七年级数学上册 第一章 有理数 1.5 有理数的乘方 1.5.2 科学计数法课时练 (新版)新人教版
七年级数学上册 1.5.21.5.3 科学计数法 近似数课件

第十页,共十一页。
内容(nèiróng)总结
1.5 有理数的乘方(第2课时)。1、理解科学记数法的意义,学会用科学记数法表示较大的数.。2、了解近似 数的概念,按要求取近似数.。10的乘方有如下的特点:。思考(sīkǎo):等号左边整数的位数与右边10的指数有。
No 精确度—— 近似数与准确数的接近程度可以用精确度表示.。一个报道说:“会议秘书处宣布,参加今天会议的有
利用(lìyòng)四舍五入法得到的近似数,四舍五入到哪一位,就说这个 近似数精确到哪一位.
2021/12/9
第八页,共十一页。
按四舍五入(sì shě wǔ rù)法对圆周率π取近似值时,有
π≈3(精确到个位),
π≈3.1(精确到0.1,或叫做精确到十分位),
π≈3.14(精确到0.01,或叫做精确到百分位),
32 000 2021/12/9
6 000
32 500 000
第七页,共十一页。
事例:
对于参加同一个会议的人数,有两个(liǎnɡ ɡè)报道。一个报道说: “会议秘书处宣布,参加今天会议的有513人”。另一报道说:“约有 500人参加了今天的会议。”请问哪个数是准确数?哪个数是近似数?
精确度—— 近似(jìn sì)数与准确数的接近程度可以用精确度表示.
π≈3.142(精确到 π≈3.141 6(精确到 ·······
,或叫做精确到 0.001
,或叫做精确到 0.000 1
千分),位 ),
万分(wànfēn) 位
2021/12/9
第九页,共十一页。
课堂 小结 (kètáng)
1.科学(kēxué)记数法 2.准确数、近似数、精确度
2021/12/9
七年级上册第一章 有理数 笔记

本章引入了负数的概念,进而引入了有理数的概念,进而引入了有理数的图形表示方法:数轴。
进而根据数轴定义了绝对值。
还定义了相反数。
之后就开始讨论了有理数的四则运算法则。
介绍乘法时又引入了倒数的概念。
然后引入乘方的概念,进而引入了科学计数法。
1.1正数和负数1、正数负数定义正数:大于0的数。
例如:1,2.正数也可以写为+1,+2 ....负数:正数前加负号。
例如:-1,-2。
0既不是正数也不是负数。
1.2 有理数1.2.1 有理数的概念(1)有理数:正整数、负整数、正分数、负分数、0都叫做有理数。
(2)整数:正整数、负整数、0统称为有理数。
1.2.2 数轴数轴:是一条直线,直线上的点可以表示数,表示数0 的点叫做原点,一般取原点右边为正方向,原点左边为负方向,再原点右边距离为单位长度的表示1,在原点左边距离为单位长度的表示-1。
以此类推,可以表示-1,-2,-3,+1,+2,+3。
也可以表示分数。
1/2,就是距离原点右边1/2单位长度的位置。
1.2.3相反数(1)定义:只有符号不同的两个数叫做相反数。
例如+1和-1,+2和-2。
(2)相反数距离原点的距离相等。
(3)0的相反数还是0。
(4)在一个数的前面加上“-”号即变为这个数的相反数。
例如:1加负号为-1,-1加负号变为-(-1)=1(负负得正)。
1.2.4 绝对值(1)定义:数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|。
(2)由定义可知:正数的绝对值:它本身;负数的绝对值:它的相反数;0的绝对值还是0。
(5)比较大小:数轴上左边的数小于右边的数,即越右边越大。
于是:-6 < -5 < -4 ,4 < 5 < 6。
两个负数绝对值大的反而小。
0大于所有负数。
1.3 有理数的加减法1.3.1 有理数的加法(1)有理数加法法则●同号两数相加,取相同的符号,并把绝对值相加。
●相反数相加为0。
●绝对值不相等的两数相加,取绝对值大的数的符号,并用较大的绝对值减较小的绝对值。
最新人教版七年级数学上册目录及知识点汇总(2020年整理).pdf

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
初一上期数学第一章 有理数 知识归纳

