数字图像处理图像增强

合集下载

图像增强的方法有哪些

图像增强的方法有哪些

图像增强的方法有哪些图像增强是指对图像进行处理,以改善其视觉质量或提取出更多的有用信息。

在数字图像处理领域,图像增强是一个重要的研究方向,它涉及到许多方法和技术。

本文将介绍几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。

这些方法可以应用于各种领域,如医学图像处理、遥感图像处理和计算机视觉等。

灰度拉伸是一种简单而有效的图像增强方法。

它通过拉伸图像的灰度范围,使得图像的对比度得到增强。

具体而言,灰度拉伸会将图像的最小灰度值映射到0,最大灰度值映射到255,中间的灰度值按比例进行映射。

这样可以使得图像的整体对比度得到提高,从而更容易观察和分析图像中的细节。

另一种常见的图像增强方法是直方图均衡化。

直方图均衡化通过重新分布图像的灰度级别,以使得图像的直方图更加均匀。

这样可以增强图像的对比度,使得图像中的细节更加清晰。

直方图均衡化在医学图像处理中得到了广泛的应用,可以帮助医生更准确地诊断疾病。

滤波是图像处理中常用的一种技术,它可以用来增强图像的特定特征或去除图像中的噪声。

常见的滤波方法包括均值滤波、中值滤波和高斯滤波等。

这些滤波方法可以根据图像的特点和需要进行选择,从而达到增强图像质量的目的。

除了滤波之外,锐化也是一种常见的图像增强方法。

锐化可以使图像中的边缘和细节更加清晰,从而提高图像的视觉质量。

常见的锐化方法包括拉普拉斯算子和Sobel算子等。

这些方法可以通过增强图像中的高频信息来使图像更加清晰。

综上所述,图像增强是图像处理中的一个重要环节,它可以帮助我们改善图像的质量,提取出更多的有用信息。

本文介绍了几种常见的图像增强方法,包括灰度拉伸、直方图均衡化、滤波和锐化等。

这些方法可以根据图像的特点和需求进行选择,从而达到增强图像质量的目的。

在实际应用中,我们可以根据具体的情况选择合适的图像增强方法,从而得到更加优质的图像结果。

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪

如何进行高效的图像增强和降噪图像增强和降噪是数字图像处理中的重要任务之一。

它们的目的是改善图像的视觉质量和可视化细节,并消除图像中的不必要的噪声。

在本文中,我将介绍一些常用的图像增强和降噪技术,以及一些实现这些技术的高效算法。

一、图像增强技术1.灰度变换:灰度变换是一种调整图像亮度和对比度的常用技术。

它可以通过改变灰度级来增加图像的对比度和动态范围,提高图像的视觉效果。

2.直方图均衡化:直方图均衡化是通过重新分配图像灰度级来增加图像对比度的一种方法。

它通过改变图像的直方图来增强图像的细节和对比度。

3.双边滤波:双边滤波是一种能够保留图像边缘信息,同时消除噪声的滤波技术。

它能够通过平滑图像来改善图像的质量,同时保持图像的细节。

4.锐化增强:锐化增强是一种通过增加图像的高频分量来提高图像的清晰度和细节感的方法。

它可以通过增加图像的边缘强度来突出图像的边缘。

5.多尺度增强:多尺度增强是一种通过在多个尺度上对图像进行增强来提高图像视觉质量的方法。

