超声波测距仪的设计

合集下载

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告

基于stm32单片机的超声波测距仪设计报告1. 引言超声波测距仪(Ultrasonic Distance Sensor)是一种常用的测距设备,通过发送超声波脉冲并接收其反射信号来测量目标与测距仪之间的距离。

本报告将详细介绍基于stm32单片机的超声波测距仪的设计过程。

2. 设计原理超声波测距仪的基本原理是利用超声波在空气中的传播速度和反射特性来计算目标物体与测距仪之间的距离。

其中,stm32单片机作为测距仪的控制核心,通过发射超声波脉冲并测量接收到的回波时间来计算距离。

2.1 超声波传播速度超声波在空气中的传播速度约为340m/s,可以通过测量超声波往返的时间来计算出距离。

2.2 超声波反射信号当超声波遇到障碍物时,会产生反射信号,测距仪接收到这些反射信号并测量其时间差,再通过计算即可得到距离。

3. 硬件设计本设计使用stm32单片机作为核心控制器,并搭配超声波发射器和接收器模块。

3.1 超声波发射器超声波发射器负责产生超声波脉冲,并将脉冲信号发送到待测物体。

3.2 超声波接收器超声波接收器负责接收从物体反射回来的超声波信号,并将其转换为电信号。

3.3 stm32单片机stm32单片机作为测距仪的核心控制器,负责发射超声波脉冲、接收反射信号并计算距离。

4. 软件设计本设计涉及的软件设计包括超声波信号发射、接收信号处理和距离计算等。

4.1 超声波信号发射使用stm32单片机的GPIO口控制超声波发射模块,产生一定频率和周期的脉冲信号。

4.2 接收信号处理通过stm32单片机的ADC模块,将超声波接收器接收到的模拟信号转换为数字信号,并对信号进行处理和滤波。

4.3 距离计算根据接收到的超声波反射信号的时间差,结合超声波的传播速度,使用合适的算法计算出距离。

5. 实验结果与分析经过实际测试,基于stm32单片机的超声波测距仪达到了预期的效果。

能够精确测量目标与测距仪之间的距离,并显示在相关的显示设备上。

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案

毕业设计方案超声波测距仪的设计方案1. 引言超声波测距仪是一种常用的测量设备,可以通过发送超声波信号并接收回波来测量距离。

本文将介绍一种基于超声波的测距仪设计方案,用于毕业设计项目。

2. 设计目标本设计方案的主要目标是设计一种精确、稳定、成本效益高的超声波测距仪。

具体而言,设计要求如下:- 测距范围:至少10米- 测量精度:在0.5%以内- 响应时间:小于100毫秒- 成本:尽可能低廉- 可靠性:能够在不同环境条件下稳定工作3. 设计原理超声波测距仪的工作原理是利用超声波在空气中传播速度恒定的特性,通过测量超声波的往返时间来计算距离。