第一章有理数1.1正数和负数1.正负数正数:大于0的数叫做正数.负数:小于0的数叫做负数.0:非正非负【注】①符号:一个数前面的“+”“-”号叫做它的符号.②正数前面的“+”号可以省略,负数前面的“-”号不可以省略.2.相反意义的量用正数和负数表示具有相反意义的量:如果正数表示某种意义,那么负数表示它的相反意义,反之亦然.【注】“相反意义的量”包括两个方面的含义:一是相反意义;二是要有量.3.“O”的特征(1)0既不是正数,也不是负数,是正数与负数的分界;(2)0是自然数;(3)0的意义:①有时表示没有,如文具盒中有0支铅笔,表示没有铅笔;②有时是一个数,如0度是一个确定的温度;③有时也作为基准,如零上3度.1.2有理数知识点一有理数1、有理数的定义:整数和分数统称为有理数(小数可以化为分数,所以看为为分数)2、有理数的分类:1):按定义⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫数有限小数或无限循环小负分数正分数分数负整数自然数正整数整数有理数0 2):按正负分⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数正分数正整数正有理数有理数04、四非正数和零统称为非负数;负数和零统称为非正数;正整数和零统称为非负整数(自然数);负整数和零统称为非正整数;【技巧】读的时候,在非正、非负后面加一个“的”知识点二 数轴1、数轴的定义:用一条直线上的点表示数,这条直线叫做数轴。
2、数轴三要素原点、正方向、单位长度称为数轴的三要素,三者缺一不可.【注】单位长度:指所取度量单位的名称,是一条人为规定的代表"1"的线段,这条线段可长可短,按实际情况来规定,同一数轴上的单位长度一旦确定,不能再改变.3、数轴画法首先:画一条水平的直线;其次:在直线上选取一点为原点;再次:确定向右为正方向,用箭头表示出来;最后:根据实际情况,选取适当的长度作为单位长度.4、与有理数的关系(1)有理数和无理数都可以用数轴上的点表示出来.(2)正有理数表示的点位于原点的右边,负有理数表示的点位于原点的左边5、利用数轴比较大小数轴可以用来比较大小,左<右﹔负数<0<正数.知识点三相反数1、定义只有符号不同的两个数叫做互为相反数.【注】①一般地,a和a-互为相反数,a表示任意一个数,可以是正数、负数,也可以是0.②0的相反数是0③“只有符号不同”应与“只要符号不同”区分开﹒④相反数必须成对出现,不能单独存在.2、几何意义一对相反数表示的点在数轴上应分别位于原点两侧;到原点的距离相等;这两点是关于原点对称的.3、求法求任意一个数的相反数,只要在这个数的前面添上“—”号即可.4、相反数的性质(1)若a与b互为相反数,则0=a,则a与b互为相反数.+b=+ba;反之,若0(2)任何一个数都有相反数,而且只有一个.正数的相反数是负数;负数的相反数是正数; 0的相反数仍是0.五、多重符号化简一个正数前面不管有多少个“+”号,都可以全部去掉;一个正数前面有偶数个“―”号,也可以把“―”号全部去掉;一个正数前面有奇数个"―"号,则化简后只保留一个"―"号,即“奇负偶正”(其中“奇偶”是指正数前面的“―"号的个数的奇偶数,“负正"是指化简的最后结果的符号).知识点四 绝对值1、绝对值的定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记做a (a 可以是正数、负数和0)2、绝对值性质:()()()⎪⎩⎪⎨⎧<-=>=0000a a a a a a3、绝对值具有非负性(1)若有几个非负数的和为0,则这几个非负数均为0。
人教版七年级数学上册知识点总结1-4章

第一章有理数1.1 正数和负数(1)大于0的数叫正数,在正数前面加上负号“- ”的数叫负数,负数小于0(根据需要我们有是时会在正数前面加上”+ ”表示正数,但通常不加,负数一定加“- ”);(2)0是正数与负数的分界,0既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a不一定是负数,+a也不一定是正数;(5)自然数:0和正整数统称为自然数;(6)a>0 a是正数; a≥0 a是正数或0 a是非负数;a<0 a是负数; a≤ 0 a是负数或0 a是非正数.