毛细管a和d连通(高压),因为A、B端的压差,推动 四通换向阀的滑块向右运动,使E与D连通,C与S连通。
电动膨胀阀是一种以步进电机驱动的电子膨胀阀,它通过给步 进电机施加一定逻辑关系的数字信号,使步进电机通过螺纹驱动阀 针的向前或向后运动,从而改变阀口的流量面积来达到控制流量的 目的。
制冷制热速率控制工作原理
当空调的设置温度与环境温度差值较大时,为了舒适度,我们 需要空调快速将室内的温度降下来或提高;当温差较小时,我们需 要温度的变化缓慢一些。避免骤冷骤热或制冷慢制热缓的问题,提 高舒适度。那么如何实现这一功能呢?
制冷制热速率控制工作原理
制冷制热速率控制工作原理
通过单片机的控制,产生三相按正弦规律变化的脉冲信号,将机车动力 电源变成三相正弦脉冲交流电,通过改变其频率和电压实现变频调速,三个 独立的专用变频器,分别对空调系统的压缩机、风机变频调速,实现温度可 调、风速可调。同时运用模糊控制技术,优化系统的运行,通过控制器采集 冷媒体媒量的变化,实现冷媒体在不同压力下其熵焓值发生变化 达到制冷、制热之目的,而且使整个系统输入功率发生变化时和环境温度变 化时,始终处于最佳热力匹配状态。从而实现了机电一体化的最佳集成配置, 使变频机车空调在恶劣的环境下能够可靠的运行。
温度调节工作原理
如今,人们日常使用的空调或工业上使用的空调绝 大多数都是温度可调的空调,但是空调是怎么实现可调 可控的呢,这项功能的实现最主要的部件为电子膨胀阀。
电子膨胀阀工作原理

