北师大版八年级上册数学实数习题

合集下载

北师大版八年级上第2章《实数》练习题及答案解析

北师大版八年级上第2章《实数》练习题及答案解析

第二章实数2.1认识无理数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D. 2.解:(1)边长为5cm.(2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.2.2平方根专题一 非负数问题1. 若2(2)a +与1+b 互为相反数,则a b -的值为( )A .2B .21+C .21-D .12-2. 设a ,b ,c 都是实数,且满足(2-a )2+2a b c +++|c+8|=0,ax 2+bx+c=0,求式子x 2+2x 的算术平方根.3. 若实数x ,y ,z x 1y -2z -= 14(x+y+z+9),求xyz 的值.专题二 探究题 4. 研究下列算式,你会发现有什么规律?131⨯+=4 =2;241⨯+=9=3;351⨯+=16=4;461⨯+=25=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题: ①2211112++=1+ 11111-+- =112;②2211123++ =1+ 11221-+=116; ③2211134++=1+ 11331-+=1112. (1)请你根据上面三个等式提供的信息,猜想2211145++的结果,并验证; (2)请你按照上面各等式反映的规律,试写出用含n 的式子表示的等式(n 为正整数).答案:1.D 【解析】 ∵2(2)a +与|b+1|互为相反数,∴2(2)a ++|b+1|=0, ∴2+a =0且b+1=0, ∴a=2,b=﹣1,a b -=12-,故选D.2.解:由题意,得2-a=0,a 2+b+c=0,c+8=0. ∴a=2,c=-8,b=4. ∴2x 2+4x-8=0. ∴x 2+2x=4.∴式子x 2+2x 的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得x-4x +y-41y -+z-42z -+9=0,∴(x-4x +4)+(y-1-41y -+4)+(z-2-42z -+4)=0, ∴(x-2)2+(1y --2)2+(2z --2)2=0,∴x-2=0且1y --2=0且2z --2=0, ∴x=21y -=2 2z -=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.4.解:第n 项a n =(2)1n n ++=2(1)n +=n+1,即a n =n+1. 5.解:(1)2211145++=1+ 11441-+=1120. 验证:2211145++=1111625++=25161400400++=441400=1120. (2)22111(1)n n +++=1+111n n -+=1+1(1)n n +(n 为正整数).2.3立方根专题 立方根探究性问题1. (1)填表:a 0.000001 0.001 1 1000 10000003a(2)由上表你发现了什么规律(请你用语言叙述出来);(3)根据发现的规律填空:①已知33=1.442,则33000=_____________;②已知30.000456=0.07696,则3456=_____________.2.观察下列各式:(1)223=223;(2)338=338;(3)4415=4415.探究1:判断上面各式是否成立.(1)________;(2)________;(3)________ .探究2:猜想5524= ________ .探究3:用含有n的式子将规律表示出来,说明n的取值范围,并用数学知识说明你所写式子的正确性.拓展:3227=2327,33326=33326,34463=43463,…根据观察上面各式的结构特点,归纳一个猜想,并验证你的猜想.答案:1.解:(1)直接开立方依次填入:0.01;0.1;1;10;100.(2)从表中发现被开方数小数点向右移动三位,立方根向右移动一位.(3)①14.42 ②7.6962.解:探究1:(1)成立 (2)成立 (3)成立 探究2:5524探究3:21n nn -=21nn n -(n≥2,且n 为整数).理由如下: 21n n n -=321n n n n -+-=221n n n ⨯-=21n n n -. 拓展:331n nn -=331n n n -.理由如下: 331n n n -=4331n n n n -+-=3331n n n ⨯-=331n n n -.2.4估算专题 比较无理数大小1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是( )A .a >b >cB .a >c >bC .b >a >cD .c >b >a2. 观察下列一组等式,然后解答后面的问题:(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,(5+4)(5-4)=1…(1)观察上面的规律,计算下列式子的值. (121++132++143++…+ 120132012+)•( 2013+1).(2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问:(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1. D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++,则(121++132++143++…+ 120132012+)•( 2013+1) =[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1) =( 2013-1) ( 2013+1) =.(2)∵11211-=1211+,11312-=1312+,又1211+<1312+,∴11211-<11312-, ∴1211->1312-.3.解:依次填:0.001,0.01,0.1,1,10,100,1000. (1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值为3.24的小数点向右移动6位,即a=3240000; (3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .2.6实数专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( ) A .2 B .22 C .12 D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处 A .17 B .55 C .72 D .853. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|; (2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】由勾股定理得:正方形的对角线为2,设点A表示的数为x,则2-x=2,解得x=2-2.故选B.2.B 【解析】根据题意,数轴上刻度15,18的位置分别对准A,B两点,而AB两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B.3.3+22【解析】在直角△ABC中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.2.7二次根式专题一 与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )A.1B.2C. 23D.6 2. 观察下列各式及其验证过程:322322=+,验证:228222223333⨯+===. 333388+=,验证:2327333338888⨯+===.(1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简 4. 化简二次根式22a aa 的结果是( ) A.2a B.2a C. 2a D.2a5.如图,实数a .b 在数轴上的位置, 化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(1)44441515+=.验证:24644444415151515⨯+===. (2)2211a a a a a a +=--(a 为任意自然数,且2a ≥). 验证:3322221111a a a a a aa aa a a a -++===----. (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥). 验证:33334433331111aa a aa aa aa a a a -++===----. 11nnn na aa a a a +=--(a 为任意自然数,且2a ≥). 验证:n n n n n n n n n n a a a a a a a a a a a a 111111-=-=-+-=-+++. 3. 解:(1)223n m + 2mn (2)21 12 3 2(3) ∵223n m a +=,4=2mn, ∴mn=2. ∵ m,n 为正整数,∴m=1,n=2或m=2,n=1, ∴a=13或a=7.4.B 【解析】若二次根式有意义,则22a a+-≥0,-a-2≥0,解得a≤-2,∴原式=2a a a=2a .故选B .5.解:由图知,a <0,b >0,∴a ﹣b <0,∴222)(b a b a -+-=|a |﹣|b |+|a ﹣b |=(﹣a )﹣b +(b ﹣a )=﹣2a .。