一般来说,超声波测距仪由发射模块和接收模块组成。

发射模块:发射模块用于发送超声波信号,通常由脉冲发生器和超声波发射器组成。

脉冲发生器用于产生短暂的高频脉冲信号,驱动超声波发射器将信号转换成超声波信号并发射出去。

接收模块:接收模块用于接收反射回来的超声波信号,并将其转换成电信号。

接收模块一般由超声波接收器和信号处理电路组成。

超声波接收器将接收到的超声波信号转换成电信号,并通过信号处理电路进行放大、滤波和波形整形等处理,得到可用的测量信号。

距离计算:通过测量超声波的往返时间,可以计算出距离。

超声波在空气中的传播速度约为340米/秒,因此距离可以通过距离等于速度乘以时间的公式来计算。

4. 硬件设计硬件设计是实现超声波测距仪的关键。

以下是硬件设计方案的主要组成部分:超声波发射器和接收器:选择适当的超声波发射器和接收器是关键。

一般来说,发射器和接收器的频率应该相同,常见的频率有40kHz和50kHz。

此外,发射器和接收器需要具有相匹配的电特性,以确保信号的传输和接收的准确性。

脉冲发生器:脉冲发生器的设计应考虑到发射模块的需求,需要产生高频、短暂的脉冲信号。

常用的脉冲发生器电路有多谐振荡电路和555定时器电路等。

信号处理电路:接收到的超声波信号需要进行处理,以便得到可用的测量信号。

实训报告超声波测距仪

实训报告超声波测距仪

一、实训目的本次实训旨在通过实际操作,掌握超声波测距仪的设计、制作和调试方法,了解超声波测距的原理和特点,提高动手能力和创新思维。

二、实训内容1. 超声波测距原理超声波测距仪是利用超声波的传播速度和反射原理进行距离测量的设备。

当超声波发射器发射超声波信号后,遇到障碍物会反射回来,接收器接收反射信号,通过计算超声波往返时间,即可得到距离。

2. 超声波测距仪设计(1)硬件设计本次实训所设计的超声波测距仪主要由以下模块组成:1)超声波发射模块:采用超声波发射器产生40kHz的超声波信号。

2)超声波接收模块:采用超声波接收器接收反射回来的超声波信号。

3)单片机模块:采用AT89S51单片机作为主控制器,负责控制超声波发射、接收、数据处理和显示。

4)显示模块:采用四位共阳数码管显示距离。

5)电源模块:采用稳压电源为整个系统供电。

(2)软件设计1)初始化:设置单片机工作状态,初始化各个模块。

2)超声波发射:单片机控制超声波发射器发射超声波信号。

3)超声波接收:单片机控制超声波接收器接收反射回来的超声波信号。

4)数据处理:计算超声波往返时间,根据超声波在空气中的传播速度,计算出距离。

5)显示:将计算出的距离显示在数码管上。

3. 超声波测距仪调试(1)硬件调试:检查各个模块的连接是否正确,确保电路正常工作。

(2)软件调试:编写程序,调试单片机控制程序,使超声波测距仪能够正常工作。

三、实训过程1. 硬件制作(1)按照电路图连接各个模块,焊接电路板。

(2)组装超声波发射器、接收器和数码管。

2. 软件编写(1)根据超声波测距原理,编写程序实现超声波发射、接收、数据处理和显示功能。

(2)调试程序,确保超声波测距仪能够正常工作。

3. 调试与测试(1)检查电路连接是否正确,确保电路正常工作。

(2)调试单片机控制程序,使超声波测距仪能够正常工作。

(3)进行实际测量,测试超声波测距仪的测量精度和稳定性。

四、实训结果与分析1. 测量精度通过实际测量,超声波测距仪的测量精度在1厘米以内,满足日常使用要求。

超声波测距仪的设计

超声波测距仪的设计

1绪论1.1 超声波测距原理测量距离的方法有很多种,短距离的可以用米尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。

因为超声波在标准空气中的传播速度为331.45米/秒,由单片机负责计时,系统的测量精度理论上可以达到毫米级。

超声波测距的原理一般采用渡越时间法TOF (time of flight ),也可以称为回波探测法,如图1所示。

超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在介质中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。

根据传声介质的不同,可分为液介式、气介式和固介式三种。

根据所用探头的工作方式,又可分为自发自收单探头方式和一发一收双探头方式。

而倒车雷达一般是装在车尾,超声波在空气中传播,超声波在空气中(20℃)的传播速度为340m/s(实际速度为344m/s 这里取整数),根据计时器记录的时间就可以计算出发射点距障碍物的距离,公式340*/2S t 。

图1-1 超声波测距原理由于超声波也是一种声波,其声速c 与温度有关,表1列出了几种不同温度下的声速。

在使用时,如果温度变化不大,则可认为声速是基本不变的。

如果测距精度要求很高,则应通过温度补偿的方法加以校正。

表1-1 声速与温度的关系 温度(℃) -30 -20 -10 0 10 20 30 100 声速(m/s)3133193253233383443493861.2整体设计示意图整体设计示意图如图1-2所示图1-2整体设计示意图根据总体设计图,可以设想根据超声波发射与接收器模块在工作时发射超声波到接收反射回的回波后,并将发射超声波与接收回波的状态信号传输到单片机,再经过单片机内部程序的处理,并将计算结果以数据的形式由单片机I/O 接口传输到LCD 液晶显示屏并显示出测量结果的数据,同时由软件控制测量距离在某一临界值时单片机会向报警电路输出报警信号,使报警电路正常工作。