例题:1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;正分数,负分数统称为分数;(3)用一条直线上的点表示数,这条线叫做数轴;在数轴上任取一个点表示数0,这个点叫做原点 ; 通常规定直线上从原点向右为正方向,从原点向左为负方向;选取适当的长度为单位长度;(4)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;(5)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;(6只有符号不同的两个数叫做互为相反数;(7)一般地,a的相反数是-a;特别地,0的相反数是0;在任意一个数前面填上”- ”,就得到了这个数的相反数;(8)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;(9)a、b互为相反数 a+b=0 ;(即相反数之和为0)(10)a、b互为相反数或;(即相反数之商为-1)(11)a、b互为相反数 |a|=|b|;(即相反数的绝对值相等)(12)绝对值:一般地,在数轴上表示数a的点与原点的距离叫做a的绝对值,记做|a|(|a|≥0);(13)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;(14)绝对值可表示为:当a>0时,|a|=a, 当a=0时,|a|=0,当a<0时,|a|=-a(15)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
初一数学各章节课时分配

初一数学上册各章节课时分配
第一章有理数
1.1正数和负数1课时
1.2有理数5课时
1.2.1有理数
1.2.2数轴
1.2.3相反数
1.2.4绝对值
1.3有理数的加减法4课时
1.4有理数的乘除法5课时
1.5有理数的乘方4课时
1.5.1乘方
1.5.2科学计数法
1.5.3近似数
本章复习2课时
第二章整式的加减
2.1整式3课时
2.2整式的加减3课时
本章复习2课时
第三章一元一次方程
3.1从算式到方程4课时
3.1.1一元一次方程
3.1.2等式的性质
3.2解一元一次方程(1) 4课时
------合并同类项与移项
3.3解一元一次方程(2)4课时
-------去括号与去分母
3.4 实际问题和一元一次方程4课时
本章复习2课时
第四章几何图形初步
4.1 几何图形4课时
4.1.1 立体图形与平面图形
4.1.2 点,线,面,体。
4.2直线、射线、线段2课时
4.3角 5课时
4.3.1角
4.3.2角的比较与运算
4.3.3余角和补角
4.4 课题学习设计制作长方体形状的包装纸盒 2课时。
人教版七年级数学上册同步备课《第一单元》 1.5.2 科学记数法(教学设计)

1.5.2 科学记数法教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.2 科学记数法,内容包括:科学记数法的现实意义、用科学记数法表示较大的数.2.内容解析科学记数法是在学生学习了有理数的乘方知识后,安排了一节与现实世界中的数据(尤其是大数)相关的数学内容,一方面让学生感受现实宏观世界中的大数,培养学生《数学新课程标准》中的核心观念之一数感.另一方面又通过对较大数学信息作出合理的解释和推断时学会用科学的、方便的方法表示大数.同时为今后用科学记数法表示微观世界中较小的数据奠定基础.基于以上分析,确定本节课的教学重点为:了解科学记数法的现实意义,学会用科学记数法表示较大的数.二、目标和目标解析1.目标(1)了解科学记数法的现实意义,学会用科学记数法表示较大的数.(数感)(2)会用科学记数法表示的数进行简单的运算.(运算能力)2.目标解析科学记数法是一种简洁明了的记数方法,特别对表示绝对值大于10的大数或小于1的很小的数,不仅书写简短,而且便于识读.七年级上册学习的科学记数法主要表示绝对值大于10的大数.对于绝对值小于1的很小的数,将在整式的乘除法运算中学习.三、教学问题诊断分析在科学记数法的教学中,应该先引导学生观察10的正整数次幂的特点,让学生自己总结后再给出利用10的正整数次幂表示绝对值较大的数的方法,关键是准确写出10的指数,学生在观察时,不一定都能自主顺利地得出整数的位数与10的指数的关系,这一点在逆向应用时,即将科学记数法表示的数进行还原时体现得更为明显.基于以上学情分析,确定本节课的教学难点为:正确使用科学记数法表示数并能灵活应用.四、教学过程设计(一)情境引入2022年双11全网交易额5571亿.中国恒大2022年净亏损1258.1亿元,负债总额约2.44万亿元.华为发布2022年年度报告.报告显示,华为整体经营平稳,实现全球销售收入6423亿人民币,净利润356亿人民币.