数学北师大八年级上册2.6《实数》练习题

数学北师大八年级上册2.6《实数》练习题

2.6 实数基础题知识点1 实数的概念及分类1.实数-是(A)A .无理数B .分数C .整数D .正数2.(上海中考)下列实数中,是有理数的为(D)A. B.43C .πD .03.下列说法正确的是(D)A .实数包括有理数、无理数和零B .有理数包括正有理数和负有理数C .无限不循环小数和无限循环小数都是无理数D .无论是有理数还是无理数都是实数4.下列判断中,你认为正确的是(C)A .0的倒数是0 B.的值是±3C.>1D.3π是分数5.把下列各数按有理数、无理数、正实数、负实数分别填入相应的集合内:0,-7.5,,4,179,32,-273,0.31,-3π,4.··21,(53-)0,-|-4|.(1)有理数集合{0,-7.5,4,32,-273,0.31,4.··21,(53-)0,-|-4|…};(2)无理数集合{,179,-3π…};(3)正实数集合{,4,179,32,0.31,4.··21,(53-)0…};(4)负实数集合{-7.5,-273,-3π,-|-4|…}.知识点2 实数的相反数、倒数和绝对值6.(青岛中考)-的绝对值是(C)A .-51B .-C. D .57.下列各组数中互为相反数的是(D)A .3和B .-31和-3C .-3和-273D .-|-3|和-(-3) 8.实数的相反数是-,倒数是71,绝对值是.知识点3 实数与数轴的关系9.到原点的距离等于的实数为±.10.如图,以数轴上的单位线段长为宽,以2个单位线段长为长,作一个矩形,以数轴原点为圆心,以矩形的对角线为半径画弧,交数轴的正半轴于A 点,则点A 表示的数是.11.如何在数轴上画出表示的点?解:如图,在数轴上,过表示3的点A 作数轴的垂线段,且AB =2,连接OB ,则OB =,以O 为圆心,OB 的长为半径作弧与数轴的正半轴交于点C ,则点C 就表示.12.画一条数轴,把-21,,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解:因为-21的相反数是21,的相反数是-,3的相反数是-3;它们在数轴上表示为:所以-3<-<-21<21<<3.中档题13.|1-|的相反数为(A)A .1- B.-1C .1+D .-1-14.下列说法正确的是(D)A .(2π)0是无理数B.33是有理数C.是无理数D.-83是有理数15.下面说法中,不正确的是(D)A .绝对值最小的实数是0B .算术平方根最小的实数是0C .平方最小的实数是0D .立方根最小的实数是016.下列说法错误的是(B)A .a 2与(-a)2相等B.与互为相反数C.a 3与-a 3是互为相反数D .|a|与-|a|互为相反数17.如图,在数轴上点A 和点B 之间的整数是2.18.请写出一个实数a ,使得实数a -1的绝对值等于1-a 成立,你写出的a 的值是答案不唯一,只要写出的a 的值不大于1即可.19.把下列各数分别填在相应的括号内:,-3,0,43,0.3,722,-1.732,,-163,|-13|,-,-2π,3+,0.101 001 000 1….(1)整数{-3,0,,|-13|,…};(2)分数{0.3,722,-1.732,…};(3)正数{,43,0.3,722,,|-13|,3+,0.101 001 000 1…,…};(4)负数{-3,-1.732,-163,-,-2π,…};(5)有理数{-3,0,0.3,722,-1.732,,|-13|,…};(6)无理数{,43,-163,-,-2π,3+,0.101 001 000 1…,…}.20.