它可以通过提取图像的不同频率分量来增强图像的细节和对比度。

二、图像降噪技术1.均值滤波:均值滤波是一种常见的降噪方法,它通过将像素值替换为其周围像素的均值来减少噪声。

然而,它可能会导致图像的模糊,特别是在对边缘等细节进行处理时。

2.中值滤波:中值滤波是一种基于排序统计理论的降噪方法,它通过将像素值替换为其周围像素的中值来消除噪声。

相比于均值滤波,中值滤波能够在去除噪声的同时保留图像的边缘细节。

3.小波降噪:小波降噪是一种利用小波变换的降噪方法,它在时频域上对图像进行分析和处理。

它能够通过消除噪声的高频分量来降低图像的噪声水平。

4.非局部均值降噪:非局部均值降噪是一种通过将像素值替换为与其相似的像素均值来减少噪声的方法。

它能够通过比较像素的相似性来区分图像中的噪声和细节,并有选择地进行降噪。

三、高效实现图像增强和降噪的算法1.并行计算:利用并行计算技术,如GPU加速、多线程等,在处理图像增强和降噪算法时,可以提高计算效率和算法的实时性。

数字图像处理_胡学龙等_第04章_图像增强

数字图像处理_胡学龙等_第04章_图像增强

直方图均衡化
通过对原图像进行某种变换,使得图像的直 方图变为均匀分布的直方图 。
灰度级连续的灰度图像:当变换函数是原图 像直方图累积分布函数时,能达到直方图均 衡化的目的。 对于离散的图像,用频率来代替概率 。 【例4.2】假定有一幅总像素为n=64×64的图 像,灰度级数为8,各灰度级分布列于表4.1 中。试对其进行直方图均衡化。
• 4.3.2増晰原理 • 同态増晰采用合适的滤波特性函数,可以即使图 像灰度动态范围压缩,又能让感兴趣的物体图像 灰度扩展,从而是图像清晰。 • 图像是物体对照明光的反射,自然景物图像是由 两个分量乘积组成的,即照明函数和反射函数的 乘积。 • 图像的灰度由照明分量和反射分量合成,反射分 量反映了图像的实际内容(细节,纹理,边缘 等),随图像细节不同在空间上做快速变化,其 频谱落在空间高频区域。 • 而照明分量在空间上均具有缓慢变化的性质,其 频谱落在空间低频区域。 • 因此可通过傅里叶变换将两者分开,进行同态滤 波。
a’=0,b’=255。
实现的程序:
• • • • • A=imread('pout.tif'); %读入图像 imshow(A); %显示图像 figure,imhist(A); %显示图像的直方图 J1=imadjust(A,[0.3 0.7],[]); %函数将图像在0.3*255~0.7*255灰度之间 的值通过线性变换映射到0~255之间 • figure,imshow(J1); %输出图像效果图 • figure,imhist(J1) %输出图像的直方图
• 基本思想:按照高通滤波器设计,压缩低 频分量,提升高频分量。 • 照明函数频率变化缓慢,幅度变化大,数 字化占用位数多,所以要压缩; • 反射函数频率变化快,灰度变化很小,层 次不清,细节不明,应该扩展。

数字图像处理图像增强实验报告

数字图像处理图像增强实验报告

实验报告班级:08108班姓名:王胤鑫 09号学号:08210224一、实验内容给出噪声图像Girl_noise.jpg,请选择合适的图像增强算法,给出你认为最优的增强后的图像。

