数值分析2-03PPT课件
合集下载
数值分析课件

辛普森方法
一种基于矩形法思想的数值积分方法 ,适用于计算定积分。
自适应辛普森方法
一种基于辛普森方法和梯形法的自适 应数值积分方法,能够根据函数性质 自动选择合适的积分策略。
常微分方程的数值求解
01
欧拉方法
一种基于常微分方程初值 问题的数值求解方法,通 过逐步逼近的方式求解近 似解。
02
龙格-库塔方法
定积分是函数在区间上积分和的极限;不定积分是函数在 某个区间上的原函数。
02
应用领域
积分广泛应用于物理、工程、经济等领域,如求曲线下面 积、求解变速直线运动位移等。
03
数值计算方法
使用数值积分方法(如梯形法、辛普森法等)来近似计算 定积分和不定积分的值。这些方法将积分区间划分为若干 个小段,并使用已知的函数值和导数值来近似计算每个小 段的积分值,最后求和得到积分的近似值。
一种基于常微分方程初值 问题的数值求解方法,通 过构造龙格-库塔曲线来 逼近解。
03
阿达姆斯-图灵 方法
一种基于常微分方程初值 问题的数值求解方法,通 过构造阿达姆斯-图灵曲 线来逼近解。
04
自适应步长控制 方法
一种基于欧拉方法和龙格 -库塔方法的自适应步长 控制方法,能够根据误差 自动调整步长。
偏微分方程的数值求解
高斯消元法的步骤
1. 将方程组按照行进行排列,并将每个方程中的未知数 按照列排列。
2. 对于每个方程,选取一个未知数作为主元,并将其余 的未知数用主元表示。
3. 将主元所在的行与其他行进行交换,使得主元位于对 角线上。
4. 将主元所在的列中位于主元下方的元素消为0,从而得 到一个阶梯形矩阵。
线性方程组的解法
数值分析是一种工具,它可以帮助我 们更好地理解和解决实际问题,同时 也可以帮助我们更好地理解和应用数 学理论。
数值分析ppt

例如:建立积分
1 xn
In
dx 0 x5
n 0,1, , 20
的递推关系式,研究它的误差传递。
解:由
In 5In1
1
xn
5xn1 dx
0 x5
1 xn1dx 1
0
n
和
I0
1 1 dx ln 6 ln 5 0 x5
可建立递推公式
1 In 5In1 n
n 1, 2, , 20
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
在四中误差中,模型误差和观测误差是客 观存在的,截断误差和舍入误差是由计算方法和 计算工具引起的,我们在研究数学问题的数值解 法时,主要是分析讨论计算方法的截断误差和舍 入误差。
例如 在计算机上计算级数
sin x x 1 x3 1 x5 1 x7 3! 5! 7!
取前三项计算 sin x 的近似值
e*( y) y*
( f )* x1
x1* y*
er*
(
x1)
(
f x2
)*
x2* y*
er*(x2 )
(2)
利用(1)、(2)两式,可以得到两数 和、差、积、商的绝对误差与相对误差传播 的估计式.
e* (x1 x2 ) e* (x1) e*(x2 )
《数值分析第二章》PPT课件

定理2.1
顺序高斯消去法的前 n1 个主元
a (k ) kk
均不
为零的充要条件是 Ax b 的系数矩阵 A 的前 n 1个
顺序主子式
a a (1) (1) 11 12
Dk
a(1) 21
a(1) 22
a(1) 1k
a(1) 2k
0
(k1,2,...,n1).