空调的工作原理范文

空调的工作原理范文

空调的工作原理范文
一、压缩机循环系统
空调的核心是压缩机循环系统,由压缩机、蒸发器、冷凝器和节流装置组成。

制冷剂首先通过压缩机被压缩,增加其压力和温度,然后流入冷凝器。

二、冷凝器
冷凝器是一个具有多根细长金属管的翅片式换热器,通常由铜制成。

当制冷剂进入冷凝器时,通过外部风扇以及制冷剂与冷凝器管道壁的热量交换,制冷剂从气体态转变为液态态。

三、节流装置
节流装置是用来控制制冷剂流量的部件,通常是一个孔或者一条细小的管道。

当制冷剂通过节流装置时,其压力和温度骤然下降。

四、蒸发器
蒸发器是一个具有多根细长金属管的翅片式换热器,其结构与冷凝器类似。

制冷剂经过节流装置后,压力和温度骤降,变为低温低压的状态,进入蒸发器。

在蒸发器中,制冷剂与室内空气进行热量交换,制冷剂从液态态转变为气态态。

五、室内机和室外机
空调系统由室内机和室外机两部分组成。

室内机包括蒸发器和风扇,负责将冷空气送入室内空间。

室外机则包括压缩机、冷凝器和风扇,负责将热空气排出室外。

六、制冷剂
空调中常用的制冷剂是氟利昂,例如R-22、R-410A等。

制冷剂在循环系统中起到传热媒体的作用,通过改变其压力和温度的变化状态,实现热量的传递。

在空调的工作过程中,制冷剂在压缩机循环系统中不断循环流动,经过蒸发器和冷凝器的热量交换,吸收室内热量并将其排出室外,以达到室内温度调节的目的。

总结起来,空调的工作原理是通过压缩机循环系统,利用制冷剂循环流动的特性,将热量从室内转移到室外,从而调节室内温度。

靠着循环流动的制冷剂对空气进行热量交换,从而达到降温的目的。

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理空调器的结构,一般由以下四部分组成。

制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。

风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。

电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。

箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。

制冷系统的主要组成和工作原理制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。

空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。

制冷的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。

压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。

冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。

节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。

蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。

单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。

单冷型空调器环境温度适用范围为18℃~43℃。

冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。

(1)电热型空调器电热型空调器在室内蒸发器与离心风扇之间安装有电热器,夏季使用时,可将冷热转换开关拨向冷风位置,其工作状态与单冷型空调器相同。

空调结构及工作原理

空调结构及工作原理

空调结构及工作原理
空调的结构主要包括室外机和室内机。

室外机包括压缩机、冷凝管和风扇,室内机包括冷凝器、蒸发器、蒸发风扇和控制器。

空调的工作原理如下:
1. 压缩机:压缩机将制冷剂从低压状态压缩成高压状态,使其温度升高。

2. 冷凝管:高温高压的制冷剂经过冷凝管流过时,采取与环境空气进行热交换来冷却和凝结制冷剂,使其温度和压力降低。

3. 冷凝器:冷凝管将凝结的制冷剂导入冷凝器,冷却器内的风扇通过对流的方式将冷凝器内的热量排出,使制冷剂进一步降温并改变为液体。

4. 蒸发器:制冷剂通过膨胀阀进入蒸发器,在蒸发器内部蒸发时吸热,减小温度,以达到降低空气温度的效果。

5. 蒸发风扇:蒸发器内的风扇会循环室内的空气流经蒸发器,通过与制冷剂的热交换,冷却空气并将冷空气送入室内。

6. 控制器:控制器可以调节制冷剂循环的速度,室内温度的设定以及其他空调功能的控制。

通过这样的循环工作,空调可以将室内的热量排出,达到调节室内温度的目的。

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理一、空调器结构空调器是一种用于调节室内温度、湿度、通风和空气质量的设备。

它由以下几个主要部件组成:1. 蒸发器:蒸发器是空调器的主要组件之一,用于吸收室内空气中的热量。

它通常由一组金属管和薄片组成,这些薄片具有较大的表面积,以增加热量交换效率。

2. 压缩机:压缩机是空调器的心脏,负责将低温低压的制冷剂压缩成高温高压的气体。

通过压缩制冷剂,它能够提高其温度和压力,使其能够释放更多的热量。

3. 冷凝器:冷凝器是空调器的另一个重要组件,用于将压缩机排出的高温高压气体冷却成高压液体。

冷凝器通常由一组金属管和散热片组成,通过与室外空气的热交换,将制冷剂的热量散发出去。

4. 膨胀阀:膨胀阀是控制制冷剂流量的重要部件。

它通过调节流经蒸发器的制冷剂的量,控制室内空气的温度。

膨胀阀通常采用可调节的孔径或热敏元件来实现流量控制。

5. 风扇和风道:空调器通常配备有风扇和风道,用于循环室内空气。

风扇通过吹送空气,使室内空气与蒸发器和冷凝器进行热交换,从而实现室内温度的调节。

6. 控制系统:空调器的控制系统用于监测和控制室内温度、湿度和其他参数。

它通常由传感器、控制器和显示器组成,可以根据设定的参数自动调节空调器的运行状态。

二、空调器工作原理空调器的工作原理基于热力学和制冷循环原理。

下面是空调器的工作原理简要描述:1. 制冷循环:空调器通过制冷循环来实现室内温度的调节。

制冷循环包括四个主要过程:压缩、冷凝、膨胀和蒸发。

制冷剂首先被压缩机压缩成高温高压气体,然后通过冷凝器散热,变成高压液体。

接下来,制冷剂通过膨胀阀进入蒸发器,由于蒸发器内的压力降低,制冷剂开始蒸发吸收室内空气的热量,从而降低室内温度。

最后,制冷剂再次进入压缩机,循环往复。

2. 温度控制:空调器的温度控制是通过控制蒸发器中制冷剂的流量来实现的。

当室内温度高于设定温度时,控制系统会打开膨胀阀,增加制冷剂的流量,从而提高蒸发器的制冷效果。

当室内温度达到设定温度时,控制系统会关闭膨胀阀,减少制冷剂的流量,从而减少制冷效果。

空调的组成及工作原理

空调的组成及工作原理

空调的组成及工作原理
空调的组成及工作原理可以分为以下几个部分:
1. 压缩机:压缩机是空调系统的核心部件,其主要功能是将低温、低压的制冷剂气体吸入,进行压缩使其温度和压力升高,然后将高温、高压的气体排出。