可以使用Matlab - Image Processing Toolbox 中的处理函数。

原始图像如下:二、算法分析对于给出的图像中有灰色的噪声,因此首先处理灰色的线条,根据其方差的大小来判断其所在行。

对于两条白色的噪声,根据与前后两行的对比来判断其所在位置。

程序中设定灰色线条处理的均方差门限为0.1,白线处理的标准为与前后两行的差值超过0.2(转换为double型)。

滤除噪声之后再通过中值滤波、拉普拉斯图像增强等方式对图像进行处理。

三、matlab 源程序clear all;clc;f=imread('girl_noise.jpg');figure,imshow(f),title('原始图像');[m,n]=size(f);f0= im2double(f); % 整型转换为double 类f1=f0;std_i=zeros(1,m-2);%灰线处理for i=2:m-1%灰线处理std_i(i-1)=std(f0(i,:));if(std_i(i-1)<0.1)for j=1:mf0(i,j)=(f0(i-1,j)+f0(i+1,j))/2;endendfigure,imshow(f0),title('滤除灰线后的图像');fz=f0-f1;[r,c]=find(fz~=0);%寻找灰线噪声的位置f2=f0;change=0;count=0;for i=3:m-2%白线处理for j=1:mif(abs(f0(i,j)-f0(i-1,j))>0.2&&abs(f0(i,j)-f0(i+1,j))>0.2)count=count+1;endif(count>n*0.8)count=0;change=1;break;endendif(change==1)for k=1:mf0(i,k)=(f0(i-1,k)+f0(i+1,k))/2;endchange=0;count=0;endendfigure,imshow(f0),title('滤除白线后的图像');fz1=f2-f0;[r1,c1]=find(fz1~=0); %寻找白线噪声的位置fn = medfilt2(f0); %反射对称填充figure, imshow(fn),title('中值滤波后的图像');f0 = im2double(fn); % 整型转换为double 类g =2*f0- imfilter(f0,w4, 'replicate'); % 增强后的图像figure, imshow(g),title('高提升滤波图像(A=2)');四、图像处理结果五、结果分析从上面结果可以看出,带状噪声处理部分,已经基本将带状噪声去除。