a a (1) (1) k1 k2
a(1) kk
(1)
4 x2 x3 5
(2)
2
x1
2
x2
x3
1
(3)
解 <1> 化上三角方程组
x1 x2 x3 6
①
4 x2 x3 5
②
③+(-2)×①
2
x1
2 x2
x3
1
③
x1 x2 x3 6
①
4 x2 x3 5
②
④+ ②
4 x2 x3 11
④
x1 x2 x3 6
检验
原方程组:
0.012x1 0.010x20.167x3 0.6781
x10.8334x25.910x3 12.1
3200x1 1200x2 4.2x3 981
近似解: x 3 5 .5 4 6 ,x 2 1 0 0 .0 ,x 1 1 0 4 .0
把上近似解代入第 3 个方程后,得
3200×(-104)+1200×100 +4.2×5.546 = -2.1278e+005
列主元素消去法求解方程组时,各个列主元素
a (k ) ik k
均不为零。
证
设有一个列主元素
a
(r ) ir r
数值分析PPT教案

和收敛性。
遗传算法
模拟生物进化过程的优 化算法,适用于多变量、 非线性、离散的最优化
问题。
数值积分和微分的方法
01
02
03
04
矩形法
将积分区间划分为若干个小的 矩形区域,每个矩形区域上的 函数值乘以宽度然后相加。
梯形法
将积分区间划分为若干个小的 梯形区域,每个梯形区域上的 函数值乘以宽度然后相加。
理解和应用能力。
培养创新思维和解决问题的能力
03
学生应该培养创新思维和解决问题的能力,以便在未来的学习
和工作中更好地应对挑战。
THANK YOU
感谢聆听
误差累积效应
误差的来源和传播
初始误差放大 误差传递规律
误差的度量和控制
绝对误差和 相对误差
误差的估计 和容忍度
提高数据精 度
选择合适的 算法和数值 方法
控制误差的 方法
迭代收敛性 和稳定性分 析
方法的稳定性和收敛性
方法的稳定性 不受初始条件和舍入误差的影响
对输入数据的变化具有稳健性
方法的稳定性和收敛性
课程目标
02
01
03
掌握数值分析的基本概念、原理和方法。
能够运用数值分析方法解决实际问题,提高计算能力 和数学素养。
培养创新思维和实践能力,为后续学习和工作奠定基 础。
02
数值分析基础
数值分析的定义和重要性
数值分析的定义
数值分析是一门研究数值计算方法及其应用的学科,旨在解决各 种数学问题,如微积分、线性代数、微分方程等。
电子工程
在电子工程中,数值分析用于 模拟电路的行为和性能。通过 电磁场理论和数值方法,可以 优化电路设计和性能,提高电 子设备的效率和稳定性。
遗传算法
模拟生物进化过程的优 化算法,适用于多变量、 非线性、离散的最优化
问题。
数值积分和微分的方法
01
02
03
04
矩形法
将积分区间划分为若干个小的 矩形区域,每个矩形区域上的 函数值乘以宽度然后相加。
梯形法
将积分区间划分为若干个小的 梯形区域,每个梯形区域上的 函数值乘以宽度然后相加。
理解和应用能力。
培养创新思维和解决问题的能力
03
学生应该培养创新思维和解决问题的能力,以便在未来的学习
和工作中更好地应对挑战。
THANK YOU
感谢聆听
误差累积效应
误差的来源和传播
初始误差放大 误差传递规律
误差的度量和控制
绝对误差和 相对误差
误差的估计 和容忍度
提高数据精 度
选择合适的 算法和数值 方法
控制误差的 方法
迭代收敛性 和稳定性分 析
方法的稳定性和收敛性
方法的稳定性 不受初始条件和舍入误差的影响
对输入数据的变化具有稳健性
方法的稳定性和收敛性
课程目标
02
01
03
掌握数值分析的基本概念、原理和方法。
能够运用数值分析方法解决实际问题,提高计算能力 和数学素养。
培养创新思维和实践能力,为后续学习和工作奠定基 础。
02
数值分析基础
数值分析的定义和重要性
数值分析的定义
数值分析是一门研究数值计算方法及其应用的学科,旨在解决各 种数学问题,如微积分、线性代数、微分方程等。
电子工程
在电子工程中,数值分析用于 模拟电路的行为和性能。通过 电磁场理论和数值方法,可以 优化电路设计和性能,提高电 子设备的效率和稳定性。
数值分析ppt课件

数值积分与微分
数值积分
通过数值方法近似计算定积 分,如梯形法则、辛普森法 则等。