计算:(1)2+3-5-3;解:原式=-3.(2)|-2|+|-1|.解:原式=1.综合题21.如图,已知A 、B 、C 三点分别对应数轴上的实数a 、b 、c.(1)化简:|a -b|+|c -b|+|c -a|;(2)若a =2 017x +y ,b =-z 2,c =-4mn ,且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a +99b +100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.解:(1)由数轴可知:a -b >0,c -b <0,c -a <0,所以原式=(a -b)-(c -b)-(c -a)=a -b -c +b -c +a=2a -2c.(2)由题意可知:x +y =0,z =-1,mn =1,所以a =0,b =-(-1)2=-1,c =-4.所以98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7或3,整数的和为-4.。

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章 实数测试题题(含答案)

北师大版八年级数学上册第二章实数测试题(含答案)一、选择题(共10小题,每小题3跟,共30分)1.下列式子正确的是()A.√9=±3B.√−19=−13C.√(−2)2=2D.√−93=﹣32.下列说法正确的是()A.1的平方根是1B.负数没有立方根C.√81的算术平方根是3D.(−3)2的平方根是−33.下列计算正确的是()A.√4=±2B.√36=6C.√(−6)2=﹣6D.﹣√−83=﹣24.下列四个实数中,是无理数的为()A.0B.√2C.﹣2D.。

125.下列根式中是最简二次根式的是()A.B.C.D.6.如图所示,在数轴上表示实数√10的点可能是()A.点M B.点N C.点P D.点Q 7.给出下列数-2.010010001…,0 ,3.14,237,π,0.333….其中无理数有()个A.1B.2C.3D.48.下列命题正确的是()A.同旁内角互补B.一组数据的方差越大,这组数据波动性越大C.若∠α=72°55′,则∠α的补角为107°45'D.对角线互相垂直的四边形是菱形9.下列运算正确的是()A.√10÷√2=5B.(t−3)2=t2−9C.(−2ab2)2=4a2b4D.x2⋅x=x210.下列运算正确的是()A .√4 =±2B .(−14)−2=﹣16C .x 6÷x 3=x 2D .(2x 2)3=8x 6二、填空题(共5小题,每小题3分,共15分)11.函数y =√2−x x−1的自变量x 的取值范围是 .12.如果 √a −1 有意义,那么a 的取值范围是 .13.一个正数的两个平方根分别是m −4和5,则m 的立方根是 . 14.请写出一个正整数m 的值使得√8m 也是整数,则m 的最小值是 . 15.49的平方根是 ;27的立方根是 .三、解答题(第16题10分,第17-18题每题7分,第19-21每题9分,第22-23每题12分,满分75分)16.在平面直角坐标系中,点P (- √3 ,-1)到原点的距离是多少?17.方老师想设计一个长方形纸片,已知长方形的长是 √140π cm ,宽是 √35π cm ,他又想设计一个面积与其相等的圆,请你帮助方老师求出圆的半径.18.已知2a -1的平方根是±3,3a +b -9的立方根是2,c 是 √8 的整数部分,求a +b +c 的平方根. 19.有一道练习题:对于式子2a-√a 2−4a +4先化简,后求值,其中a=√2。