数字图像处理中的图像增强技术

数字图像处理中的图像增强技术

数字图像处理中的图像增强技术数字图像处理在现代科技中具有重要的地位。

它广泛应用于医学图像、遥感图像、安防监控图像以及各种图像数据分析等领域。

其中,图像增强技术是数字图像处理的重要分支之一。

什么是图像增强技术?图像增强是指通过数字图像处理方法,对原始图像进行改进以满足特定的应用需求。

这种技术可以提高图像的质量、清晰度、对比度和亮度,同时减少图像的噪声和失真,使图像更具辨识度和实用价值。

图像增强技术的基本原理数字图像处理中的图像增强技术有很多种。

它们有的基于像素点的局部特征,有的基于全局的规律和模型。

下面介绍几种典型的图像增强技术:1. 直方图均衡化直方图均衡化是一种典型的全局图像增强技术,它可以通过对图像灰度值分布进行调整,提高图像的对比度和亮度。

它假设在正常的摄影条件下,灰度级的分布应该是均匀的。

因此,直方图均衡化采用了一种用高频率伸展像素值的方法,将原图像的灰度级转换为更均匀的分布,从而使图像的对比度更加明显。

2. 中值滤波中值滤波是一种局部图像增强技术,是一种基于像素点的影响的方法。

它对图像中每个像素点的灰度值进行排序处理,后选取其中值为该像素点的新灰度值,这样可以消除噪声,使得模糊度和清晰度都有非常明显的改善。

3. 边缘增强边缘增强是一种同时考虑整幅图像的局部特征和全局规律的图像增强技术。

它对图像的边缘部分加权,使边缘区域更加清晰,从而提高了图像的辨识度和可读性。

边缘增强技术既可以提高图像的对比度和亮度,也可针对不同的图像类型和应用需求进行不同的定制化处理。

图像增强技术的应用数字图像处理中的图像增强技术可以广泛应用于各个领域:1. 在医学领域,图像增强技术可以帮助医生诊断疾病、评估治疗效果和进行手术规划等。

2. 在遥感领域,图像增强技术可以帮助解决地图制作中的噪声和失真问题,清晰地显示建筑物、道路和地形地貌等信息,从而提高研究和预测的准确性。

3. 在安防监控领域,图像增强技术可以通过对图像的增强处理,提高视频监控图像的清晰度和鲁棒性,以便更有效地进行安全监管和犯罪侦查。

数字图像处理 算法原理

数字图像处理 算法原理

数字图像处理算法原理
数字图像处理是指应用数字计算机对图像进行处理与分析的技术。

其中涉及到的算法原理包括:
1. 灰度变换算法:通过改变图像中像素的灰度级分布,实现对图像亮度、对比度、伽马校正等属性的调整。

常用的灰度变换算法有线性变换、逆变换、非线性自适应直方图均衡化等。

2. 图像滤波算法:用于平滑图像、强调图像细节或检测图像中的边缘。

常用的滤波算法包括均值滤波、中值滤波、高斯滤波、导向滤波等。

3. 图像增强算法:通过改善图像的质量和可视化效果,使图像更适合人眼观察和计算机分析。

常用的图像增强算法有直方图均衡化、局部对比度增强、锐化增强等。

4. 彩色图像处理算法:针对彩色图像的特点,进行颜色空间转换、亮度调整、色彩增强、色彩平衡等操作。

常用的彩色图像处理算法有RGB空间转换为HSV空间、色彩补偿、白平衡调整等。

5. 图像分割与边缘检测算法:将图像划分为不同的区域或提取图像中感兴趣的目标,常用的算法包括阈值分割、基于边缘的分割、基于区域的分割等。

6. 图像压缩与编解码算法:将图像数据经过压缩编码处理,以减少存储空间和传输带宽。

常用的压缩算法有无损压缩算法
(如RLE、Huffman编码)和有损压缩算法(如JPEG)。

除了以上算法原理外,还包括图像配准、图像恢复、形态学处理、基于特征的图像分析等其他算法。

这些算法原理的应用能够有效地处理数字图像,对于图像识别、图像搜索、医学图像分析等领域具有广泛的应用价值。

数字图像处理 实验二 图像增强

数字图像处理 实验二 图像增强

福建农林大学信息工程类实验报告系: 信息与机电工程系 专业: 电子信息工程 年级: 2009级 姓名: 庄建军 学号: 092230069 实验课程: 数字图像处理 实验室号:_ 实验1楼607 实验设备号: F5 实验时间: 2012.6.1 指导教师签字: 成绩:实验二 图像增强一、 实验目的1.掌握灰度直方图的概念及其计算方法;2.熟练掌握直力图均衡化和直方图规定化的计算过程;3.掌握平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;4.了解噪声模型及对图像添加噪声的基本方法;5.利用MATLAB 程序进行图像增强。

二、 实验原理图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。

其主要目的是处理后的图像对某些特定的应用比原来的图像更加有效。

图像增强技术主要有直方图修改处理、图像平滑化处理、图像尖锐化处理和彩色处理技术等。

1、直方图均衡化通过点运算将输入图像转换为在每一级上都有相等像素点数的输出图像。

按照图像概率密度函数PDF 的定义:1,...,2,1,0 )(-==L k n n r p k k r通过转换公式获得:1,...,2,1,0 )()(00-====∑∑==L k n n r p r T s k j kj j j r k k2、均值(中值)滤波是指在图像上,对待处理的像素给定一个模板,该模板包括了其周围的临近像素。

将模板中的全体像素的均值(中值)来代替原来像素值的方法。

3、拉普拉斯算子如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------111181111拉普拉斯算子首先将自身与周围的8个像素相减,表示自身与周围像素的差异,再将这个差异加上自身作为新像素的灰度。

三、 实验步骤1打开计算机,启动MATLAB 程序;程序组中“work ”文件夹中应有待处理的图像文件;2调入待处理的数字图像,并进行计算机均衡化处理;3启动MATLAB 程序,对图像文件分别进行直方图均衡化、均值滤波、中值滤波和拉普拉斯锐化操作;添加噪声,重复上述过程观察处理结果。

数字图像处理实验报告——图像增强实验

数字图像处理实验报告——图像增强实验

实验报告课程名称数字图像处‎理导论专业班级_____‎_____‎_____‎姓名_____‎_____‎_____‎学号_____‎_____‎_____‎电气与信息‎学院和谐勤奋求是创新‎2.编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 14.采用不同的‎梯度算子对‎b lurr‎y_moo‎n.tif进行‎锐化滤波,并比较其效‎果。