数值微分
通过数值方法近似计算函数 的导数,如差分法、中心差 分法等。
常微分方程的数值解法
通过数值方法求解常微分方 程,如欧拉方法、龙格-库塔 方法等。
03
数值分析的稳定性与误差分析
误差的来源与分类
模型误差
由于数学模型本身的近 似性和简化,与真实系
非线性代数方法
非线性方程组的求解
通过迭代法、直接法等求解非线性方程组,如牛顿法、拟牛顿法 等。
非线性最小二乘问题
通过迭代法、直接法等求解非线性最小二乘问题,如GaussNewton方法、Levenberg-Marquardt方法等。
多项式插值与逼近
通过多项式插值与逼近方法对函数进行近似,如拉格朗日插值、 样条插值等。
机器学习与数值分析的交叉研究
机器学习算法
利用数值分析方法优化和改进机器学 习模型的训练和预测过程,提高模型 的准确性和效率。
数据驱动的模型
通过数值分析方法处理大规模数据集 ,提取有用的特征和模式,为机器学 习模型提供更好的输入和输出。
大数据与数值分析的结合
大数据处理
利用数值分析方法处理和分析大规模数 据集,挖掘其中的规律、趋势和关联信 息。
数值分析PPT课件
contents
目录
• 引言 • 数值分析的基本方法 • 数值分析的稳定性与误差分析 • 数值分析的优化方法 • 数值分析的未来发展与挑战
01
引言
数值分析的定义
数值分析
数值分析是一门研究数值计算方法及 其应用的学科,旨在解决各种数学问 题,如微积分、线性代数、微分方程 等。
数值分析全册完整课件

似算法的收敛性和数值稳定性; 要有好的计算复杂性,节省时间及存储量; 有数值实验,证明算法有效。
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
算法基本结构:顺序,分支,循环
算法描述:程序或流程图
常采用的处理方法:
构造性方法 离散化方法 递推化方法 迭代法 近似替代方法 以直代曲法 化整为零的处理方法 外推法
数学基础:
微积分的若干定理: 罗尔定理和微分中值定理; 介值定理及推论; 泰勒公式(一元、二元); 积分中值定理;
设y=f(x)为一元函数,自变量准确值x*,对应函数准确 值y*=f(x*),x误差为e(x),误差限为ε(x),函数近似值 误差e(y),误差限为ε(y)。则(可由Taylor公式推得)
( y) | f '(x) | (x)
r
(
y)
|
xf |f
'(x) (x) |
|
r
(
x)
对于多元函数 z f (x1, x2 ,, xn )
定义1.1 设x*为某一数据的准确值,x为x*的一个近 似值,称e(x)=x-x*(近似值-准确值)为近似值x的绝对 误差,简称误差。
e(x) 可正可负,当e(x) >0时近似值偏大,叫强近似值;当e(x) <0时近似值偏小,叫弱近似值。
由于x*通常无法确定,只能估计其绝对误差值 不超过某整数ε(x),即
设准确值
z* f (x1*, x2*,, xn* )
由多元函数Taylor公式,可得误差估计:
n
(z)
k 1
f xk
(xk )
相对误差限为:
r (z)
n k 1
xk
f xk
r (xk )
z
2. 算术运算的误差估计:
数值分析课件第3章
0
x
y
2 4 6
8 6 4 2
骄行札或务旷恰洗大而非仆椒鸿孜襟儡和跟浪陪痕骚树认邻异镍屠丰逃臃数值分析课件第3章数值分析课件第3章
初每孟缅家邱拙货另崇屎慑芝骋磨雨鹏苯核碉断策占悲异贺碴察鸿旧岿父数值分析课件第3章数值分析课件第3章
例3-4 已知实测数据表如下,确定数学模型 y=aebx, 用最小二乘法确定a,b。
帜尸砚损讹祖邱帆迄攫让汕芽柔造兔优伐具猪购冈琅高蹄熊嫌第凸貉楚章数值分析课件第3章数值分析课件第3章
伸姜积升斯钳更相傍抒匣替讯蔽炽恋喉爱著殷都皂孵羌邹捞谎寐池骇织狱数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
拙猪囤犀缎孩甸萤捷褐番舍倪酌月迢飘沟锰乡橙波旗骨渠虎偷朋袒夹惹胳数值分析课件第3章数值分析课件第3章
新隆培润已描苍淬霖绪册防嚷拇痘掂腹坏蕉吁咳洞烷携敦玻腔同翻坎镀讨数值分析课件第3章数值分析课件第3章
宽烹呼境眺泡狞瑞怕敝斧厨寞贝砚妄特痒福踊阁监桐却挠伸井竟哇含野劲数值分析课件第3章数值分析课件第3章