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章-实数练习题(带解析)

北师大版八年级上册数学第二章实数练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx题号一二三四<五总分得分[1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释评卷人得分.一、单选题(注释)1、下列各式计算正确的是A.B.(>)C.=、D.2、下列计算中,正确的是()A.B.C.5=5·D.=3a(3、实数a在数轴上的位置如图所示,则a,-a,,a2的大小关系是()A.a<-a<<a2B.-a<<a<a2 C.<a<a2<-a D.<a2<a<-a 4、下列各式中,计算正确的是()A.+=~B.2+=2C.a-b=(a-b)D.=+=2+3=55、在实数中,有()A.最大的数B.最小的数C.绝对值最大的数。

D.绝对值最小的数6、下列说法中正确的是()A.和数轴上一一对应的数是有理数B.数轴上的点可以表示所有的实数C.带根号的数都是无理数D.不带根号的数都不是无理数(7、一个正方形的草坪,面积为658平方米,问这个草坪的周长是()A.B.C.D.8、下列各组数,能作为三角形三条边的是()A.,,<B.,,C.,,D.,, 9、将,,用不等号连接起来为()A.<<B.<<C.<<@D.<<10、用计算器求结果为(保留四个有效数字)()A.B.±C.D.-!11、2nd x2 2 2 5 ) enter显示结果是()A.15B.±15C.-15D.25更多功能介绍、一个正方体的体积为28360立方厘米,正方体的棱长估计为()A.22厘米B.27厘米*C.厘米D.40厘米13、设=,=,下列关系中正确的是()A.a>b B.a≥b C.a<b D.a≤b-14、化简的结果为()A.-5B.5-C.--5D.不能确定15、在无理数,,,中,其中在与之间的有()^A.1个B.2个C.3个D.4个16、的算术平方根在()A.与之间B.与之间,C.与之间D.与之间17、下列说法中,正确的是()A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,1。

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)

八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。

北师大版八年级数学上册《2.6 实数》练习题及答案

北师大版八年级数学上册《2.6 实数》练习题及答案

北师大版八年级数学上册《2.6 实数》练习题及答案学校:___________班级:___________姓名:___________考号:___________ 一、选择题1.下面说法中,正确的是()A.实数分为正实数和负实数B.带根号的数都是无理数C.无限不循环小数都是无理数D.平方根等于本身的数是1和02.在实数√5,227,0,π2,√36,−1.414有理数有()A.1个B.2个C.3个D.4个3.如图,数轴上M,N,P,Q四点中,与2−√5对应的点距离最近的是()A.点M B.点N C.点P D.点Q4.下列计算正确的是()A.√2×√3=√5B.√3−√2=1C.√3√2=1D.(√3+√2)(√3−√2)=15.如图,长方形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.√3B.2√2C.√5D.2.56.实数a,b,c,d在数轴上的对应点的位置如图所示.若b+d=0,则下列结论中正确的是()A.b+c>0B.ca>1C.ad>bc D.|a|>|d|7.如图,△ABC是直角三角形,点C在数轴上对应的数为−2,目AC=3,AB=1若以点C为圆心,CB为半径画弧交数轴于点M,则A,M两点间的距离为()A.0.4 B.√10−2C.√10−3D.√5−18.如图,长方形的长为3,宽为2,对角线为OB,且OA=OB,则下列各数中与点A表示的数最接近的是( )A .-3.5B .-3.6C .-3.7D .-3.8二、填空题 9.如图,在数轴上点A 和点B 之间表示整数的点共有 个10.给出下列关于 √2 的判断:①√2 是无理数;②√2 是实数;③√2 是2的算术平方根;④1< √2 <2.其中正确的是 (请填序号).11.√1253−√9+|√5−2|= .12.如图,数轴上点A 表示的实数是 .13.如图,数轴上点 A , B 对应的实数分别为1, √2 点 B 关于点 A 的对称点为点 C ,则点 C 所表示的实数是 .三、解答题14.计算:(1)√(−5)2+√−273﹣(﹣1)2.(2)(−1)3+√83+√25+|−3|.(3)−22+√−643×(12)2+|√3−2|15.把下列各数填在相应的大括号里:整数:{ …};负分数:{ …};无理数:{ …}.16.把下列各数:-2.5,0和32-在数轴上表示出来,并将这些数用“<”连接.参考答案1.C2.D3.B4.D5.C6.D7.C8.B9.410.①②③④11.√512.√5﹣113.2−√23﹣(﹣1)214.(1)解:√(−5)2+√−27=5﹣3﹣1=1.3+√25+|−3|=−1+2+5+3=9. (2)解:(−1)3+√8+2−√3(3)解:原式=−4+(−4)×14=−4+(−1)+2−√3=−3−√315.解:由题意可知:整数包括:{0,√9,+5,⋯};,−3.1415,⋯};负分数包括:{−227π,√8,⋯}.无理数包括:{1216.解:3-<<<-2.502.2。