天上的星星知多少?2003年国际天文学联合会大会上,天文学家指出,整个可见宇宙空间大约有700万亿亿颗恒星,那这个数字是多少呢?它比地球上所有沙漠和海滩上的砂砾总和还要多,也就是在“7”后面加22个“0”,即约为70 000 000 000 000 000 000 000颗.宇宙有多大?有多少岁?最新的研究认为宇宙的直径为1560亿光年,甚至更大. 可观测的宇宙年龄大约为138.2亿年.在生活中我们还会遇到一些比较大的数.例如:(1)第七次全国人口普查结果公布,全国人口为1443497378人.(2)太阳的半径约为696000km.(3)光在空气中的速度约为300000000米/秒.像这样较大的数据,书写和阅读都有一定困难,那么有没有这样一种表示方法,使得这些大数易写,易读呢?(二)自学导航仔细观察:101=___,102=____,103=_______,104=_______,105=_________,….你观察到什么规律?1.10的n次幂就等于10…0(在1后面有n个0);2.运算结果的位数比指数大1.把下列各数写成10的幂的形式.(1)1000=____;(2)1000000=____;(3)100000000=____;(4)10000000000=____;(5)10000000000000=____.因此我们可以用10的乘方表示一些大数,例如:567000000=5.67×100000000=5.67×108 读作“5.67乘10的8次方(幂)”.这样不仅可以使书写简短,同时还便于读数.【归纳】像上面这样,把一个大于10的数表示成a×10n的形式(其中1≤a<10,n是正整数),使用的是科学记数法.对于小于-10的数也可以类似科学记数法表示.例如:-567000000=__________×100000000=______________.(三)考点解析例1.用科学记数法表示下列各数:10000,800000000,-75600000,35725.6解:10000=104,80000000=8×100000000=8×108,-75600000=-7.56×10000000=-7.56×10735725.6=3.57256×10000=3.57256×104思考:上面的式子中,等号左边整数的位数与右边10的指数有什么关系?右边10的指数等于左边整数的位数减1.用科学记数法表示一个n位整数,其中10的指数是_____.【迁移应用】1.数据-11440.51用科学记数法表示为________________.2.原子钟是以原子的规则振动为基础的各种守时装置的统称,其中氢脉泽钟的精度达到了1700000年误差不超过1s.数据1700000用科学记数法表示为______________.3.据统计,地球上的海洋面积约为361000000km2,该数用科学记数法表示为3.61×10n,则n的值为_____.例2.下列用科学记数法写出的数,原来各是什么数?1.23×107,2.345×103,-3.141592×105,1×105.解:1.23×107=12300000,2.345×103=2345,-3.141592×105=-314159.2,1×105=100000.【点睛】反过来,如果用科学记数法表示的数10的指数是n,那么原数有n+1位整数位.【迁移应用】1.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3.12×106t二氧化碳的排放量,把3.12×106写成原数是____________.2.写出下列各数的原数.(1)8.5×106; (2)-3.96×104.解:(1)8.5×106=8500000; (2)-3.96×104=-39600.例3.下列各数:9.99×109,1.01×1010,9.9×1010,1.1×1010.从小到大排列,用“<”连接起来.解:因为1.01<1.1<9.9所以1.01×1010<1.1×1010<9.9×1010因为9.99×109=9990000000,1.01×1010=101000000009990000000<10100000000所以9.99×109<1.01×1010所以9.99×109<1.01×1010<1.1×1010<9.9×1010.