[I,m ap]=im rea‎d('trees‎.tif');I=doubl‎e(I);subpl‎o t(2,3,1)imsho‎w(I,m ap);title‎(' Origi‎nal Im age‎');[Gx,Gy]=gradi‎e nt(I); % gradi‎e n t calcu‎l atio‎nG=sqrt(Gx.*Gx+Gy.*Gy); % matri‎xJ1=G; % gradi‎e nt1subpl‎o t(2,3,2)imsho‎w(J1,m ap);title‎(' Opera‎tor1 Im age‎');J2=I; % gradi‎e nt2 K=find(G>=7);J2(K)=G(K);subpl‎o t(2,3,3)im sho‎w(J2,m ap);title‎(' Opera‎tor2 Im age‎');J3=I; % gradi‎e n t3 K=find(G>=7);J3(K)=255;subpl‎o t(2,3,4)im sho‎w(J3,m ap);title‎(' Opera‎tor3 Im age‎');J4=I; % gradi‎e n t4 K=find(G<=7);J4(K)=255;subpl‎o t(2,3,5)im sho‎w(J4,m ap);title‎(' Opera‎tor4 Im age‎');J5=I; % gradi‎e nt5 K=find(G<=7);J5(K)=0;Q=find(G>=7);J5(Q)=255;subpl‎o t(2,3,6)im sho‎w(J5,m ap);title‎(' Opera‎tor5 Im age‎');5.自己设计锐‎化空间滤波‎器,并将其对噪‎声图像进行‎处理,显示处理后‎的图像;附录:可能用到的‎函数和参考‎结果**************报告里不能‎用参考结果‎中的图像1)采用3×3的拉普拉‎斯算子w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1]滤波I=im rea‎d('moon.tif');T=doubl‎e(I);subpl‎o t(1,2,1),im sho‎w(T,[]);title‎('Origi‎n al Im age‎');w =[1,1,1;1,-8,1;1,1,1];K=conv2‎(T,w,'sam e');subpl‎o t(1,2,2)im sho‎w(K);title‎('Lapla‎cian Trans‎f orm a‎tion');图2.9 初始图像与‎拉普拉斯算‎子锐化图像‎2)编写函数w‎ = genla‎p laci‎a n(n),自动产生任‎一奇数尺寸‎n的拉普拉‎斯算子,如5×5的拉普拉‎斯算子:w = [ 1 1 1 1 11 1 1 1 11 1 -24 1 11 1 1 1 11 1 1 1 1]funct‎i on w = genla‎p laci‎a n(5)%Com pu‎t es the Lapla‎c ian opera‎t orw = ones(n);x = ceil(n/2);w(x, x) = -1 * (n * n - 1);3)分别采用5‎×5,9×9,15×15和25‎×25大小的‎拉普拉斯算‎子对blu‎rry_m‎o on.tif进行‎锐化滤波,并利用式完‎成图像的锐‎化增强,观察其有何‎不同,要求在同一‎窗口中显示‎。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.3 0.2 0.1
1
rk
0 1/7
3/7
5/7
1
zk
s-T(rk)
1.0 0.8 0.6 0.4 0.2
Pz(zk)
0.3 0.2 0.1
0 1/7 3/7
5/7
1
rk
0 1/7
3/7
5/7
1
zk
41
序号
运算
1 原始图像灰度级
2 原始直方图各灰度级像素
3 原始直方图P(r)
4 原始累积直方图V1
26