最新北师大版八年级数学上册第二章实数知识点及习题

最新北师大版八年级数学上册第二章实数知识点及习题

最新北师大版八年级数学上册第二章实数知识点及习题知识点一、平方根平方根是指一个数的平方等于另一个数时,这个数就是另一个数的平方根。

记作x=±a(a≥0)。

根据这个定义,可以得出以下结论:1.当a=0时,它的平方根只有一个,也就是本身;2.当a>0时,它有两个平方根,且它们是互为相反数,通常记做:x=±a。

3.当a<0时,它不存在平方根。

例1:1.(1)的平方是64,所以64的平方根是±8;2.(2)的平方根是它本身,即1;3.若2x的平方根是±2,则x=±1;16的平方根是±4;4.当x≥1时,3-2x有意义;5.一个正数的平方根分别是m和m-4,则m的值是8,这个正数是16.知识点二、算术平方根如果一个正数x的平方等于a,即x²=a,那么,这个正数x就叫做a的算术平方根,记为:“√a”,其中,a称为被开方数。

特别规定:0的算术平方根仍然为0.算术平方根的性质是具有双重非负性,即:a≥0(√a≥0)。

算术平方根与平方根的关系是算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:√a;而平方根具有两个互为相反数的值,表示为:±√a。

例2:1.下列说法正确的是:C,81的平方根是±9;2.下列各式正确的是:A,81=±9;B,3.14-π=π-3.14;C,-27=-93;D,5-3=2;3.(-3)的算术平方根是0;4.若x+2√a- x有意义,则x+1=√a;5.已知△ABC的三边分别是a,b,c,且a,b满足a-3+(b-4)²=49,求c的取值范围是[4,∞);6.如果x、y分别是4-3的整数部分和小数部分,求x-y的值是0.01;7.求下列各数的平方根和算术平方根:64的平方根是±8,算术平方根是8;49的平方根是±7,算术平方根是7;0.0004的平方根是±0.02,算术平方根是0.02;(-25)²的平方根是±25,算术平方根是25;11的平方根是±√11,算术平方根是√11;8.(64)²=4096,(-64)²=4096;9.(7.2)²=51.84;10.对于正数a,(a)²=a²。