囊铭徒庄裸课爹压屏滴插百盗万武廷校船卿肪没弹溃想镊茨壳峨孽信骗跨数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
xi yi yi
1.00 1.25 1.50 1.75 2.00 5.10 5.79 6.53 7.45 8.46 1.629 1.756 1.876 2.008 2.135
3.1基本概念
x0
x
x
x
x
x
x
x
f(x)
p(x)
虐座韦龄椽加腕槽晶僵壤漱键椒赏琢芭尊校榆唤著里钙治纹改瞥宁岁坛草数值分析课件第3章数值分析课件第3章
2、范数与赋范线形空间
x
y
2 4 6
8 6 4 2
骄行札或务旷恰洗大而非仆椒鸿孜襟儡和跟浪陪痕骚树认邻异镍屠丰逃臃数值分析课件第3章数值分析课件第3章
初每孟缅家邱拙货另崇屎慑芝骋磨雨鹏苯核碉断策占悲异贺碴察鸿旧岿父数值分析课件第3章数值分析课件第3章
例3-4 已知实测数据表如下,确定数学模型 y=aebx, 用最小二乘法确定a,b。
帜尸砚损讹祖邱帆迄攫让汕芽柔造兔优伐具猪购冈琅高蹄熊嫌第凸貉楚章数值分析课件第3章数值分析课件第3章
伸姜积升斯钳更相傍抒匣替讯蔽炽恋喉爱著殷都皂孵羌邹捞谎寐池骇织狱数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
拙猪囤犀缎孩甸萤捷褐番舍倪酌月迢飘沟锰乡橙波旗骨渠虎偷朋袒夹惹胳数值分析课件第3章数值分析课件第3章
新隆培润已描苍淬霖绪册防嚷拇痘掂腹坏蕉吁咳洞烷携敦玻腔同翻坎镀讨数值分析课件第3章数值分析课件第3章
宽烹呼境眺泡狞瑞怕敝斧厨寞贝砚妄特痒福踊阁监桐却挠伸井竟哇含野劲数值分析课件第3章数值分析课件第3章
囊铭徒庄裸课爹压屏滴插百盗万武廷校船卿肪没弹溃想镊茨壳峨孽信骗跨数值分析课件第3章数值分析课件第3章
i
0 1 2 3 4
xi yi yi
1.00 1.25 1.50 1.75 2.00 5.10 5.79 6.53 7.45 8.46 1.629 1.756 1.876 2.008 2.135
3.1基本概念
x0
x
x
x
x
x
x
x
f(x)
p(x)
虐座韦龄椽加腕槽晶僵壤漱键椒赏琢芭尊校榆唤著里钙治纹改瞥宁岁坛草数值分析课件第3章数值分析课件第3章
2、范数与赋范线形空间
《数值分析教程》课件
总结词
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
一种适用于大规模计算的数值方法
详细描述
谱方法适用于大规模计算,通过将问题分解为较小的子问 题并利用多线程或分布式计算等技术进行并行计算,可以 有效地处理大规模的计算任务。
感谢您的观看
THANKS
具有简单、稳定和可靠的优点。
05
数值积分与微分
牛顿-莱布尼兹公式
要点一
总结词
牛顿-莱布尼兹公式是数值积分中的基本公式,用于计算定 积分。
要点二
详细描述
牛顿-莱布尼兹公式基于定积分的定义,通过选取一系列小 区间上的近似值,将定积分转化为一系列小矩形面积之和 ,从而实现了数值积分。
复化求积公式
总结词
算机实现各种算法,为各个领域的科学研究和技术开发提供了强有力的支持。
数值分析的应用领域
总结词
数值分析的应用领域非常广泛,包括科学计算、工程 、经济、金融、生物医学等。
详细描述
数值分析的应用领域非常广泛,几乎涵盖了所有的科学 和工程领域。在科学计算方面,数值分析用于模拟和预 测各种自然现象,如气候变化、生态系统和地球科学等 。在工程领域,数值分析用于解决各种复杂的工程问题 ,如航空航天、机械、土木和电子工程等。在经济和金 融领域,数值分析用于进行统计分析、预测和优化等。 在生物医学领域,数值分析用于图像处理、疾病诊断和 治疗等。总之,数值分析已经成为各个领域中不可或缺 的重要工具。
03
线性方程组的数值解法
高斯消去法
总结词
高斯消去法是一种直接求解线性方程组的方法,通过一系列 行变换将系数矩阵变为上三角矩阵,然后求解上三角方程组 得到解。
详细描述
高斯消去法的基本思想是将系数矩阵通过行变换化为上三角 矩阵,然后通过回带求解得到方程组的解。该方法具有较高 的稳定性和精度,适用于中小规模线性方程组的求解。
《数值分析》PPT课件
它的近似解.