2. 冷凝器:冷凝器是用于散热的部件,它通常位于空调室外机的背后,通过风扇循环空气散热。

冷凝器接收到来自压缩机排出的高温高压气体,使其冷却并转变成高压液体。

3. 膨胀阀:膨胀阀是一个控制制冷剂流量的装置,其主要功能是将高压液体制冷剂通过缩小通道的方式降低其温度和压力,准备进入蒸发器。

4. 蒸发器:蒸发器通常位于空调的室内机内部,主要通过风扇吹过的空气从而吸热。

蒸发器接收到经过膨胀阀降温后的制冷剂,使其蒸发变成低温低压气体。

空调的工作原理是通过不断循环制冷剂在压缩机、冷凝器、膨胀阀和蒸发器之间的相互转化来实现的。

首先,压缩机将低温低压制冷剂气体吸入,然后通过压缩使其变成高温高压气体。

接着,高温高压气体进入冷凝器,通过风扇散热,使其冷却并转变为高压液体。

高压液体经过膨胀阀降温降压后进入蒸发器,吸收来自室内空气的热量,使其蒸发变成低温低压气体。

低温低压气体再次回到压缩机,循环往复,不断提供制冷效果。

空调的结构和原理

空调的结构和原理

空调的结构和原理
空调主要由以下几个部分构成:
1. 制冷剂循环系统:包括压缩机、冷凝器、膨胀阀和蒸发器。

制冷剂在循环中起到传热和吸收释放热量的作用。

2. 压缩机:将制冷剂压缩成高温高压气体,增加其温度和压力。

3. 冷凝器:将高温高压制冷剂通过传热与周围环境交换热量,使其冷却变成高温高压液体。

4. 膨胀阀:是冷凝器和蒸发器之间的节流装置,通过限制制冷剂的流量和降低压力,使其变成低温低压液体。

5. 蒸发器:通过吸热原理,将低温低压液体制冷剂与空气或水接触,在吸热过程中吸收空气或水中的热量,从而冷却空气或水。

空调的工作原理如下:
1. 压缩机吸入低温低压气体制冷剂,通过机械压缩将其压缩成高温高压气体。

2. 高温高压气体制冷剂进入冷凝器,与外部环境进行热交换,散发热量,使制冷剂冷却成高温高压液体。

3. 高温高压液体制冷剂通过膨胀阀节流,压力降低,变成低温低压液体。

4. 低温低压液体制冷剂进入蒸发器,在与室内空气或水接触的过程中吸热,制冷剂自身从液体状态转变为气体状态。

5. 制冷剂经过蒸发后,再次被压缩机吸入,循环往复,实现空调系统的制冷效果。

以上就是空调的结构和工作原理,通过循环往复的制冷剂流动和热量交换,实现对室内空气或水的冷却。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空调器结构和工作原理空调器的结构,一般由以下四部分组成。

制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。

风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。

电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。

箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。

制冷系统的主要组成和工作原理制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。

空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。

制冷的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。

压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。

冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。

节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。

蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。

单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。

单冷型空调器环境温度适用范围为18℃~43℃。

冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。

(1)电热型空调器电热型空调器在室内蒸发器与离心风扇之间安装有电热器,夏季使用时,可将冷热转换开关拨向冷风位置,其工作状态与单冷型空调器相同。

冬季使用时,可将冷热转换开关置于热风位置,此时,只有电风扇和电热器工作,压缩机不工作。

(2)热泵型空调器热泵型空调器的室内制冷或制热,是通过电磁四通换向阀改变制冷剂的流向来实现的,如图1所示。

在压缩机吸、排气管和冷凝器、蒸发器之间增设了电磁四通换向阀,夏季提供冷风时室内热交换器为蒸发器,室外热交换器为冷凝器。

冬季制热时,通过电磁四通换向阀换向,室内热交换器为冷凝器,而室外热交换器转为蒸发器,使室内得到热风。

热泵型空调器的不足之处是,当环境温度低于5℃时不能使用。

图1 热泵型空调制冷和制热运行状态(3)热泵辅助电热型空调器热泵辅助电热型空调器是在热泵型空调器的基础上增设了电加热器,从而扩展了空调器的工作环境温度,它是电热型与热泵型相结合的产品,环境温度适用范围为-5℃~43℃。

制冷系统主要部件1.制冷压缩机(1)开启式压缩机压缩机曲轴的功率输入端伸出曲轴箱外,通过联轴器或皮带轮和电动轮相联接,因此在曲轴伸出上必须装置轴封,以免制冷剂向外泄漏,这种型式压缩机为开启式压缩机。

(2)半封闭式压缩机由于开启式压缩机轴封的密封面磨损后会造成泄漏,增加了操作维护的困难,人们在实践的基础上,将压缩机的机体和电动机的外壳连成一体,构成一密封机壳,这种型式的压缩机称为半封闭式压缩机。