再结合单片机周围控制电路和下载供电电路,实现对单片机的程序的编译写入和修改。

超声波测距仪的设计方案

超声波测距仪的设计方案

软件算法优化
实验结果有效
采用时间戳和温度补偿的方法,提高了超 声波测距的精度和稳定性。
经过实验验证,该超声波测距仪的测量误 差在3mm以内,满足设计要求。
研究不足与展望
实验环境限制 硬件性能提升 软件算法优化 应用领域扩展
本次实验主要在室内环境下进行,对于室外复杂环境下的测量 精度和稳定性还需要进一步验证。
[2] 王晓华, 钱燕. 基于单片机的超声波测距 仪设计[J]. 仪表技术与传感器, 2020,(04): 56-60.
[3] 张志超, 王琳. 嵌入式超声波测距 仪的设计与实现[J]. 仪表技术与传感 器, 2021,(01): 78-82.
THANKS 感谢观看
可以考虑采用更高性能的单片机和传感器,以提高超声波测距 的精度和响应速度。
可以进一步优化软件算法,例如加入目标识别和跟踪功能,提 高超声波测距的应用范围。
超声波测距技术在机器人避障、自动驾驶、安防等领域都有广 泛的应用前景,可以进一步拓展应用领域。
07 参考文献
参考文献
[1] 张涛, 王超. 超声波测距仪的设计与 实现[J]. 电子测量技术, 2019, 42(11): 105-109.
计算距离
通过测量超声波从发射到 接收的时间,计算出距离 。时间乘以声速得到距离 。
数据处理及存储
数据处理
对采集到的数据进行处理,如滤波、去噪等,以提高测量精度。
数据存储
将处理后的数据存储到存储器中,方便后续分析和处理。
人机交互界面设计
显示测量结果
通过液晶显示屏或LED显示屏显 示测量结果。
按键输入
研究超声波测距仪的设计方案 有助于提高测量精度和可靠性 ,推动相关领域的发展。

课程设计实验报告-超声波测距仪的设计

课程设计实验报告-超声波测距仪的设计

超声波测距仪的设计一、设计目的本设计利用超声波传输中距离与时间的关系,采用STC51单片机进行控制和数据处理,设计出能够精确测量两点间距离的超声波测距仪。

同时了解单片机各脚的功能,工作方式,计数/定时,I/O口的相关原理,并稳固学习单片机的相关内容知识。

二、设计要求1.设计一个超声波测距仪,能够用四段数码管准确显示所测距离2.精度小于1CM,测量距离大于200CM三、设计器材元器件数量STC51单片机 1个超声波测距模块URF-04 1个电阻〔1K 200 4.7K〕 3 个晶振〔12MHz〕 1 个共阳极四位数码管 1 个极性电容〔33pF〕 2 个非极性电容〔22uF〕 1 个四、超声波测距系统原理331.45米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以到达毫米级。

超声波测距的算法设计: 超声波在空气中传播速度为每秒钟340米〔15℃时〕。

X2是声波返回的时刻,X1是声波发声的时刻,X2-X1得出的是一个时间差的绝对值,假定X2-X1=0.03S,那么有340m×0.03S=10.2m。

由于在这10.2m 的时间里,超声波发出到遇到返射物返回的距离如下:图1 测距原理超声波测距器的系统框图如下列图所示:图2 系统框图五、设计方案及分析〔包含设计电路图〕4.1硬件电路设计4.1.1 单片机最小系统控制模块设计与比拟方案二:采用STC51单片机控制。

STC51单片机是一种低功耗、高性能CMOS8位微控制器,具有 8KB的系统可编程Flash 存储器。

AT89S52具有以下标准功能: 8k字节Flash,256字节RAM, 32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口,片内晶振及时钟电路,能够满足题目设计的所有要求,而且我们对STC51单片机也比拟熟悉,因此我们选择方案二。

最小系统电路图如图3所示图3 单片机最小系统显示模块设计采用四位共阳极数码管显示,连接电路简单,显示电路连接图如图4所示图4 数码管显示电路超声波测距模块a.本系统采用超声波模块URF04进行测距,该模块使用直流5V供电,理想条件下测距可达500cm,广泛应用于超声波测距领域,模块性能稳定,测度距离精确,盲区〔2cm〕超近。