8
实际问题 数学模型 数值计算方法
上机计算求出结果
近似解与精确解之间的误差称为截断误差或方法误差.
9
例如,用泰勒(Taylor)多项式
Pn (x)
f (0)
f (0) x 1!
f (0) x2 2!
f (n) (0) xn n!
近似代替函数 f (,x) 则数值方法的截断误差是
4
数值分析的特点: 一、面向计算机,能根据计算机的特点提供切实可行的 有效算法. 二、有可靠的理论分析,能任意逼近并达到精度要求, 对近似算法要保证收敛性和数值稳定性,还要对误差进行
分析. 三、要有好的计算复杂性,时间复杂性好是指节省时
间,空间复杂性好是指节省存储量,这也是建立算法要研 究的问题,它5 关系到算法能否在计算机上实现.
界,即
13
e * x * x *,
则 叫* 做近似值的误差限, 它总是正数.
例如,用毫米刻度的米尺测量一长度 ,x读出和该长度 接近的刻度 ,x * x *是 x的近似值, 它的误差限是 0.5m,m 于是
x * x 0.5mm. 如读出的长度为 765m,m 则有 765 x . 0.5 虽然从这个14 不等式不能知道准确的 是x多少,但可知
19
当准确值 位x数比较多时,常常按四舍五入的原则得 到 x的前几位近似值 ,x * 例如
x π 3.14159265
取3位 取5位
x3* 3.14, 3* 0.002, x5* 3.1416, 5* 0.000008,
它们的误差都不超过末位数字的半个单位,即
π 3.14 1 102 , 2
定义设1 为准确x 值,
x *为 x的一个近似值, 称
8
实际问题 数学模型 数值计算方法
上机计算求出结果
近似解与精确解之间的误差称为截断误差或方法误差.
9
例如,用泰勒(Taylor)多项式
Pn (x)
f (0)
f (0) x 1!
f (0) x2 2!
f (n) (0) xn n!
近似代替函数 f (,x) 则数值方法的截断误差是
4
数值分析的特点: 一、面向计算机,能根据计算机的特点提供切实可行的 有效算法. 二、有可靠的理论分析,能任意逼近并达到精度要求, 对近似算法要保证收敛性和数值稳定性,还要对误差进行
分析. 三、要有好的计算复杂性,时间复杂性好是指节省时
间,空间复杂性好是指节省存储量,这也是建立算法要研 究的问题,它5 关系到算法能否在计算机上实现.
界,即
13
e * x * x *,
则 叫* 做近似值的误差限, 它总是正数.
例如,用毫米刻度的米尺测量一长度 ,x读出和该长度 接近的刻度 ,x * x *是 x的近似值, 它的误差限是 0.5m,m 于是
x * x 0.5mm. 如读出的长度为 765m,m 则有 765 x . 0.5 虽然从这个14 不等式不能知道准确的 是x多少,但可知
19
当准确值 位x数比较多时,常常按四舍五入的原则得 到 x的前几位近似值 ,x * 例如
x π 3.14159265
取3位 取5位
x3* 3.14, 3* 0.002, x5* 3.1416, 5* 0.000008,
它们的误差都不超过末位数字的半个单位,即
π 3.14 1 102 , 2
定义设1 为准确x 值,
x *为 x的一个近似值, 称
数值分析精品PPT课件
所以 x x 10m (a1 1) 10n1 1 10mn1
2(a1 1)
2
x至少有n位有效数字.