这种机器的主要特点是不需要轴封,密封性好,对氟利昂压缩机很适宜。

(3)全封闭式压缩机压缩机与电动机一起装在一个密闭的铁壳内,形成一个整体,从外表上看,只有压缩机的吸、排气管的管接头和电动机的导线,这种型式的压缩机,称为全封闭式压缩机。

压缩机的铁壳分成上、下两部分,压缩机和电动机装入后,上下铁壳用电焊丝焊接成一体,平时不能拆卸,因此,要求机器使用可靠。

(4)旋转式压缩机旋转式压缩机的结构如图2所示,图中,0为气缸中心,在与气缸中心保持偏心r的p处,有以p为中心的转轴(曲轴),在轴上装有转子。

随着曲轴的旋转,制冷剂气体从吸气口被连续送往排气口。

滑片靠弹簧与转子保持经常接触,把吸气侧与排气侧分开,使被压缩的气体不能返回吸气侧。

在气缸内的气体与排气达到相同的压力之前,排气阀保持闭合状态,以防止排气倒流。

图2 旋转式压缩机旋转式压缩机的不同点在于,电动机的旋转运动不能转换为往复运动,除了进行旋转压缩外,它没有吸气阀。

根据上述道理,旋转式压缩机具有如下特征:①由于连续进行压缩,故比往复式的压缩性能优越,且因往复质量小或没有往复质量,所以几乎能完全消除平衡方面的问题,振动小。

②由于没有像往复式压缩机那样的把旋转运动变为往复运动的机构,故零件个数小,加上由旋转轴位中心的圆形零件构成,因而体积小,重量轻。

③在结构上,可把余隙容积做得非常小,无再膨胀气体的干扰。

由于没有吸气阀,流动阻力小,故容积效率、制冷系数高。

旋转式压缩机的缺点是:①由于各部分间隙非常均匀,如果间隙不是很小时,则压缩气体漏入低压侧,使性能降低,因此,在加工精度差,材质又不好而出现磨损时,可能引起性能的急剧降低。

②由于要靠运动部件间隙中的润滑油进行密封,因此,为从排气中分离出油,机壳内(内装压缩机和电动机的密闭容器)须做成高压,因此,电动机、压缩机容易过热,如果不采取特殊的措施,在大型压缩机和低温用压缩机中是不能使用的。

③需要非常高的加工精度。

2.热力膨胀阀及其工作原理热力膨胀阀,又称感温调节阀或自动膨胀阀,它是目前氟利昂制冷中使用最广泛的节流机构。

它能根据流动蒸发器的制冷剂温度和压力信号自动调节进入蒸发器的氟利昂流量,因此这是以发信器、调节器和执行器三位组成一体的自动调节机构。

热力膨胀阀根据结构的不同,可分为内平衡和外平衡两种形式。

热力膨胀阀的工作原理:通过感温包感受蒸发器出口端过热度的变化,导致感温系统内充注物质产生压力变化,并作用于传动膜片上,促使膜片形成上、下位移,再通过传动片将此力传递给传动杆从而推动阀针上下移动,使阀门关小或开大,起到降压节流作用,以及自动调节蒸发器的制冷剂供给量并保持蒸发器出口端具有一定的过热度,得以保证蒸发器传热面积的充分利用,减少液击冲缸现象的发生。

感温包从蒸发器出口端感受温度而产生压力,引压力通过毛细管传递作用于传动膜片上,使传动膜片向下位移的压力用P表示。

传动膜片下部受到两个力的作用,一个是蒸发压力P0,另一个是弹簧压力PD。

当三力平衡时,P=(P0+PD),热力膨胀阀保持一定的开启度。

外平衡热力膨胀阀与蒸发器的链接上图所示为一只使用R22的平衡热力膨胀阀,制冷剂的蒸发温度为5℃(P0=5.839bar),当制冷剂在蒸发器中由A点流至B点时,液态制冷剂在AB两点之间的蒸发压力仍为P0,蒸发温度保持不变,均在5℃。