超声波测距设计毕业设计

超声波测距设计毕业设计

超声波测距设计毕业设计一、引言距离测量在许多领域都具有重要的应用,如工业自动化、机器人导航、汽车防撞等。

超声波测距作为一种非接触式的测量方法,具有测量精度高、响应速度快、成本低等优点,因此在实际工程中得到了广泛的应用。

本次毕业设计旨在设计一种基于超声波的测距系统,实现对目标物体距离的准确测量。

二、超声波测距原理超声波是一种频率高于 20kHz 的机械波,其在空气中的传播速度约为 340m/s。

超声波测距的原理是通过发射超声波脉冲,并测量其从发射到接收的时间间隔,然后根据声速和时间间隔计算出目标物体与传感器之间的距离。

假设发射超声波脉冲的时刻为 t1,接收到回波的时刻为 t2,声速为c,距离为 d,则距离 d 可以通过以下公式计算:d = c ×(t2 t1) / 2三、系统硬件设计(一)超声波发射模块超声波发射模块主要由超声波换能器和驱动电路组成。

超声波换能器将电信号转换为超声波信号发射出去,驱动电路则提供足够的功率和电压来驱动换能器工作。

(二)超声波接收模块超声波接收模块主要由超声波换能器、前置放大器、带通滤波器和比较器组成。

换能器将接收到的超声波信号转换为电信号,前置放大器对信号进行放大,带通滤波器去除噪声和干扰,比较器将信号整形为方波信号。

(三)控制与处理模块控制与处理模块采用单片机作为核心,负责控制超声波的发射和接收,测量时间间隔,并计算距离。

同时,单片机还可以将测量结果通过显示模块进行显示,或者通过通信模块与上位机进行通信。

(四)显示模块显示模块用于显示测量结果,可以采用液晶显示屏(LCD)或数码管。

(五)电源模块电源模块为整个系统提供稳定的电源,包括 5V 和 33V 等不同的电压等级。

四、系统软件设计(一)主程序流程系统上电后,首先进行初始化操作,包括单片机的初始化、定时器的初始化、端口的初始化等。

然后进入主循环,不断地发射超声波脉冲,并等待接收回波。

当接收到回波后,计算距离,并进行显示或通信。

超声波测距仪制作方案

超声波测距仪制作方案

超声波测距仪制作方案该测距仪采用NE555电路、两级级放大电路和电平比较电路实现了超声波的发射与接收。

比较器为该测距仪的核心单元,实现发射电路的控制和接收数据的处理。

本系统具有很强的实用价值和良好的市场前景。

一总的方案 1.1可选方案 方案一:利用分立模块的超声波测距仪 系统包括超声波测距模组、LED数码显示模组、驱动模组控制模组及电源五部分。

超声波测距模块主要由发射部分和接收部分组成,超声波的发射受主控制器控制(如图1所示);超声波换能器谐振在40KHz的频率,模块上带有40KHz方波产生电路。

显示模块是一个8位段数码显示的LCD;测量结果的显示用到三位数字段码,格式为X点XX 米,同时还用两位数字段码显示数据的个数。

电源采用9V的DC电源输入,经稳压管后得出5V以及3.3V的电源供系统各部分电路使用。

图1 超声波测距的结构 图1 超声波测距的结构 方案二:基于PIC16F876A单片机的超声波测距仪 超声波测距仪主要以单片机PIC16F876A为核心,其发射器是利用压电晶体的谐振带动周围空气振动来工作的.超声波发射器向某一方向发射超声波,在发射的同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器接收到反射波就立即停止计时。

一般情况下,超声波在空气中的传播速度为340m/ s,根据计时器记录的时间t ,就可以计算出发射点距障碍物的距离 s,即s=340×t/2,这就是常用的时差法测距。

在测距计数电路设计中,采用了相关计数法,其主要原理是:测量时单片机系统先给发射电路提供脉冲信号,单片机计数器处于等待状态,不计数;当信号发射一段时间后,由单片机发出信号使系统关闭发射信号,计数器开始计数,实现起始时的同步;当接收信号的最后一个脉冲到来后,计数器停止计数。

双向超声波测距仪的系统主要有几下部分组成(如图2所示): LED显示模块,PIC16F876A芯片,超声波发射模块,超声波接收模块,电源模块等五大模块组成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档