1.2.3、数值运算的误差估计
(1).
( x1
x
2
)
( x1 )
(
x
2
)
(2).
(
x1
x
2
)
x1
(
x
2
)
x
2
(
x1
)
(3).
x1
x
2
x1
(
x
2
)
x
2
(
x1
)
x
2
1.2.2、误差与有效数字
1.误差
定义1、(误差的定义 ) 设x 精确值, x 近似值,称e x x为 绝对误差(误差).
当e 0时称为强近似, 当e 0时称为弱近似.
如果 e x x ,( ( x )),那么称 为
绝对误差限 .
若
称er
e
x
e
x
r
,
(
r
x x
定义2、
若x的近似值x的误差限是某一位的半 个单位, 该位到x的第一位非零数字共有 n位,就说x有n位 有效数字.它可表示为 x 10m (a1 a2 101 a2 102 ... an 10n1 ) 其中ai (i 1,2,3,..., n)是0到9中的一个数字, a1 0, m为 整数, 且 x x 1 10mn1.
x 10mn1 a1a2a3 ...an 10m a1 • a2a3 ...an .
称x有n位有效数字, a1 , a2 ,..., an是x的有效数字.
总之,当 x x 1 10mn1时, x有n位有效数字.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h0,1 (
x)
h1 (
x
h
x0
),
则
h1,1 (
x)
h1 (
x1
h
x
),
h0,1 ( x0 ) 1,
h0,1 (
x0
)
h0,1 (
x1
)
h0
,1
(
x1
)
0.
h1,1 ( x1 ) 1, h1,1( x0 ) h1,1( x0 ) h1,1( x1 ) 0.
湘潭大学数学与计算科学学院
定理3.2 若f C 3[a,b], f (4)( x) 在 (a,b) 存在,则对
x [a,b], 两点Hermite插值问题解的误差为
(
x0
)
h0
,0
(
x1 )
0.
h0,1 ( x0 ) 1,
h0,1 (
x0
)
h0,1 (
x1
)
h0
,1
(
x1
)
0.
h1,0 ( x1 ) 1, h1,0 ( x0 ) h1,0( x0 ) h1,0( x1 ) 0.
0 (ht1),1( x(11 )t1)2,(1 h21,t1)(,x0) 1(th)1,1(tx(10 )t )h21,,1(t x1 )[0,10].
上一页 下一页 8
综合为
h0,0
(
x
)
0
(
x
h
x0
),
h1,0 ( x)
0
(
x1
h
x ),
h0,1 (
x)
h1 (
x
h
x0
),
h1,1 (
x)
h1 (
x1
h
x
),
则 hi,k ( x) P3 , i, k 0,1, 且满足
h0,0 ( x0 ) 1,
h0,0 (
x1 )
h0
,0
(3.4) (3.3)
湘潭大学数学与计算科学学院
上一页 下一页 9
利用(3.4)式,容易验证
H3 ( x) f0 h0,0 ( x) f1 h1,0 ( x) f0 h0,1( x) f1 h1,1( x).
满足插值条件(3.2),从而存在性得证.
(3.5)
湘潭大学数学与计算科学学院
上一页 下一页 10
1(0) 1,
容易求得
1(0) 1(1) 1(1) 0.
0(t) (1 t)2(1 2t),
1
(t
)
t(1
t )2 ,
t
[0,1]
(3.3)
湘潭大学数学与计算科学学院
上一页 下一页 5
若令 则
0(0) 1, 0(0) 0(1) 0(1) 0
h0,0
(
x
)
0
(
x
h
x0
)
湘潭大学数学与计算科学学院
上一页 下一页 2
插值问题: 设
x0, x1 , x2 , , xn
是n +1个不相同的节点,求作次数不超过2n+1次 的代数多项式H(x),使它满足插值条件:
H ( xi ) fi , H ( xi ) fi, i 0,1, 2, , n, (3.1)
其中
fi f ( xi ),
现在证明唯一性. 假设另有一个三次数多项式G(x)满足插值条件(3.2) 令R (x)=H3 (x)–G (x), 则由(3.2)有
R( xi ) R( xi ) 0, i 0,1
R(x)是次数小于等于3的代数多项式,而上式表明,
它有2个重根,除非
R( x) 0.