北师大版八年级上册数学实数计算题

北师大版八年级上册数学实数计算题

北师大版八年级上册数学实数计算题一、实数的运算基础1. 化简求值:√(4) + sqrt[3]{ 8}。

解析:对于√(4),因为2^2 = 4,所以√(4)=2。

对于sqrt[3]{ 8},因为( 2)^3=-8,所以sqrt[3]{ 8}=-2。

则√(4)+sqrt[3]{ 8}=2+( 2)=0。

2. 计算:√(9)-√(16)+sqrt[3]{27}。

解析:因为3^2 = 9,所以√(9) = 3。

又因为4^2 = 16,所以√(16)=4。

且3^3 = 27,所以sqrt[3]{27}=3。

那么√(9)-√(16)+sqrt[3]{27}=3 4+3 = 2。

3. 计算(√(3))^2-√(25)+| 2|。

解析:首先(√(3))^2 = 3(根据二次根式的性质(√(a))^2=a(a≥slant0))。

因为5^2 = 25,所以√(25)=5。

| 2|=2。

则(√(3))^2-√(25)+| 2|=3 5 + 2 = 0。

二、含根式的混合运算1. 计算:√(12)+√(27)-√(48)。

解析:先将各项化为最简二次根式。

对于√(12),√(12)=√(4×3)=2√(3)。

对于√(27),√(27)=√(9×3)=3√(3)。

对于√(48),√(48)=√(16×3)=4√(3)。

则√(12)+√(27)-√(48)=2√(3)+3√(3)-4√(3)=√(3)。

2. 计算:√(8)×√(frac{1){2}}+√(3)(√(3)-√(6))。

解析:对于√(8)×√(frac{1){2}},根据√(a)×√(b)=√(ab),√(8)×√(frac{1){2}}=√(8×frac{1){2}}=√(4) = 2。

对于√(3)(√(3)-√(6)),根据乘法分配律a(b c)=ab ac,√(3)(√(3)-√(6))=√(3)×√(3)-√(3)×√(6)=3 3√(2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后练习
1.若x <-3,则|x +3|= 。

2.a,b 互为相反数,c,d 互为倒数,m 的绝对值是2,
求|a+b|2m 2+1
+4m-3cd= 。

3.已知(a-3b)2+|a2-4|a+2
=0,求a+b= 。

4.下列语句正确的是( )
A 、无尽小数都是无理数
B 、无理数都是无尽小数
C 、带拫号的数都是无理数
D 、不带拫号的数一定不是无理数。

5.零是( )
A 、最小的有理数
B 、绝对值最小的实数
C 、最小的自然数
D 、最小的整数
6.如果a 是实数,下列四种说法:
(1)a2和|a|都是正数
(2)|a|=-a,那么a一定是负数
(3)a的倒数是1a
(4)a和-a的两个分别在原点的两侧
几个是正确的有 个
7.比较下列各组数的大小:
(1) 32 3 12 (2)a<b<0时, 1a 1b
8.实数a,b,c 在数轴上的对应点如图,其中O 是原点,且|a|=|c|
(1) 判定a+b,a+c,c-b 的符号
(2) 化简|a|-|a+b|+|a+c|+|c-b|
9.数轴上点A 表示数-1,若AB =3,则点B 所表示的数为
10.已知x<0,y>0,且y<|x|,用"<"连结x ,-x ,-|y|,y
11.若实数x ,y 满足等式(x +3)2+|4-y |=0,则x +y 的值是
12.实数可分为( )
A、正数和零
B、有理数和无理数
C、负数和零
D、正数和负数
13.若2a与1-a互为相反数,则a等于a=
14.当a为实数时,a2 =-a在数轴上对应的点在()
A、原点右侧
B、原点左侧
C、原点或原点的右侧
D、原点或原点左侧
15.已知等腰三角形一边长为a,一边长b,且(2a-b)2+|9-a2|=0 。

求它的周长。

16.若3,m,5为三角形三边,化简:(2-m)2-(m-8)2
17.已知x、y是实数,且(X- 2 )2和|y+2|互为相反数,求x,y的值18.最大负整数、最小的正整数、最小的自然数、绝对值最小的实数各是什么?19.绝对值、相反数、倒数、平方数、算术平方根、立方根是它本身的数各是什么?20.把下列语句译成式子:
(1)a是负数;
(2)a、b两数异号;
(3)a、b互为相反数;
(4)a、b互为倒数;
(5)x与y的平方和是非负数;
(6)c、d两数中至少有一个为零;
(7)a、b两数均不为0 。

21.判断题:
(1)如果a为实数,那么-a一定是负数;()
(2)对于任何实数a与b,|a-b|=|b-a|恒成立;()
(3)两个无理数之和一定是无理数;()
(4)两个无理数之积不一定是无理数;()
(5)任何有理数都有倒数;()
(6)最小的负数是-1;()
(7)若|a|=2,|b|=3且ab>0,则a-b=-1;()
(8)最小的负数是-1;()。

相关文档
最新文档