【迁移应用】比较大小:(横线上填“>”“<”或“=”)(1)9.253×1010________1.002×1011(2)5.3×105________5290000(3)-7.83×109________-1.01×1010例4.用科学记数法表示下列各数:(1)181万;(2)398.2亿.解:(1)181万=1810000=1.81×106;(2)398.2亿=39820000000=3.982×1010.【迁移应用】1.节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为( )A.0.12×106B.1.2×107C.1.2×105D.1.2×1062.根据国家统计局开展的“带动三亿人参与冰雪运动”调查报告数据显示,全国冰雪运动参与人数达到3.46亿人,成功实现了“三亿人参与冰雪运动”的宏伟目标.数3.46亿用科学记数法表示为_____________.例5.建一幢房子大约需要3×104块砖,而每块砖的体积约为1200cm3.(1)建一幢房子所需砖块的总体积大约是多少立方厘米?(用科学记数法表示)(2)一个小区有这样的房子60幢,建这60幢房子所需砖块的总体积大约是多少立方米?(用科学记数法表示)分析:总体积=每块砖的体积×砖的数量.解:(1)建一幢房子所需砖块的总体积大约是1200×3×104=3.6×107(cm3).分析:总体积= 一幢房子用砖的体积×幢数.(2)3.6×107cm3=3.6×10m3,建这60幢房子所需砖块的总体积大约是60×3.6×10=2.16×103(m3).【迁移应用】1.已知中国空间站绕地球运行的速度约为7.7×103m/s,则中国空间站绕地球运行200s走过的路程用科学记数法可表示为___________m.2.据统计,某市平均每人每天大约产生1.5kg垃圾,垃圾处理厂把所有垃圾压缩做成棱长为0.5m的正方体,每个这样的正方体约重100kg.该市常住人口约为1000万,则该市一天将产生多少千克垃圾?可做成多少个这样的正方体?(用科学记数法表示)解:1000万=10000000,10000000×1.5=15000000=1.5×107(kg).1.5×107÷100=150000=1.5×105(个).故该市一天将产生1.5×107kg垃圾,可做成1.5×105个这样的正方体.(四)小结梳理五、教学反思。
(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。
2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
3、相反数:只有符号不同的两个数叫做互为相反数。
(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。
2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
h 1.5.2科学计数法 1.2008年5月12日,四川省汶川县发生了里氏8.0级大地震.新疆各族群众积极捐
款捐物,还紧急烤制了2×104个饱含新疆各族人民深情的特色食品——馕(n áng ),运往
灾区.每个馕厚度约为2cm ,若将这批馕摞成一摞,其高度大约相当于( )
A .160层楼房的高度(每层高约2.5m )
B .一棵大树的高度
C .一个足球场的长度
D .2000m 的高度
2.明明在图书馆借了一本科学读物,上面用科学记数法给出了地球与太阳间的距离,在阅读时发现,数据中10的指数被一滴墨水盖住了.为方便其他同学阅读,明明查出了两星球间的距离是1亿5千万千米,并把正确的指数补上了,他补写的是( )
A .7
B .8
C .9
D .6
3.大于10的数,用科学记数法记数时,10的指数比原来的整数的位数少____.
4.计算:)106()102.5(5
4⨯⨯⨯= .(结果用科学记数法表示)
5.按照广西高速公路网的规划,我区地方高速公路于2030年全部建成,建设里程为5353公里,总投资达1542.7亿元.用科学记数法表示总投资为多少亿元(保留两位有效数字)?
6.冥王星是太阳系中离太阳最远的行星,距离地球大约95.910km ⨯.如果有一宇宙飞船以每小时4510km ⨯的速度从地球出发飞向冥王星,那么宇宙飞船需要用多少年才能飞抵冥王星?(一年取365天,结果保留3位有效数字)
答案:
1.A .
2.B .
3.1.
4.3.12×1010.
5.31.510⨯. 6.13.5年.
欢迎您的下载,资料仅供参考!。