即:
G( x) H ( x).
§3 Hermite插值
一、问题的提法 二、Hermite插值公式
上一页 下一页 1
一、问题的提法
前面提到的插值,仅要求插值多项式p(x) 与被插值函数f(x)在插值点处有相同的值, 这种多项式往往不能反映插值函数的变化趋势. 现在提出一个新的插值问题: • 要求构造一个多项式H(x) ,使它与函数f(x) 在插值点处不仅有相同的函数值, • 而且还有相同的导数值. 这种带导数的插值叫做Hermite插值.
(1)
0,
h1,0 ( x1 )
1 h
0
(
x1
h
x1
)
1 h
0
(0)
0,
即满足: h1,0 ( x1 ) 1, h1,0 ( x0 ) h1,0( x0 ) h1,0( x1 ) 0.
湘潭大学数学与计算科学学院
上一页 下一页 7
1(0) 1, 1(0) 1(1) 1(1) 0.
类似地若令
其中 h x1 x0 ,
h0,0 (
x0
)
0
(
x0
h
x0
)
0
(0)
1,
h0,0 (
x1
)
0
(
x1
h
x0
)
0 (1)
0,
h0
,0
(
x0
)
1 h
0
(
x0
h
x0
)
1 h
0
(0)
0,
h0
,0
(
x1
)
1 h
0
(
x1
h
x0
)
1 h
0
(1)
0,
即满足:h0,0 ( x0 ) 1, h0,0 ( x1 ) h0,0( x0 ) h0,0( x1 ) 0.
f
i
f ( xi ).
湘潭大学数学与计算科学学院
上一页 下一页 3
二、Hermite插值公式
本节主要讨论两点Hermite插值, 即n=1的情形.
插值问题变为:求
满足
H3 P3
H3( x0 )
f0 ,
H
3
(
x0
)
f
0
,
H3 ( x1 )
f1 ,
H
3
(
x1
)
f1
(3.2)
下面构造性地给出两点Hermite插值问题:
湘潭大学数学与计算科学学院
上一页 下一页 6
0(0) 1, 0(0) 0(1) 0(1) 0
同样若令
h1,0 ( x)
0 (
x1 h
x
)
则
h1,0
(
x0
)
0
(
x1
h
x0
)
0
(1)
0,
h1,0
(
x1
)
0 (
x1
h
x1
)
0 (0)
1,
h1,0 ( x0 )
1 h
0
(
x1
h
x0
)
1 h
0
1、适定性证明
2、相应的插值公式
湘潭大学数学与计算科学学院
上一页 下一页 4
定理3.1 两点Hermite插值问题的解存在且唯一。 证明 首先证明存在性.
在标准单元[0,1]上构造两个特殊的三次代数多项式
0(t ), 1(t),
满足插值条件
0(0) 1, 0(0) 0(1) 0(1) 0,
湘潭大学数学与计算科学学院
上一页 下一页 11
H3(x)
f0 h0,0 ( x)
f1 h1,0 ( x)
f
0
h0
,1
(
x
)
f1 h1,1( x).
(3.5)
称(3.5)式为两点Hermite插值公式, 相应的 H3( x) 为两点Hermite插值多项式;而
h0,0 ( x), h1,0 ( x), h0,1( x), h1,1( x)
被称为关于 x0 , x1 的两点Hermite插值问题的基函数. H3( x) 是一个非常重要的Hermite插值多项式, 它所刻画的曲线与 f ( x) 在点 x0 和 x1 处 不仅有相同的函数值,而且有相同的斜率.
湘潭大学数学与计算科学学院
上一页 下一页 12
两点Hermite插值问题解的误差分析