当制冷剂整齐由B点流至C点时,由于继续吸热,其温度将升至10℃,因此C点的过热度为5℃。

感温包内压为P等于R22在10℃时饱和压力,即P=6.803(bar)。

弹簧等效压缩为P D=0.964(bar)。

显然,此时膨胀阀膜片上、下部压力相等,且保持一定开度,制冷和系统运行稳定。

当P<(P0+P D)时,传动膜片向上移动,通过传动片带动传动杆使阀针向上移动,使节流孔的有效流通面积减小,阀门关小。

当P>(P0+P D)时,传动膜片向下移动,通过传动片推动传动杆使阀针向下移动,将节流孔的有效流通面积增大,使阀门开大。

3.毛细管毛细管是最简单的节流机构,通常用一根直径为0.5mm~2.5mm,长度为1m~3m 的紫铜管就能使制冷剂节流、降温。

制冷剂在管内的节流过程极其复杂。

在毛细管中,节流过程是经毛细管总长的流动过程中完成的。

在正常情况下,毛细管通过的制冷剂量主要取决于它的内径、长度与冷凝压力。

如长度过短或直径太大,则使阻力过小,液体流量过大,冷凝器不能供给足够的制冷剂液体,降低了压缩机的制冷能力;相反如毛细管过长或直径太细,则阻力又过大,阻止足够的制冷剂液体通过,使制冷剂液体过多地积存在冷凝器内,造成高压过高,同时也使蒸发器缺少制冷剂,造成低压过低。

因此,毛细管的尺寸必须选择合适,才能保证制冷系统的正常运行。

流入毛细管的液体制冷剂,受到冷凝压力影响,当冷凝压力越高,液体制冷剂流量增大,反之就减小。

4.四通电磁换向阀热泵空调器是通过电磁换向阀改变制冷剂的流动方向的。

当低压制冷剂进入室内侧换热器,空调器向室内供冷气;当高温高压制冷剂进入室内侧换热器时,空调器向室内供暖气。

电磁转换主要由控制阀与换向阀两部分组成,如图3所示。

通过控制阀上电磁线圈及弹簧的作用力来打开和关闭其上毛细管的通道,以使换向阀进行换向。

空调器制冷时,电磁圈不通电,控制阀内的阀塞将右毛细管与中间公共毛细管的通道关闭,使左毛细管与中间公共毛细管沟通,中间公共毛细管与换向阀低压吸气管相连,所以换向阀左端为低压腔。

在压缩机排气压力的作用下,活塞向左移动,直至活塞上的顶针将换向阀上的针座堵死。

在托架移动的过程中,滑块将室内换热器与换向阀中间低压管沟通;高压排气管与室外侧换热器相沟通。

这时,空调器作制冷循环。

空调器制热时,电磁线圈通电,控制阀塞在电磁力的作用下向右移动,这样关闭了左侧毛细管与公共毛细管的通路,打开了右侧毛细管与公共毛细管的通道,使换向阀右端为低压腔,活塞就向右移动,直至活塞上的顶针将换向阀上的针座堵死。

这时高压排气管与室内侧换热器沟通,空调器作制热循环。

5.干燥过滤器(1)过滤器的功能过滤器装在冷凝器与毛细管之间,用来清除从冷凝器中排出的液体制冷剂中的杂质,避免毛细管中被阻塞,造成制冷剂的流通被中断,从而使制冷工作停顿。

(2)过滤器的结构窗式空调器的过滤器,其结构比较简单,即在铜管中间设置两层铜丝网,用来阻挡液体制冷剂中的杂物流过;对设有干燥的过滤器,在器体中还装有分子筛(4A分子筛),用来吸附水分。

如果这些水分不吸走,有可能在毛细管出口或蒸发器进口的管壁内结成冰,使制冷剂的流动困难,甚至发生阻塞,使空调器无法实现制冷降温。

制冷系统中水分的来源,主要是空调器使用一段时间后,由于安装不妥等原因产生振动,从而使系统中的管道产生一些微小的泄漏,使外界空气渗入的结果。

6.制冷剂、冷媒、冷冻油a.制冷剂制冷剂又称“制冷工质”,制冷循环中工作的介质。

在蒸汽压缩机制冷循环中,利用制冷剂的相变传递热量,即制冷剂蒸发时吸热,凝结时放热。

因此,制冷剂应具备下列特征:易凝结,冷凝压力不要太高,蒸发压力不要太低,单位容积制冷量大,蒸发潜热大,比容小。

此外,还要求制冷剂不爆炸、无毒、不燃烧、无腐蚀、价格低廉等。

常见的有R12、R22、R134a等。

b.冷媒冷媒又称“载冷剂”,制冷系统中间接传递热量的液体介质。

它在蒸发器中被制冷剂冷却后,送至冷却设备中,吸收被冷却物体的热量,再返回蒸发器将吸收的热量释放给制冷剂,重新被冷却,如此循环来达到连续制冷的目的。

相关文档
最新文档