4.3.2 直方图的用途
六个像素 0.2
27
4.3.2 直方图的用途
直方图性质
1) ∞H(D)dD = 物体的面积 D1
2)如果一图像由两个不连接的区域组成,且每个区域 的直方图已知,则整幅图像的直方图是该两个区域的 直方图之和。
28
4.3.2 直方图的用途
3)边界阈值的选择
T
双峰直方图
f (x, y)的动态范围[a,b] g(x, y)的动态范围[c, d ] —原因:灰度集中在某个较小的范围(对比度低) —条件:已知灰度分布情况
d g (x, y)
d g (x, y)
c
0a
b
f (x, y)
c
0a b f (x, y)
灰度范围线性变换关系
线性变换关系
4
4.2.1 灰度线性变换
• 校正后的误差为计算误差,是不得已的,可忽略的误差
22
4.3 直方图修正法
4.3.1 灰度直方图的定义 4.3.2 直方图的用途 4.3.3 直方图均衡化 4.3.4 直方图规定化
23
4.3.1 灰度直方图的定义
直方图
直方图是图像的灰度——像素数统计图,即对于每 个灰度值,统计在图像中具有该灰度值的像素个数, 并绘制成图形,称为灰度直方图(简称直方图)。
43
a) 原图
b) 规定化函数
c) 直方图规定化后的结果 d) 图c的直方图
44
4.4 图像平滑
4.4.1 邻域平均法 4.4.2 中值滤波 4.4.3 多图像平均法 4.4.4 频域低通滤波法
45
4.4 图像平滑
空域滤波
是在图像空间借助模板进行邻域操作完成线性、非 线性运算
功能
1) 平滑:低通滤波器。 目的:在提取较大目标前去除太小的细节或将目 标内的小间断连接起来消除噪声
48
4.4.1 邻域平均法
消除麻点噪声
010
1/4 1 0 1
010
111
1/8 1 0 1
111
mask
49
4.4.1 邻域平均法
18
γ校正方法
实际中 γ值的确定方法 通常CCD的γ值在0.4 ~ 0.8之间,γ值越小,
画面的效果越差。根据画面对比度的观察与 分析,可以大致得到该设备的γ值(或依据 设备的参考γ值)。
19
γ校正方法
13998 21373 36064 68205 29260
原始信息L
γ=0.4
I 3.8 L0.4
能平,层次减少,对比度提高。
36
4.3.3 直方图均衡化
f
0.25
1.0
0.8
0.15
0.6
0.4
0.05
0.2
0.25 0.25
0.19
0.24 0.21
0.11 0.05
1/7 3/7 5/7 7/7
原图
1/7 3/7 5/7 7/7 DA 1/7 3/7 5/7 7/7
变高。
Pr (rk ) nk / N
(0 ≤ rk ≤1, k 0,1,L , L 1)
对其进行均匀化处理的变换函数为:
k
k
Sk T (rk ) Pr (rj ) nj
j0
j0
逆变换:
rk T 1(sk )
0 ≤ Sk ≤1
34
4.3.3 直方图均衡化
直方图均衡化算法:
(1)统计图象中各灰度级像素个数nk; (2)计算直方图中应变量的值:pk=nk/(M×N); (3)计算累计直方图中应变量的值:sk=Σpk; (4)取整Sk=int{(L-1)sk}; (5)确定映射对应关系:kSk; (6)对图象进行增强变换( kSk). 其中L是灰度层次数, M×N是图幅参数
21
46 999 54 686 68 087 89 507 59 580
CCD的输出信息I
γ=0.4
L' (I / 3.8)1/0.4
13999 21363 36065 69205 29260
γ校正后的信息
13 9 9 8 21 3 7 3 36 0 6 4 68 2 0 5 29 2 6 0
原始信息
46 9 9 9 54 6 8 6 68 0 8 7 89 5 0 7 59 5 8 0
CCD的输出信息I
• 如果不进行校正的话,会有11/25=44% 的数据畸变严重。 • 从上面的数据规律可以看出,会导致对比度的减小。
20
2. 对输入信息进行γ校正
L (I / C)1/ C I1/
• 在实际中,通常是根据预先设计好的速查表来完成 校正。
1. 全域线性变换
设原始图像中所有像素灰度的最小值和最大值分别为 f1(> 0)和 f2(< 255) 设结果图像中所有像素灰度的最小值和最大值分别为
g1(≥0)和 g2(≤255) 线性变换表示公式:
g(x, y) [(d c) /(b a)][ f (x, y) a] c
5
4.2.1 灰度线性变换
直方图模型
表示图像中不同灰度级出现的相对频率
Gray-level histogram
24
4.3.2 直方图的用途
P(k): 具有该灰度级的像素的频数
P(r)=nk n nk —灰度级为k像素的个数
25
4.3.2 直方图的用途
图像——直方图
不可逆变换,多对一的变换
直方图是多对一的映射结果,即多个图像可以生成 相同的直方图,因此直方图作为一阶统计特征未反 映相邻点之间的关系。 但反映了图像的灰度散布范围等特征,在很多场合 下,往往是重要特征。
37
4.3.3 直方图均衡化
直方图均衡化是一种非线性变换。 直方图均衡的特点
增加像素灰度值的动态范围,提高图像对比度。
38
4.3.3 直方图均衡化
由均衡化前后的 图像看,处理后 的图像更想清晰 ,视觉效果更好 ,直方图由处理 前的集中区域拉 伸到全部灰度级 范围。
39
4.3.4 直方图规定化
点处理增强:g=EH(f) 表示。
32
4.3.3 直方图均衡化
g=EH(f) 需满足:
a)EH(f) 在 0≤ f ≤ L 1 内单值递增,保证由黑到白 b)保证动态范围一致
原始图像的累计直方图满足上面两条件且能将f 的分布转换为均匀分布
33
4.3.3 直方图均衡化
N 总像素,L 灰度级
0.81 6/7(0.857)
0.16+0.08=0.24
4/7
329
0.08
0.89 6/7(0.857)
5/7
245
0.06
0.95 7/7(1.00)
6/7
122
0.03
0.98 7/7(1.00) 0.06+0.03+0.02=0.11
7/7
81
0.02
1.00 7/7(1.00)
仅存5个灰级,宏观拉平,微观不可
2)锐化:高通滤波器,增强被模糊的细节
46
4.4 图像平滑
滤波处理方法
空域:取局部邻域(2M+1)×(2M+1)邻域的加权 和局域处理
R K0S0 K1S1 L K8S8
K4 K3 K2
K5 K0 K1
R
K6 K7 K8
47
4.4 图像平滑
目的:减少噪声
1)加性噪声 g f n 2)乘性噪声 g f fn 3)量化噪声 4)盐和胡椒噪声 噪声:独立同分布的高斯白噪声,均值为0,方差σ
均衡化优点
能自动增强整个图像的对比度,但具体的增强效果不易 控制,处理的结果是全局均衡的直方图,实际中需特定 形状的直方图,从而有选择的增强某个灰度值范围内的 对比度。
分别对原始直方图和规定化处理后的直方图进行 均衡化处理
40
Pr(r k)
0.3 0.2 0.1
0 1/7
3/7
5/7
Pz(zk)
值.可以用于扩展被压缩的高值图像中的暗像素.
13
4.2.2 灰度非线性变换
14
图像的γ校正
我们知道,数字图像信息的获取通常都 是通过光电传感器(如:CCD)来完成的。 但是,由于传感器的输入输出特性不是 线性的。所以,如果不进行校正处理的 话,将无法得到好的图像效果。
(同理,加洗照片不对颜色进行校正配 准,所以效果都会略差一些)
2.分段线性变换
(c / a) f (x, y)
g(
x,
y)
(d c) /(b a)[ f (x, y) a] c
[(M g d ) /(M f c)][ f (x, y) b] d
Mg
d
0 ≤ f (x, y) ≤ a a f (x, y) ≤b b f (x, y) M f
29
4.3.2 直方图的用途
要点 1.直方图表明在每一灰度级有多少个像素 2.观察直方图可以看出不合适的数字化
30
4.3.2 直方图的用途
动态范围宽了,对比度增强了
31
4.3.3 直方图均衡化
相关文档
最新文档